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Abstract. Sign language is one of the most effective communication
tools for people with hearing difficulties. Most existing works focus on
improving the performance of sign language tasks on RGB videos, which
may suffer from degraded recording conditions, such as fast movement
of hands with motion blur and textured signer’s appearance. The bio-
inspired event camera, which asynchronously captures brightness change
with high speed, could naturally perceive dynamic hand movements, pro-
viding rich manual clues for sign language tasks. In this work, we aim
at exploring the potential of event camera in continuous sign language
recognition (CSLR) and sign language translation (SLT). To promote
the research, we first collect an event-based benchmark EvSign for
those tasks with both gloss and spoken language annotations. EvSign
dataset offers a substantial amount of high-quality event streams and
an extensive vocabulary of glosses and words, thereby facilitating the
development of sign language tasks. In addition, we propose an efficient
transformer-based framework for event-based SLR and SLT tasks, which
fully leverages the advantages of streaming events. The sparse back-
bone is employed to extract visual features from sparse events. Then,
the temporal coherence is effectively utilized through the proposed local
token fusion and gloss-aware temporal aggregation modules. Extensive
experimental results are reported on both simulated (PHOENIX14T)
and EvSign datasets. Our method performs favorably against existing
state-of-the-art approaches with only 0.34% computational cost (0.84G
FLOPS per video) and 44.2% network parameters. The project is avail-
able at https://zhang-pengyu.github.io/EVSign.

Keywords: Sign Language Recognition · Sign Language Translation ·
Event Camera

1 Introduction

As a main communication medium employed by the deaf community, sign lan-
guage conveys multi-cue information by manual features (e.g., hand shape, move-
ment and pose) and non-manuals features, including facial expression, mouth
⋆ Work was done at Dalian University of Technology.
† Corresponding author: jiayushenyang@gmail.com
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Fig. 1: Comparison between sign language recognition and translation with RGB and
event data. We provide the first benchmark for event-based CSLR and SLT tasks,
namely EvSign. Compared with RGB data, event stream can capture smooth movement
within microsecond-level response, avoiding motion blur. Furthermore, the sparse event
only stresses on the moving targets, such as hands and arms, which can be processed
efficiently and protects personal privacy (facial information).

gesture and other body movements [2, 45]. According to the outputs, sign lan-
guage based tasks can be mainly categorized into sign language recognition (SLR)
and sign language translation (SLT). In SLR, the minimal lexical component,
namely gloss, is predicted. SLR can be further categorized into isolated SLR (ISLR)
and continuous SLR (CSLR). The purpose of SLT is to fully translate sign lan-
guage into spoken language, which is often considered as a sequence-to-sequence
learning problem. Recent works are based on videos captured by conventional
frame-based sensors, which suffer from challenging scenarios, including severe
motion blur and cluttering distractors. As shown in Fig. 1(a), the information will
be degraded in extreme conditions, such as fast hand and arm movement, thereby
leading to limited performances. To this end, existing works [8,14,20,42,64] em-
phasize temporal modeling, which leverages temporal cues in pixel- and frame-
wise representations via 3D convolution and Long-Short Term Memory (LSTM)
networks. Furthermore, STMC [64] and CorrNet [20] are designed to construct
discriminative spatial representation, focusing on body trajectories.

Event camera, a biologically-inspired sensor, detects the variation of inten-
sity along time. Rather than encoding visual appearance with still images, it
generates sparse and asynchronous event stream with extremely high temporal
resolution [3] (1M Hz vs.120 Hz), high dynamic range and low latency, which
is ideally suited for extracting motion cues [43, 61, 65]. As shown in Fig. 1(b),
event camera could benefit sign language tasks from four perspectives. First,
event data can capture richer motion information, thereby facilitating limb move-
ments modeling effectively. Second, conventional images may be degraded due
to the rapid movements, while event camera can record the sharp boundary



EvSign: Sign Language Recognition and Translation with Streaming Events 3

for further processing. Third, the event stream contains less redundant infor-
mation, such as background and textured clothing, which can boost efficiency
and avoid distractor interference. Fourth, from a privacy protection perspective,
event cameras can avoid collecting static facial information. There have been
several attempts [50,53,54,56] to leverage event camera for sign language tasks.
However, current event-based sign language datasets [53, 54, 56] only provide
sign videos for ISLR. The limited vocabulary size and frame length cannot meet
the requirements of real-world applications. Furthermore, the designed meth-
ods [50, 56] are based on the networks originally designed for frame sequences,
such as AlexNet [33] and ResNet [16], which do not fully leverage the advantage
of event data.

