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1 Abstract

In this supplementary material, we will provide the following supplementary
information:

Extended Data Collection Details: We will present additional details
regarding the data collection process, including information about the specific
environments used and the criteria for determining successful data acquisition
for different tasks.

Enhanced Experimental Results: We will provide more comprehensive
information about the experimental setup, including a comparative analysis of
the results obtained in both seen and unseen environments. Furthermore, we
will compare the performance of different model architectures to provide a more
thorough evaluation.

Expanded Deployment Results: To facilitate real-world deployment, we
will present additional experimental results showcasing the model’s performance
across a broader range of tasks and scenarios.

Extended Visualizations: We will include supplementary visual results
that highlight various failure cases observed in both real-world and simulation
settings, offering a more comprehensive understanding of the model’s limitations
and areas for improvement.

2 Details of data collection

Environment: We prioritize the richness of tasks. In terms of environmental
setup, our current tasks are all carried out in relatively simple scenarios without
complex visual background information for data collection and model evaluation.
At the same time, all experiments are conducted on flat terrains, and we have
not yet conducted experiments on complex terrains. Our next goal is to use
simulation environments with higher visual fidelity, and add some backgrounds

⋆ Corresponding author



2 P. Ding et al.

that are more in line with real-world scenarios and more varied terrains for data
collection.

Planning Algorithm: In simulation scenarios, we adopted a large-scale
parallel simulation environment for the need of rapid automated data collection.
During data collection, we used traditional path search algorithms to implement
the robot’s route selection. In the early stage of data collection, we adopted
the D* algorithm. After evaluating the quality of the early data, we found that
the paths planned by D* tend to generate curves with larger turning angles.
This could potentially lead to the robot frequently losing sight of the target
object, thus affecting the quality of the strategy obtained by imitation learning.
Therefore, we changed the navigation algorithm to A*. Taking the go_avoid
task as an example, we directly access the positions of the robot, the target
object, and obstacles through the simulator. The initial centroid coordinates of
the robot on the x-y plane are used as the starting point of the path, and the
centroid coordinates of the target object are used as the endpoint. We then add
the areas of obstacles on the map. After the path planning is completed, a PD
controller is used to convert the path into current velocity and direction. Since
we set the speed of the path collection to three levels (fast, normal, slow), the
obtained speed needs to be processed to roughly satisfy the speed range set by
the levels.

Excution Details: In control systems, the combination of high-frequency
and low-frequency control is a strategic approach to achieve finer control and
optimize system performance. This integration can be described by a simple
mathematical relationship: N = fhigh/flow, where fhigh represents the high-
frequency control rate, flow represents the low-frequency control rate, and N is
the ratio between the two. In this equation, N indicates the number of times the
high-frequency control needs to be executed within a given low-frequency period.
The advantage of this combination is that it allows the system to achieve rapid
responses and finer adjustments while maintaining the stability and efficiency
of the low-frequency control. High-frequency control is typically used to address
the rapid changes in system states, while low-frequency control focuses more on
long-term system stability and energy management.

3 More experiments

3.1 Detailed results on seen tasks

Firstly, we supplement two additional frameworks: VLA(LLaVa) (which uses
LLaVa as the backbone for multi-modal large models) and Aligned VLM+P
(Transformer) (policy head is a decoder-only transformer) to validate the ratio-
nality of our VLA model framework design; Next, we provide the results trained
on a single task to verify the performance advantages on multi-task; Then, we
present more granular results for each task.
Two additional frameworks:

1. Experiment Setting:
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Table 1: Detailed performance on different architecture.

Distinguish Go to Go avoid Go through Crawl Unload
VLM+P(MLP) CLIP [3] 0.44 0.43 0.45 0.19 0 0
VLM+P(MLP) VC-1 [2] 0.46 0.43 0.45 0.31 0 0

VLM+P(Transformer) RT-1 [1] 0.22 0.15 0.4 - 0 0
VLA(Fuyu) QUART 0.66 0.60 0.53 0.41 0.32 0.12

VLA(LLaVa) QUART 0.66 0.52 0.40 0.32 0.18 0.16

1) VLM baseline: In the main paper, we reproduced previous baselines
based on VLM by utilizing features extracted from VLM in conjunction with
a policy head to generate actions. However, the policy head at that time was
merely in the form of an MLP, called VLM+P(MLP), and we did not ex-
plore the differences between various types of policy heads, particularly the
decoder-only transformer (VLM+P(Transformer)).Therefore, we have addi-
tionally supplemented this study with different policy-head layers to ascertain
whether the limitations of the VLM+Policy approach are related to the design
of the policy head.

