TextDiffuser-2: Unleashing the Power of
Language Models for Text Rendering

Jingye Chen*'3, Yupan Huang* 23, Tengchao Lv3, Lei Cui®,
Qifeng Chen', Furu Wei?
'HKUST 2Sun Yat-sen University — 2Microsoft Research
qwerty.chen@connect.ust.hk,
{yupanhuang, tengchaolv,lecu,fuweit@microsoft.com, cqf@ust.hk

Fig. 1: Text-to-image results generated by TextDiffuser-2. Alongside accurate text
generation, TextDiffuser-2 offers reasonable text layouts and exhibits diversity in text
style powered by the strong capability of language models.

Abstract. The diffusion model has been proven a powerful generative
model in recent years, yet it remains a challenge in generating visual
text. Although existing work has endeavored to enhance the accuracy of
text rendering, these methods still suffer from several drawbacks, such
as (1) limited flexibility and automation, (2) constrained capability of
layout prediction, and (3) restricted diversity. In this paper, we present
TextDiffuser-2, aiming to unleash the power of language models for text
rendering while taking these three aspects into account. Firstly, we fine-
tune a large language model for layout planning. The large language
model is capable of automatically generating keywords and placing the
text in optimal positions for text rendering. Secondly, we utilize the lan-
guage model within the diffusion model to encode the position and con-
tent of keywords at the line level. Unlike previous methods that employed
tight character-level guidance, our approach generates more diverse text
images. We conduct extensive experiments and incorporate user stud-
ies involving human participants and GPT-4V, validating TextDiffuser-
2’s capacity to achieve a more rational text layout and generation with
enhanced diversity. Furthermore, the proposed methods are compatible
with existing text rendering techniques, such as TextDiffuser and Glyph-
Control, serving to enhance automation and diversity, as well as augment

* Work done during internship at Microsoft Research.

2 Chen et al.

the rendering accuracy. For instance, by using the proposed layout plan-
ner, TextDiffuser is capable of rendering text with more aesthetically
pleasing line breaks and alignment, meanwhile obviating the need for
explicit keyword specification. Furthermore, GlyphControl can leverage
the layout planner to achieve diverse layouts without the necessity for
user-specified glyph images, and the rendering F-measure can be boosted
by 6.51% when using the proposed layout encoding training technique.
The code and model are available at https://aka.ms/textdiffuser-2.

1 Introduction

In recent years, diffusion models [1518}/401/42}/45,/56[58| have successfully revolu-
tionized the field of image synthesis. Despite showcasing impressive performance,
most existing diffusion models still fall short in rendering visual text. Specifically,
existing diffusion models often generate unintended symbols or artifacts during
the text rendering process |9, which significantly impairs the visual quality of
the generated images. Notably, text is ubiquitous in daily life, encompassing lo-
gos, banners, book covers, newspapers, etc. In this case, how to generate images
with accurate, visually appealing, and coherent visual text is a crucial problem.

Through investigation, there has been a few research works [1,/3}[8L{11}|19}/29,
311|32,/431|48,/52,[55] focusing on visual text rendering. Some works |1},/11,|29}43|
validate that using powerful language models [3950] as text encoders benefits the
text rendering process. However, it is observed that they still can not achieve sat-
isfactory rendering accuracy. Other works utilize explicit text position and con-
tent guidance. Although showing impressive rendering accuracy, we have noticed
several drawbacks in these methods: (1) Limited flexibility and automation.
GlyphControl [52], AnyText [48|, and Brush Your Text |55] need users to design
glyph images or text region masks/contours to provide layout guidance. This
extra step lacks automation as opposed to simply providing prompts. Moreover,
despite supporting conversions from text to image, GlyphDraw [31] and TextD-
iffuser [3] rely on the manual specification of keywords with quotation marks.
These requirements hinder the direct conversion of natural user prompts into
corresponding images, thereby narrowing the flexibility and automation capabil-
ities. Such constraints may impede future advancements toward more intuitive
interfaces, such as converting voice commands into images; (2) Constrained
capability of layout prediction. GlyphDraw [31] can only render images with
a single text line, constraining its applicability for scenarios, such as posters and
book covers, involving multiple text lines. For TextDiffuser [3|, the produced
text layouts are not visually appealing, which is primarily attributed to the
limited capability of the Layout Transformer; (3) Restricted diversity. For
TextDiffuser |3|, the utilization of character-level segmentation masks as control
signals implicitly imposes constraints on the position of each character, thereby
restricting the diversity of text styles. For methods that require user-specific
text placements, exemplified by GlyphControl [52], Brush Your Text [55], and
AnyText [48], there is also a lack of diversity since the position of text regions
are predetermined and immutable.