To unveil the power of event-based sign language tasks, we collect an event-
based Chinese sign language benchmark, namely EvSign. To the best of our
knowledge, it is the first dataset designed for event-based CSLR and SLT tasks.
More than 6.7K high-resolution event streams are collected in EvSign, which is of
comparable scale to the existing RGB-based SLR datasets. The large corpus with
native expressions, precise gloss and spoken language annotations can promote
the development of CSLR and SLT tasks.

Moreover, we present a transformer-based framework to make full use of the
advantage of event data. First, a sparse backbone is employed to efficiently com-
pute visual features on event data to obtain visual features efficiently. Then,
temporal information is modeled via the proposed local token fusion and gloss-
aware temporal aggregation modules, where the visual tokens are firstly com-
bined to model local motion and reduce the computational cost. Subsequently,
we aggregate the temporal information during the whole video into fused tokens
hierarchically, which is then used for gloss and word prediction. Our method
achieves very competitive performance on both synthetic and real datasets for
both tasks with only 0.34% computational cost.

To sum up, our contributions can be concluded as three aspects:

– We propose the first benchmark for event-based CSLR and SLT tasks, which
contains high-quality event streams, comprehensive corpus and precise gloss
and spoken language annotation.

– We design a transformer-based algorithm for both tasks, which fully lever-
ages the characteristics of event data.

– Experiments on both synthesized PHOENIX14T and EvSign datasets demon-
strate that our method achieves favorable performance with only 0.34%
FLOPS and 44.2% parameters against existing algorithms.

2 Related work

2.1 RGB-based sign language recognition

Sign language recognition can be categorized into two main directions: isolated
SLR (ISLR) [17, 18] and continuous SLR (CSLR) [5, 15, 64, 67]. As for ISLR,
word-level prediction is performed, while CSLR aims to predict a series of glosses
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from longer-term videos, which has become the primary focus of research due to
its closer alignment with real-world applications. To tackle CSLR, researchers
mainly work on extracting discriminative spatial and temporal information. In
the early stage, hand-crafted features [11, 45] are utilized to extract spatio-
temporal representation. HMM-based algorithms [28,30–32] are designed to pre-
dict gloss progressively. Recently, deep-based frameworks have been proposed,
focusing on leveraging motion-aware information [18, 44, 49, 64]. CTC loss [13]
is adopted to temporally align the classification results with unsegmented se-
quences, achieving end-to-end training. In addition, some works explore the use
of other modalities to provide a complementary cue to visual signals, including
skeleton [7,10,25,48,67] and depth [34,46,62], etc. In this paper, we exploit the
effectiveness of a bio-inspired sensor, i.e., event camera, for CSLR task.

2.2 RGB-based sign language translation

Compared to SLR, Sign Language Translation (SLT) aims to generate spoken
language translations from sign language videos in a progressive manner. Camgoz
et al. [4] first introduce SLT task and formalize it into Neural Machine Transla-
tion in an end-to-end setting, which extracts gloss features through a CNN model
and SLT using a sequence-to-sequence model. Subsequent works [5, 6, 36, 60, 63]
have focused primarily on how to better extract spatial and temporal features.
Some studies have attempted gloss-free methods [39,57,59] to generate sentences
without relying on gloss-level features, extensive experiments have shown that
directly implementing an end-to-end Sign2Text model yields inferior results com-
pared to using glosses as the intermediate supervision in the Sign2Gloss2Text
model. Therefore, the current implementation of SLT task is predominantly
based on the Sign2Gloss2Text approach. Recent works mainly focus on vision
based SLT, while SLT with other modalities have not been fully exploited.

2.3 Event-based sign language recognition

Event camera captures the intensity variation of each pixel, recording the tra-
jectory of fast-moving objects at high temporal resolution. Due to its property,
it can provide sufficient temporal information, which is suitable for modeling
object motion. A few attempts contribute to ISLR [50, 53, 54, 56]. Vasudevan et
al. [53, 54] propose an event-based Spanish sign language dataset, namely SL-
Animals-DVS, consisting of 1,102 event streams regarding animals. Two Spiking
Neural Networks (SNN) [51, 58] are used for evaluation. Wang et al. [56] con-
sider the event camera as a novel sensor in ISLR and collect an American sign
language dataset, which contains 56 words. Shi et al. [50] design an event sam-
pling strategy to select key event segments according to event distribution. The
selected events are then fed to a CNN to obtain classification results. They also
provide a synthetic dataset N-WLASL, where the event is collected by shooting
an LCD monitor to record the videos from WLASL [35]. Above all, three main
challenges limit the development of SLR. First, existing benchmarks are in small
vocabulary, which cannot fully exploit the potential of sign language recognition.
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Table 1: Summary of existing sign language recognition and translation benchmarks.