2) VLA architecture: Furthermore, in the paper, we experimented with a
multi-modal large model based on the fuyu-8b model(VLA(Fuyu)) to verify
whether the effectiveness of VLA is related to the choice of multi-modal large
model foundations. To this end, we have also presented experiments based on the
LLaVa(VLA(LLaVa)) to validate the benefits of a VLA approach grounded in
multi-modal large models.

2. Experiment Analysis:
1) VLM + Policy(MLP): In the case of CLIP and VC-1, the visual and

textual features have been aligned, enabling the models to comprehend and
execute simple tasks. They perform reasonably well on tasks such as "go to,"
"go through," and "go avoid," which do not involve manipulation of the robot’s
body. The primary reason for this adequate performance is that these tasks only
require changes in velocity along the x-axis and yaw orientat.

2) VLM + Policy(Transformer): As is shown in Table 1, we have also
referred to the RT-1 paradigm, employing different policy heads to ascertain
whether the limitations are inherent to the MLP architecture. We can observe
that even when the policy is switched to a Decoder-only Transformer, the trend
of the RT-1 method remains consistent with the previous VLM+P (MLP) ap-
proach. Only tasks that involve simple distinction and those related to the ve-
locity of the aircraft’s center of mass have success rates; tasks such as crawl and
unload are still not achievable. This demonstrates that the choice of different
policy heads does not affect the performance of the VLM+policy paradigm.

4)Vision + Language + Action (VLA): Within the VLA framework, we
have utilized the entire decoder-only VLM backbone. However, we directly map
action instructions to the language space. During inference, each dimension of
our action (e.g., leg width) engages in joint reasoning with previously inferred
information (e.g., robot height). This approach allows for the implicit learning
of associations between different action dimensions, thereby effectively grasping
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Table 2: Multi-task performance vs Single-task performance.

Distinguish Go to Go avoid Go through Crawl Unload
CLIP-Multi [3] 0.44 0.43 0.45 0.19 0 0
CLIP-Single [3] 0.52 0.34 0.37 0.04 0 0
VC-1-Multi [2] 0.46 0.43 0.45 0.31 0 0
VC-1-Single [2] 0.70 0.37 0.40 0.34 0 0
QUART-Multi 0.66 0.60 0.53 0.41 0.32 0.12
QUART-Single 0.30 0.36 0.19 0.30 0.25 0.08

the coordinated relationships between multiple parts of the robot and performing
well on more complex tasks (e.g., crawling).

To investigate whether different multi-modal large models (MMLMs) affect
our model’s performance, we introduce two variants: Fuyu-8B(used in main pa-
per) and LLaVa-7B. The primary distinction between the two lies in the fact
that the former encodes the original image directly, while the latter employs the
widely used visual CLIP feature extraction module. From the results, we can see
that there is not much difference in performance corresponding to which base
model is used. This indicates the importance of the VLA paradigm.
Multi-task vs Single-task Performance: To validate the performance of our
multi-task learning approach, we conducted separate training on each individual
task to ascertain the benefits that multi-task learning confers on the interrelated
tasks. As is shown in Table 2, It has been observed that, for both single and multi-
task scenarios, the performance of multi-task training has yielded superior results
in all but the simplest tasks(distinguish). This indicates that the paradigm of
joint training in multi-task settings has enabled the learning of commonalities
between different tasks, thereby underscoring the necessity of multi-task co-
training.
Detailed Performance: As is shown in Table 3, we present detailed results for
the seen tasks.

3.2 Detailed results on unseen tasks

In the context of unseen tasks, we conducted experiments to assess the model’s
performance on novel objects and unseen language instructions. The novel ob-
jects are categorized into three types: objects of the same category but with
different shapes; objects of the same shape but with different colors; and entirely
different objects. The unseen language instructions involve paraphrasing exist-
ing descriptions with synonymous terms to test the robustness of the model’s
performance.
Detailed Performance on unseen objects: In the experiments, we use the
yellow, red, green and blue as four base color in the seen tasks, and use the gold,
pink, orange, purple as the unseen color. For each objects appear in the seen
tasks, we all test another object which is the same type but with different shape.
We also test on objects which do not appear in the seen tasks: pillow, computer
and window. As is shown in Table 4, we present detailed results for the unseen
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Table 3: Detailed results on seen tasks.

Distinguish letter c Distinguish letter d Go to cooker
CLIP [3] 0.36 0.52 0.36
VC-1 [2] 0.48 0.44 0.36
QUART 0.76 0.56 0.72

Go to ball Go to cube Go to oven
CLIP [3] 0.56 0.24 0.56
VC-1 [2] 0.64 0.40 0.32
QUART 0.60 0.64 0.44

Go avoid cooker Go avoid drawers Go avoid fan
CLIP [3] 0.44 0.52 0.28
VC-1 [2] 0.44 0.52 0.20
QUART 0.44 0.48 0.36

Go avoid sofa Go through triangle tunnel Go through rectangle tunnel
CLIP [3] 0.56 0.04 0.24
VC-1 [2] 0.64 0.40 0.28
QUART 0.84 0.24 0.47

Crawl gate Unload traybox Average
CLIP [3] 0 0 0.25
VC-1 [2] 0 0 0.28
QUART 0.32 0.04 0.44

Table 4: Detailed results on unseen objects.