https://aka.ms/textdiffuser-2

TextDiffuser-2 3

Given these observations, we introduce TextDiffuser-2 in this paper, tak-
ing advantage of two language models for text rendering. Firstly, we tame
a language model into a layout planner using the caption-OCR pairs
in the MARIO-10M dataset [3]. The language model demonstrates flexibility
and automation by inferring keywords from user prompts or incorporating user-
specified keywords to determine their positions. Secondly, we use the language
model in the diffusion model as the layout encoder to represent the posi-
tion and content of text at the line level. Contrary to prior methods that utilized
tight character-level guidance, this approach enables diffusion models to generate
text images with broader diversity. Some samples are shown in Figure

We primarily evaluate the capabilities of TextDiffuser-2 on two tasks, namely,
text-to-image, which denotes the conversion from prompts to images without
other conditions, and text inpainting, which involves the modification or ad-
dition of text on given images. Through comprehensive experiments and user
studies that engaged both human participants and GPT-4V, we validate that
our method can generate reasonable and visually pleasing text layouts, and it
enhances the style diversity of the generated text. Additionally, the proposed
method is compatible with current text rendering approaches, facilitating in-
creased automation and diversity, as well as boosting rendering accuracy. For
example, when replacing the original Layout Transformer with the proposed lay-
out planner, TextDiffuser can create text with better breaking and alignment,
and there is no need for users to specify keywords. Additionally, GlyphControl
can take advantage of diverse layouts produced by the layout planner, without
the need for users to supply any glyph images. Besides, the rendering F-measure
scores of TextDiffuser and GlyphControl are boosted by 1.60% and 6.51% when
using the layout encoding training technique. The code and model are available
at https://aka.ms/textdiffuser-2 to promote future research.

2 Related work

Visual text rendering. Despite the significant advancements in diffusion mod-
els [15][18]}401/54,/56], the generation of visual text rendering remains a persistent
challenge. Current works can be broadly classified into two distinct approaches
according to the input type. The first approach involves using solely user-
provided prompts, without any additional conditions, to generate text images.
Some studies [1}[29}/43] have leveraged large language models [39,[50] to aug-
ment the text generation capabilities of generative models. Other works utilize
two-stage frameworks. For instance, GlyphDraw [31] initially employs a diffusion
model to create single-line text region masks from the given prompts, followed by
another diffusion model to generate the final text image outputs. TextDiffuser [3]
utilizes a Layout Transformer to convert user-specified keywords into an inter-
mediate representation, and then employs a diffusion model to generate the text
images. Some commercial applications such as Midjourney-v6 [32], Ideogram [19],
and DALL-E 3 [8] have also optimized the process of text rendering conditioned
with prompts. The second approach requires users to explicitly specify text

https://aka.ms/textdiffuser-2

4 Chen et al.

content and placement. For example, GlyphControl [52] requires users to provide
a glyph image to guide the position and content of the text to be drawn. Brush
Your Text [55] utilizes a pre-trained ControlNet [56] to produce text images
based on provided text contours. AnyText [48] demands more detailed inputs,
including both the glyph image used in GlyphControl and binary text masks.

Our proposed model, TextDiffuser-2, falls into the first category. In prac-
tical image generation scenarios, users may find it challenging to predetermine
the precise positioning of keywords on the image. TextDiffuser-2 is designed to
offer superior flexibility, catering to the users’ need for a more intuitive and less
constrained image generation process.

Visual text modification Recent years have seen significant advancements in vi-
sual text modification. Notably, since generative models often struggle with text
rendering, there is a considerable demand for using extra models to modify the
text in the generated images. Current research falls into two categories: text
editing and text inpainting. Text editing |10L22}23}37},/41,/49,/51] constrain that
the edited text should maintain the original style and the background should
be identical. By contrast, text inpainting [3,/20,/48| is a relatively new field. It
requires that the generated text should harmonize with the surrounding text
without strictly enforcing text style and background to be the same. Such prop-
erty allows the model to produce more varied results. In this paper, we also seek
to explore the capability of TextDiffuser-2 for the text inpainting task.