Dataset Lang. Gloss
Vocab.

Text
Vocab.

Num.
Videos

Num.
Signer Continuous SLT Resolution Source

WLASL [26] ASL 1,000 – 25,513 222 # # Variable Web
DEVISIGN [55] CSL 2,000 – 24,000 8 # # 598 × 448 Lab
PHOENIX-14 [29] DGS 1,081 – 6,841 9 ✓ # 210 × 260 TV
CCSL [23] CSL 178 – 25,000 50 ✓ # 1280 × 720 Lab
SIGNUM [1] DGS 455 – 15,075 25 ✓ # 776 × 578 Lab
PHOENIX-14T [4] DGS 1,066 2,887 8,257 9 ✓ ✓ 210 × 260 TV
CSL-Daily [63] CSL 2,000 2,343 20,654 10 ✓ ✓ 1920 × 1080 Lab
Youtube-ASL [52] ASL – 60,000 11,093 2,519 # ✓ Variable Web

EvASL [56] ASL 56 – 11,200 10 # # 128 × 128 Lab
SL-Animals-DVS [54] SSL 19 – 1,121 59 # # 128 × 128 Lab
EvSign(Ours) CSL 1,387 1,947 6,773 9 ✓ ✓ 640 × 480 Lab

Second, the event data is collected using the out-of-date sensors with low spatial
resolution in those datasets, leading to missing details in hand gesture and subtle
movement. Third, all the datasets are designed for ISLR. It can solely be used
for specific applications and cannot be generalized in real scenes. Therefore, it
is crucial to collect a larger-scale dataset to promote the development of sign
language tasks.

3 EvSign benchmark

3.1 Benchmark Statistics

We use the DVXplorer-S-Duo camera from iniVation, which is a binocular cam-
era capable of simultaneously capturing both event and RGB data. The spatial
size of event stream is 640 × 480. We also record the RGB data with the size of
480 × 320 at 25 FPS for visualization and annotation.

To fit the practical usage, the corpus is sourced around daily life, such as
shopping, education, medical care, travel and social communication, etc. The
glosses are sampled from the Chinese national sign language dictionary [9] and
CSL-Daily [63], and are then reorganized into a spoken sentence. To avoid dif-
ferences in expression, we further provide glosses and sentences to signers for
adjustment to suit the deaf community.

We recruit 9 professional volunteers from the deaf community, who are fa-
miliar with general sign language for data collection. We employ a two-step
manner to avoid data ambiguity. When collecting sign data, the signers first
watch a reference video and then start to perform the action. After recording,
other three signers vote to determine whether the sign expression is precise and
easy to understand. For each sample in the corpus, there are about three signers
to perform the action. We separate the sign videos into training, development
and test subsets, which contain 5,570, 553 and 650 clips, respectively. As shown
in Table 1, the proposed dataset significantly surpasses existing datasets in vo-
cabulary size, task scope, and data resolution, which provides a comprehensive
corpus to exploit the power of event data in handling sign language tasks.
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Table 2: Annotation statistics of EvSign dataset.

Segments Frame Duration(h) Vocab. Avg.
words

Tot.
words OOVs Singletons

Sign
Gloss

Train 5,570 606.7K 6.74 1,348 5.09 28,387 – 230
Dev 553 75.1K 0.83 695 5.68 3,145 25 –
Test 650 87.2K 0.97 723 5.48 3,562 18 –

Chinese
Train

↑ same ↑ same ↑ same
1,825 7.76 43,276 – 407

Dev 880 8.58 4,746 79 –
Test 912 8.23 5,350 53 –

3.2 Annotation

In EvSign, both sign gloss and spoken language annotations are provided. First,
annotators identify all the glosses according to [9] in the RGB videos. We note
that several signs may express the same meaning. Thus, the authors further re-
vise the annotation to ensure that each sign language corresponds to a unique
gloss annotation. Finally, the spoken language annotations are updated accord-
ing to the gloss annotation. We employ tokenization method in HanLP 1 to sep-
arate a sentence into words. As shown in Table 2, EvSign provides 1.3K unique
signs and 1.8K words, which cover various aspects of our daily life. Furthermore,
more than 35K and 53K gloss and text annotations are totally labeled.