Go to Go avoid Go through Crawl Unload
CLIP [3] 0.4 0.46 0.19 0.04 0
VC-1 [2] 0.38 0.41 0.36 0 0
QUART 0.4 0.73 0.41 0.35 0.01

Table 5: Detailed results on unseen verbal information.

Identify Letter Navigate to target
CLIP [3] 0.40 0.44
VC-1 [2] 0.28 0.48
QUART 0.40 0.52

Move under barrier Deposit object into container
CLIP [3] 0.12 0
VC-1 [2] 0 0
QUART 0.28 0.04

objects. We can see that our method have more generalization ability in unseen
objects.
Detailed Performance on unseen verbal instruction: Here are alterna-
tive expressions for the tasks while maintaining the same meaning. Within the
parentheses are the instructions for the seen tasks, followed by the modified in-
structions. 1. (Distinguish Letter) Identify Letter 2. (Go to the object) Navigate
to target 3. (Crawl under the barrier) Move under barrier 4. (Unload the ob-
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Fig. 1: Mission go to the left corner of the object. The left picture is produced by model
CLIP. The middle picture is produced by model VC-1. The right picture is produced
by QUART.

Fig. 2: Mission go to the back of the object. The left picture is produced by model
CLIP. The middle picture is produced by model VC-1. The right picture is produced
by QUART.

ject) Deposit Object into container As is shown is Table 5, We can observe that
with instructions that carry the same semantics but different expressions, the
performance of QUART significantly surpasses that of the baseline.

3.3 More results of customized skills

In the manuscript, we demonstrate the capability of our model to generalize
to customized skills that were not present in the training tasks, such as com-
plex spatial perception and the ability to combine tasks. Herein, we will present
additional case studies to illustrate this skill further.

Case1: Go the left corner of the object. Figure 1
Case2: Go the the back of object. Figure 2
Case3: Go the the left and the to the right. Figure 3
In these cases, we could find our model could understand the spatial rela-

tionships and have the ability to excute combinational skills.

4 More analysis on real robot excution

We show the real robot experiments from the following 5 aspects: 1. Effective-
ness in seen scenes 2. Sim2Real transfer capabilities 3. Rubustness in different
localization 4. Rubustness in different workspace 5. Rubustness in unseen scenes

More results can be found in https://sites.google.com/view/quar-vla/quar-
vla-eccv24.
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Fig. 3: Mission go to the right and the left. The left picture is produced by model
CLIP. The middle picture is produced by model VC-1. The right picture is produced
by QUART.

5 Limitation and future work

From the perspective of dataset composition, the current magnitude of data
and the diversity of trajectories are insufficient. A potential direction for fu-
ture work is to leverage GPT-based automation to generate more varied and
enriched datasets. Additionally, the existing datasets lack complex terrains and
long-horizon tasks; enhancing the complexity of the dataset is a crucial method
for advancing quadrupedal tasks.

In terms of task formulation, the current input modalities are limited to visual
and textual components. Exploring how to utilize additional modalities (e.g., Li-
DAR point clouds) to address issues that visual information alone cannot resolve,
such as occlusion problems, is a direction worthy of investigation. Furthermore,
the existing models are not yet capable of more flexible control in terms of fre-
quency. Although the high-level command action frequency can complete some
tasks, more challenging tasks, such as pole crossing, require higher frequency
control to achieve higher success rates. Therefore, accelerating the base model’s
speed and designing a reasonable sampling mechanism for high-frequency output
is an essential component.

Of course, addressing the sim2real gap is key to effectively utilizing real-
world data. The co-training approach adopted in this paper is based on the
premise that the sim2real gap for large models is not significant. However, how
to more efficiently employ various sim2real methods, such as domain adaptation
and randomization, to solve the domain gap between the real and simulated
domains is also a line of thought worth exploring. Lastly, given the substantial
amount of sub-optimal data present in the data collection process, how to utilize
this data and enable the large model to learn valuable knowledge from failures
through reinforcement learning is an important future direction.

In summary, this is the inaugural work in extending multi-modal large mod-
els to quadrupedal robots. In response to the existing challenges of quadrupedal
robots, we have designed a dataset that combines extensive simulated data with
a small amount of real data for quadrupedal robot VLA and developed a frame-
work based on large models to implement this task. This work has a certain
catalytic effect on the development of the robotics community, and we hope for
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more suggestions to further refine this work in the future, thereby advancing the
progress of mobile robotics.
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