Language model for layout generation. Layout generation [16}21,24,26] has a
wide range of applications, including document formatting [17}/33], screen UI
design [12], and image synthesis [13]|25]. Previous methods [21,[24] usually model
layout generation as a regression task, representing bounding boxes using con-
tinuous coordinates. Recent advancements, such as Pix2Seq [5L[6], have explored
alternative methods by treating coordinates as discrete language tokens. Another
work, LayoutGPT [13|, carefully designs prompts to guide GPT-4 [14] generating
formatted layout information to assist in image synthesis. Recently, some multi-
modal large language models [2}/30}34./53//571/60] have also adopted this design for
grounding specific objects in images. In line with these designs, TextDiffuser-2
aims to leverage language models as layout planners for visual text rendering.
It is a challenging task since the layout planner should consider the intrinsic
properties of text, including its length, line breaking, and alignments.

3 Methodology

The architecture of TextDiffuser-2 is depicted in Figure [2 where the language
model M; and the diffusion model are trained in two stages. In the following,
we introduce the role of two language models, including a language model for
layout planning and another language model for layout encoding. At last, we
discuss the compatibility of the proposed components for existing works.

TextDiffuser-2 5

Cross-Entrop; Visualize

A stamp of Breath of the Wild <eos>
Language x5) 17701 [x12] <s0s> [x25] Language
Model M; [v89] [x108] [y96 <s0s> Model M2

e . <pad> <pad> <pad> ...
Layout Planning B & B

Layout Encoding

Prompt and Language-format Layout

Fig. 2: The architecture of TextDiffuser-2. The language model M; and the diffusion
model are trained in two stages. The language model M1 can convert the user prompt
into a language-format layout to specify the content and position of the text to be
rendered. It also allows users to specify keywords optionally. Further, the prompt and
language-format layout is encoded with the trainable language model M2 within the
diffusion model to generate images. M is trained via the cross-entropy loss in the first
stage, while M2 and U-Net are trained using the denoising L2 loss in the second stage.

3.1 Language model for layout planning

Recent research has revealed that benefiting from the extensive training data
across various domains, large language models exhibit expertise be-
yond the language domain, such as layout planning . Inspired by this,
we tame a large language model into a layout planner, which can organize the
content and position of text to be rendered on an image, based on the pro-
vided prompts. Specifically, we seek to fine-tune a pre-trained large language
model M7, which functions as a decoder, using caption-OCR pairs. As demon-
strated in Figure [2] TextDiffuser-2 supports two scenarios: (1) If users do not
explicitly provide keywords, the language model should infer the text and lay-
out to be drawn on the image; (2) If users provide keywords (marked in gray
color), the language model only needs to determine the corresponding layout for
the keywords. Specifically, the input follows the format “[description] Prompt:
[prompt] Keywords: [keywords}’ﬂ Each output follows the format “textline x,
Yo, 1, Y1, where (xg, yo) and (x1, y1) represent the coordinates of the top-left
corner and bottom-right corner, respectively. Some training samples are shown
in Figure [3] We optimize the language model with cross-entropy loss, training
simultaneously for scenarios with and without keywords. We use all the text
detected in the OCR results as keywords to formulate the input. Please note
that the rectangle boxes used in the layout merely specify the text regions and
do not constrain the generated text to be horizontal. The generated text can
be inclined or curve as well, as shown in the last two columns in Figure [I]

! Task description: Given a prompt that will be used to generate an image, plan the
layout of visual text for the image. The size of the image is 128x128. Therefore, none
of the properties of the positions should exceed 128, including the coordinates of the
top, left, right, and bottom. You don’t need to specify the details of font styles. At
each line, the format should be textline left, top, right, and bottom. So let us begin.

6 Chen et al.

3.2 Language model for layout encoding

Based on the layouts generated by My, we leverage the latent diffusion models
[40] for image generation. Different from TextDiffuser [3] which incorporates text
information using segmentation masks and GlyphControl |52] which duplicates
backbone parameters to accommodate the glyph image conditions, we introduce
a simple and parameter-free strategy by combining the prompt and the layout for
the language model Ma, i.e., the text encoder within the latent diffusion model.
In contrast to character-level segmentation masks that regulate the position of
individual characters, the line-level bounding box offers greater flexibility during
generation and does not constrain the diversity of styles.

Previous work [29] demonstrates that fine-grained tokenization (e.g., using
ByT5 [50]) can enhance the spelling capability of diffusion models. Inspired by
this, we design a hybrid-granularity tokenization method that utilizes conven-
tional approaches (e.g., BPE tokenization method [44]) to encode the prompt,
followed by position and character tokens of each keyword. For example, the
word “WILD” is decomposed into tokens “[W]”, “[I]”, “[L]”, “[D]”. Additionally,
we introduce new coordinate tokens to encode the position of each keyword. For
instance, the tokens “[x5]” and “[y70]” correspond to an x-coordinate of 5 and a
y-coordinate of 70, respectively. Each keyword information is separated by the
end-of-sentence token “{eos)”, and any remaining space to the maximum length
L will be filled with padding tokens “(pad)”. We train the whole diffusion model,
including the language model Mg and U-Net, using the L2 denoising loss.