3.3 Evaluation Metrics

We provide two evaluation protocols for both SLR and SLT. As for SLR eval-
uation, we use Word Error Rate (WER) as the metric, which is widely used in
sign language and speech recognition. WER measures the similarity of reference
and hypothesis, which is based on the minimum number of operations required
to convert the prediction into the reference sentence as:

WER =
#sub +#ins +#del

#ref
(1)

where #sub, #ins and #del are the number of basic operations, including sub-
stitution, insertion and deletion. #ref represents the number of words in the
reference sentence. Lower WER indicates better performance. For SLT evalua-
tion, we employ ROUGE [37] and BLEU [47] as evaluation metrics. Here, BLEU
is calculated with n-grams from 1 to 4 and ROUGE-L [38] is used as our metric.
The higher the ROUGE and BLEU scores, the better the performance.

4 Methodology

4.1 Overview

As shown in Fig. 2, the event stream E = {ei}Ni=1 is firstly split to P segments
evenly and converted to a set of event representation E = {E1,E2, ...,EP } ∈
1 https://github.com/hankcs/HanLP
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Fig. 2: Pipeline of the transformer-based framework for CSLR and SLT tasks.

RP×B×H×W , i.e., voxel grid [66], where B denotes the bin size in voxel grid.
Taken E as input, the proposed network is to jointly predict all the glosses G =
{g1, g2, ..., gZ} and translate them into spoken language W = {w1, w2, ..., wU} in
a sequence-to-sequence manner. Z and U are the number of glosses and words in
the sign language video. Our method contains five main parts, including sparse
backbone (SConv), Local Token Fusion (LTF), Gloss-Aware Temporal Aggrega-
tion (GATA) and two task heads, i.e., recognition head and translation head.
First, SConv generates a set of visual tokens. Then, we employ LTF to fuse lo-
cal motion from adjacent timestamps thereby reducing the number of tokens.
Moreover, the temporal information is decoupled into intra-gloss and inter-gloss
cues, which are learned hierarchically by GATA module. Specifically, we propose
a gloss-aware mask attention to dynamically fuse the comprehensive motion in-
formation from visual tokens into the fused tokens. It measures the token’s sim-
ilarity in time and feature spaces, which can be aware of various action lengths.
Furthermore, the global coherence among tokens from different glosses is learned
via inter-gloss temporal aggregation, thereby obtaining the gloss-aware tokens.
Finally, those tokens are sent to recognition and translation heads to predict the
probability of target gloss sequence and spoken language.

4.2 Overall framework

Sparse backbone (SConv). Due to the sparse property of event data, we build
a sparse convolutional network [12, 40] with the architecture of ResNet18 [16].
The backbone can process the event representation to obtain the visual tokens
Ov = {ov

1,o
v
2, ...,o

v
P } ∈ RP×C . The sparse backbone is able to fully leverage the

characteristics of data sparsity, thus significantly reducing the computational
load. Compared to regular convolution layers, sparse backbone can also better
maintain the sparsity at feature level, leading to a sharper boundary [12].
Local Token Fusion (LTF). Local motion integration is crucial for long-term
temporal modeling, which can first build an effective representation for contin-
uous actions within a short duration and reduce computational load [19]. To
construct a powerful features for local motion, we introduce LTF to fuse neigh-
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boring visual tokens, which contains two multi-head self-attention within local
window (W-MSA) [41] and two max pooling (MaxPool) layers. A regular win-
dow partitioning scheme is adopted to all the visual tokens, where each window
covers I tokens. The self-attention within non-overlapping window is calculated
to aggregate local motion information. Then, we introduce a max pooling oper-
ation to reduce the number of tokens. We adopt another W-MSA and MaxPool
with the same window size and ratio to capture a longer-term movement, thus
obtaining the fused tokens Of ∈ RL×C . The LTF can be formulated as,

Õv = MaxPool(W-MSA(Ov) +Ov)

Of = MaxPool(W-MSA(Õv) + Õv)
(2)

where the number of tokens L = P
γ , while γ represents the downsampling ratio.

Gloss-Aware Temporal Aggregation (GATA). Global temporal modeling
is a key step to exploit the correspondence of continuous signs in long-term
videos. Existing methods [18, 20, 42] learn the global motion cue by 1D tempo-
ral convolution and BiLSTM, which ignores the varying durations of different
signs. Simply applying temporal modeling among the fixed frames will learn
a non-optimal representation and involve redundant information from different
glosses. In this work, we decouple the temporal information into intra-gloss and
inter-gloss cues and model them hierarchically via the proposed GATA mod-
ule, which consists of Gloss-Aware Mask Attention (GAMA) and Inter-Gloss
Temporal Aggregation (IGTA). As for intra-gloss temporal aggregation, we aim
to aggregate the gloss-level information from Ov into Of. To achieve this, we
propose GAMA by introducing a gloss-aware mask M ∈ RL×P ,

GAMA(Q,K,V,M) = softmax(
QKT
√
d

⊙M)V (3)

where, Q, K, V are the query, key and value defined in cross-attention. d is the
dimension of query or key. We claim that the tokens belonging to the same class
tend to have highly-relevant representations. The mask M can be considered as
an attention weight, which measures the similarity between the fused and visual
tokens. Thus, we first calculate the token similarity ρ ∈ RL×P ,

ρ = ψf(O
f)ψv(O

v)T (4)

where, ψf() and ψv() are the linear embedding functions for the fused and visual
tokens. Also, we add a distance constrain δ ∈ RL×P in time space to avoid
computing attention between different glosses of the same category,

δi,j = K(tfi, t
v
j ;σ) (5)

where K() is a Radial Basis Function (RBF) kernel with the parameter σ. Since
the precise timestamp for each token is not accessible, we introduce pseudo
timestamps tfi, tvj ∈ R1 to represent the relative temporal position for fused and
visual tokens, respectively. The pseudo timestamp for j-th visual token is set to
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tvj = j. For the fused tokens, we calculate the pseudo timestamp as the average
of the pseudo timestamps of the fused tokens, defined as tfi =

∑x=(i+1)×γ
x=i×γ x.

Finally, the mask is defined as M = N (ρ) ⊙ N (δ), where the ⊙ represents the
element-wise product. N is a zero-one normalization.

We extend the gloss-aware mask attention into multiple heads and all the
attention heads share the same mask M. In addition, a Feed Forward Net-
work (FFN) module is utilized following GAMA to enhance the representation,
which consists of two linear transformations with ReLU activation. Following
SLT [5], we add a positional encoding (PE) process to the inputs. Thus, the
intra-gloss temporal aggregation process can be summarized as follows,

Q = Of +Pq; K = Ov +Pk; V = Ov

Ôf = Of + GAMA(Q,K,V)

Õf = Ôf + FFN(Ôf)

(6)

where Pq ∈ RL×C and Pk ∈ RP×C are the temporal positional encodings gen-
erated by a predefined sine function.

After obtaining intra-gloss tokens Õf, we apply inter-gloss temporal aggre-
gation to model the global motion via a multi-head self-attention (MSA),

X = Õf +Px

O = Õf + MSA(X)
(7)

where the Px ∈ RL×C is also the temporal positional encoding. After applying
GATA, we obtain the gloss-aware tokens O ∈ RL×C , which learns the motion
cues among all glosses comprehensively and is sent to the following task heads
for predicting glosses and words.
Task heads. Following the existing methods, we employ a classifier Freg as
Recognition Head (RH) to predict the logits G = {g1,g2, ...gL} ∈ RL×Y , where
Y denotes the size of the sign language vocabulary with adding a ‘blank’ class.
Freg consists of a fully-connected layer with a softmax activation. As for han-
dling translation task, the translation head (TH) is to sequentially generate
logits of spoken language sentences W = {p(w1), p(w2), ..., p(wU ), p(< eos >)}
conditioned by the gloss-aware tokens O, which is an auto-regressive transformer
decoder. We adopt the same translation head in [5]. Due to the page limitation,
Please refer to [5] and the supplementary material for details.

5 Experiments

5.1 Datasets and evaluation protocol

Dataset. We conduct analysis on synthetic (PHOENIX14T) and real (EvSign)
event-based sign language benchmarks. As an extension of PHOENIX14 [29],
PHOENIX14T introduces German spoken language annotation and has become
the primary benchmark for CSLR and SLT. It consists of 8,247 videos with
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a vocabulary of 1,066 and 2,887 sign and words, respectively. The number of
videos for training, development and test are 7,096, 519 and 642. Based on
PHOENIX14T, we build a synthetic dataset for further research using an event
simulator (V2E [22]), where the video frames are firstly interpolated to 350
frames per second by SuperSloMo [24] and used for event generation.
Evaluation protocol. We focus on both SLR and SLT tasks as follows:

– SLR: It only predicts the sign gloss from sign language videos without
introducing any additional information. Specifically, we implement a vari-
ant (OursS2G

2) by removing the translation branch and retrain our method
for fair comparison. In this setting, we select four public-available methods
including VAC [42], CorrNet [20], TLP [19], SEN [21] for comparison. All
the methods are trained from scratch according to the original setting. We
present WER as a metric for evaluation.

– SLT: We follow the Sign2 (Gloss+Text) protocol defined in [5], which is
to jointly learn both recognition and translation branches in an end-to-end
manner. We compare OursS2GT with SLT [5]. Additionally, we equip the
recent SLR algorithm with our translation head (CorrNet+TH, VAC+TH),
which are trained under this SLT comparison. Both ROUGE-L and BLEU-X
metrics are employed to quantitatively assess these methods.

5.2 Training Details

The feature dimension C is 1024. The downsample ratio γ in LTF module is
4. We adopt the widely-used CTC loss [13] for SLR supervision. Inspired by
VAC [42], we set an additional recognition branch F ′

reg on the fused tokens Of.
Two CTC losses (Linter and Lfinal) are applied to both intermediate and final
outputs against the ground truth. The total loss LSLR for SLR protocol is,

LSLR = λinterLinter + λfinalLfinal (8)

Under the SLT protocol, we add a cross-entropy loss Lce to supervise the output
of translation head. Thus the overall loss of our method can be summarized as,

LSLT = LSLR + λceLce (9)

The weights for those three losses λinter, λfinal and λce are all set to 1. The
parameters σ in RBF is set to 16 in our experiment. The bin size of voxel grid B
is 5. We adopt Adam [27] optimizer with cosine annealing strategy to adjust the
learning rate. The initial learning rate, weight decay and batch size are set to
3e−5, 0.001 and 2, respectively. We train our method for 200 epochs to achieve
convergence. To align the setting with existing methods, all the RGB frames
are cropped to 320× 320 to remove the useless background and then resized to
2 We use subscript to indicate which task is focused. S2G denotes the method is trained

and evaluated solely on SLR task while S2GT represents the method is trained with
the supervision of both gloss and spoken language and then used for SLT evaluation.
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Table 3: Comparison results for SLR on PHOENIX14T and EvSign datasets. Bold
and underline denotes the top-two ranking performance.

Method Modal
PHOENIX14T EvSign

FLOPS Param (M)
Dev (%) Test (%) Dev (%) Test (%)

VAC [42] RGB 20.17 21.60 32.08 30.43 228.87G 31.64
TLP [19] RGB 19.40 21.20 33.70 32.96 231.28G 59.69
SEN [21] RGB 19.50 21.00 33.26 33.46 231.96G 34.70
CorrNet [20] RGB 18.90 20.50 32.37 32.04 234.59G 32.04

VAC [42] EV 24.99 24.77 30.84 30.71 238.88G 31.65
TLP [19] EV 24.81 24.60 32.59 32.68 240.08G 59.69
SEN [21] EV 24.63 24.51 33.34 32.71 242.00G 34.70
CorrNet [20] EV 24.57 24.55 29.98 29.95 244.63G 32.05
OursS2G EV 23.89 24.03 29.19 28.69 0.84G 14.19

256× 256. As for event data, we firstly generate the voxel grid. Then, the voxel
grid is cropped to 480 × 480 and resized to 256 × 256. Other competitors are
trained using their own settings. Note that we modify the input channel of the
first convolutional layer to fit the event input. All the models are trained and
tested on a single NVIDIA RTX 3090 GPU with 24G RAM.

5.3 Quantitative Results on Sign Language Recognition

Table 3 provides quantitative results on PHOENIX14T and EvSign datasets.
Compared to existing methods that utilize RGB data, all the algorithms work-
ing with streaming event show lower WER consistently on EvSign dataset with
real event, revealing the power of event stream in handling sign language recog-
nition. However, the advantages of event data are not reflected in the results on
the simulated dataset. The reason is that the video frames used for event syn-
thesis are of poor quality with severe blur and limited frame rate. Compared to
event-based competitors, our method shows superior performance on both syn-
thetic PHOENIX14T and EvSign datasets. Notably, our method has significant
advantage in both computational cost and number of parameters, due to the
concise architecture and sparse data processing. We also evaluate the computa-
tional efficiency using FLOPS and number of parameters (Params) on EvSign
dataset3. Compared to the most recent method (CorrNet [20]), OursS2G achieves
0.79% and 1.26% improvement with respect to WER on development and test
sets of EvSign with only 0.34% FLOPS and 44.2% parameters.

5.4 Quantitative Results on Sign Language Translation

Table 4 and 5 show the comparison results for SLT on PHOENIX14T and EvSign
datasets.
3 Since the FLOPS and Params fluctuate based on data sparsity and sequence lengths,

we calculate their averages across videos in Dev and Test sets of EvSign.
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Table 4: Comparison results for SLT on synthesized PHOENIX14T. (R: ROUGE-L,
B-X: BLEU-X)

Method Modal
PHOENIX-14T Dev PHOENIX-14T Test

R B-1 B-2 B-3 B-4 R B-1 B-2 B-3 B-4
SLT [5] RGB 41.35 40.06 29.73 23.24 18.86 38.69 38.26 28.36 22.06 18.06
VAC+TH [42] RGB 39.38 39.22 29.47 23.44 19.40 38.57 39.87 29.53 23.11 19.00
CorrNet+TH [20] RGB 39.82 40.05 30.34 24.04 19.86 40.26 41.23 31.42 24.86 20.48

SLT [5] EV 39.86 38.99 29.01 23.54 18.41 39.21 39.84 29.25 23.09 19.23
VAC+TH [42] EV 39.01 39.09 29.64 23.74 19.64 39.34 39.62 29.55 23.30 19.92
CorrNet+TH [20] EV 39.52 39.28 29.60 23.41 19.24 40.12 40.77 30.62 24.11 19.83
OursS2GT EV 40.23 39.37 29.66 23.67 19.83 40.21 40.40 30.47 24.27 20.07

Table 5: Comparison results for SLT on EvSign. (R: ROUGE-L, B-X: BLEU-X)

Method Modal
EvSign Dev EvSign Test

FLOPS Param (M)
R B-1 B-2 B-3 B-4 R B-1 B-2 B-3 B-4

SLT [5] RGB 39.75 39.64 23.75 15.80 10.86 40.05 39.84 23.54 15.60 10.63 242.71G 34.51
VAC+TH [42] RGB 38.54 38.37 22.58 15.00 9.21 39.08 38.74 23.90 15.88 10.19 233.70G 45.26
CorrNet+TH [20] RGB 38.05 38.74 22.41 13.98 9.04 39.41 39.45 23.74 15.68 10.57 239.46G 45.66

SLT [5] EV 39.92 39.06 23.54 15.89 11.21 41.54 40.13 24.36 16.04 10.87 252.99G 34.51
VAC+TH [42] EV 38.96 38.93 23.29 15.23 10.08 39.48 39.22 24.11 15.94 10.01 243.84G 45.26
CorrNet+TH [20] EV 39.55 39.58 24.09 15.69 10.50 41.23 40.85 25.34 16.95 11.83 249.59G 45.66
OursS2GT EV 40.98 42.00 25.75 16.89 11.20 42.43 41.44 25.61 17.55 12.37 6.99G 28.06

As shown in Table 5, our method achieves the best performance except
BLEU-4 in the development set. On the other hand, the results on Phoenix14T (Ta-
ble 4) cannot demonstrate the effectiveness of event camera. Compared with
SLT, our method achieves 1.06% and 0.89% improvement in terms of ROUGE
in development and test sets, respectively. Specifically, our method also exhibits
significant advantages in terms of computational and parameter efficiency. Fur-
thermore, methods with event streams are consistently better than those with
RGB frames, which demonstrates the potential of event data in SLT task.

5.5 Further Analysis

Ablation study. As shown in Table 6, we conduct ablation analysis on both
PHOENIX14T and EvSign. we introduce a modified VAC [42] as our base-
line (B), with removing the visual alignment loss. Compared to the baseline with
RGB input, the event-based baseline achieves better performance on real event,
which reveals the potential of event in handling CSLR tasks. All of the proposed
modules contribute positively to the recognition performance on both datasets.
The sparse backbone (SConv) can significantly drop the computational load and
parameters while maintaining recognition accuracy, which can fully leverage the
sparsity of event data. The simple yet effective LTF module obtains 0.47% and
0.53% on the test set of PHOENIX14T and EvSign, respectively. Compared to
the BiLSTM, the designed GATA module can learn the temporal cues more
comprehensively, leading to 0.81% and 1.12% WER decrease on the test sets.
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Table 6: Ablation analysis for SLR on PHOENIX14T and EvSign.

Methods
PHOENIX14T EvSign

FLOPS Params (M)
Dev (%) Test (%) Dev (%) Test (%)

B(RGB) 20.38 21.74 32.00 30.29 228.87G 31.64
B(EV) 24.92(-4.54%) 25.19(-3.45%) 30.91(+1.09%) 30.08(+0.27%) 238.88G 31.65
B(EV)+SConv 24.68(+0.24%) 25.38(-0.19%) 30.21(+0.70%) 30.01(+0.07%) 1.22G 21.90
B(EV)+SConv+LTF 24.33(+0.35%) 24.91(+0.47%) 29.79(+0.42%) 29.48(+0.53%) 0.72G 13.13
B(EV)+SConv+GATA 24.04(+0.64%) 24.57(+0.81%) 29.41(+0.80%) 28.89(+1.12%) 1.69G 26.10
B(EV)+SConv+LTF+GATA 23.89(+0.15%) 24.03(+0.54%) 29.19(+0.22%) 28.69(+0.20%) 0.84G 14.19
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Fig. 3: Visualization of the gloss-aware mask on EvSign dataset.

The final model obtains the best performance with regard to all the metrics.
Compared to B(EV), the final model achieves 1.16% and 1.39% improvement on
the test sets, which can serve as a strong baseline for further research.
Visualization of gloss-aware mask. As shown in Fig. 3, we provide a visu-
alization results of SLR task and the gloss-aware mask in GATA module. With
the guidance of GATA module, our method learns comprehensive motion cues,
thus predicting all the glosses correctly. We visualize the gloss-aware mask be-
tween the tokens in corresponding gloss and visual tokens. It demonstrates that
the gloss-aware mask can precisely provide a intra-gloss correlation without any
supervision, achieving gloss-aware temporal token aggregation.
Analysis of token aggregation strategy. We compare several token aggre-
gation strategies and the performance on EvSign dataset is shown in Table 7(a).
We implement the ‘w/o aggregation’ by removing the selection module, where
the visual tokens are directly sent to GATA modules to output the probability
of gloss. The inferior performance indicates the necessity of token aggregation
module. The useless information may lead to a delete or insert error, which
significantly affects the recognition performance. We also compare the simplest
selection strategies, which are denoted as MaxPooling and AvgPooling. Those
methods can decrease the WER, while selection in a soft manner (AvgPooling)
is better than the hard one (MaxPooling). This indicates the local fusion is nec-
essary for learning discriminative tokens for temporal modeling. Both 1D-CNN
designed in [42] and our method apply local aggregation before selection, leading
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Table 7: Ablation analysis of the proposed modules on EvSign dataset.

(a) Ablation analysis of LTF.

EvSign(EV)
Dev (%) Test (%)

w/o aggregation 40.95 40.34
MaxPooling 34.44 33.24
AvgPooling 32.27 31.56
1D-CNN [42] 29.41 28.89
LTF(Ours) 29.19 28.69

(b) Ablation analysis of GATA.

EvSign(EV)
Dev (%) Test (%)

w/o GAMA 30.38 31.14
δ-only 29.89 29.83
ρ-only 29.63 29.74
GAMA-hard 29.74 29.31
GAMA-Soft (Ours) 29.19 28.69

to favorable performances. Our method achieves 0.22% and 0.2% improvement
than 1D-CNN, which shows the effectiveness of LTF module.
Analysis of temporal aggregation module. Temporal information module
is the key component in sign language tasks. To this end, we compare various
methods to demonstrate the capabilities of our method in temporal modeling.
As shown in Table 7(b), we set our method without intra-gloss temporal aggre-
gation (GAMA) as baseline. The method solely relies on inter-gloss temporal
modeling via global self-attention. ρ-only and δ-only GAMA denote that the
mask M in Eq. (3) is set to ρ and δ in Eq. (4) and Eq. (5). Compared with the
baseline, ρ-only and δ-only GAMA achieve 1.4% and 1.31% performance gain in
the test set. Furthermore, we compare the effectiveness of soft and hard mask
in GAMA. GAMA-hard means that we binarize the learned M with a threshold
1e−3. we find that the hard mask will lead to a performance decrease. Soft man-
ners exhibit greater flexibility, resulting in improved aggregation performance.

6 Conclusion

In this paper, we unveil the power of events in sign language tasks. We first build
a comprehensive dataset for event-based sign language recognition and transla-
tion. The dataset contains more than 6.7K sign videos captured by high-quality
event camera, which covers most of daily topics. It can greatly promote the de-
velopment of event-based vision and sign language related tasks. Furthermore,
we propose a transformer-based framework for both tasks by fully exploiting the
sparsity and high temporal resolution characteristics of events. The proposed
gloss-aware temporal aggregation module could effectively model temporal in-
formation in a global-and-local manner and a gloss-aware representation is com-
puted for SLR and SLT tasks. Our method shows favorable performance on the
sign language datasets with synthetic and real events with only 0.34% FLOPS
and 44.2% network parameters.
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