3.3 Compatibility with existing text render methods

The proposed layout planning and layout encoding techniques can be used for
existing text rendering methods. For instance, the results of the layout planner
can be utilized for methods that do not directly support text-to-image conver-
sion, such as GlyphControl [52| and Brush Your Text [48]. Moreover, diverse
layouts can be obtained when using different seeds for sampling from the layout
planner. Visualizations are shown in Figure [f] Additionally, we observe that the
existing methods benefit from the layout encoding strategy during training. For
example, GlyphControl |52] obtains significant improvement regarding rendering
accuracy (12.65%71). We will provide more details in the experiment section.

4 Experiments

Implementation details. For layout planning, we fine-tune the vicuna-7b-
v1.5 |7] model based on the FastChat framework [59]. The training data of the
caption-OCR pairs are derived from the MARIO-10M dataset [3], and we use 5k
samples for fine-tuning (some samples are shown in Figure . We normalize the
positions to the range of 0~128 to increase the compactness of the coordinate
feature space. The learning rate is set to 2e-5, and we conduct a total of 6 epochs
of fine-tuning with a batch size of 256. It takes one day to train with 8 A100

TextDiffuser-2 7

Input Prompt Output Layout Visualization

Comprehensive guide to Credit Appraisal Comprehensive 50,33,114,46
P g PP Guide 70,51,94,62

Process in Banks Credit Appraisal Process 8,94,124,109

THE 58,10,70,17
SPELLMANS 24,17,103,39 e
STRIKE 25,39,102,67 [
AGAIN 24,64,104,100

The Spellmans Strike Again (Izzy Spellman) Cover

Fig. 3: Samples for training the layout planner M;. The training dataset derives from
the MARIO-10M dataset |3|. More samples are shown in the Appendix A.

Table 1: Ablation studies on the amount of fine-tuning data. The “Ok-2shot” setting
denotes the use of two examples for few-shot learning, without any additional fine-
tuning. When using 5k data, the language model M performs better. The percentage
sign is omitted, as is consistent with the following tables. ‘Pre’, ‘Rec’, and ‘F’ denote
precision, recall, and f-measure, same as follows.

#Data Acct Pret Rect F1 10U}
0k-2shot 49.65 84.18 69.69 76.25 19.69

2.5k 61.10 82.20 85.18 83.67 3.21
5k 64.85 84.98 86.38 85.67 3.25
10k 64.85 84.38 86.23 85.29 4.27
50k 63.72 85.32 85.78 85.55 3.68
100k 62.87 85.26 85.98 85.62 4.31

GPU cards. During the inference stage, when using a single A100 GPU card,
the average time to generate a layout for each prompt is 1.1 seconds. For lay-
out encoding, we utilize SD 1.5E| [40] and use the built-in CLIP text encoder
with base size [38]. The whole model consists of 922M parameters. We incor-
porate special tokens, including 256-coordinate tokens and 95-character tokens.
The alphabet contains 26 uppercase and 26 lowercase letters, 10 numbers, 32
punctuation marks, and a space. The size of the input image is 512x512. The
model is trained for 6 epochs on the MARIO-10M dataset |3| with a learning
rate of le-4 and a batch size of 576. MARIO-10M |3] has already been filtered
to remove noisy samples. The maximum length L is set to 128. More details
about the choice of L are shown in Appendix B. It takes one week to train the
whole diffusion model with 8 A100 GPU cards. When sampling with 50 steps,
the generation for a single image costs 6 seconds.

2 Please note that our design is also compatible with various text-conditioned genera-
tive models, such as SD-XL [36] and StableCascade [35|, by training with additional
tokens indicating the text content and position. Limited by computing resources,
our experiments are confined to the SD 1.5 model.

8 Chen et al.

Table 2: Ablation studies on the representation of coordinates and the tokenization
level. ‘L7, “T’, ‘R’, and ‘B’ denote left, top, right, and bottom. “Char” refers to tokenizing
keywords into individual characters, whereas “Subword” refers to the use of BPE for
tokenizing into subwords. Using the top-left and bottom-right corners and character-
level tokenization achieves better performance.

Representation Acct Pret Rect F1

Center (Char) 35.19 61.75 62.71 62.23
LT (Char) 28.32 54.94 55.64 55.29

LT+RB (Subword) 15.48 41.74 42.53 42.13
LT+RB (Char) 57.58 74.02 76.14 75.06

4.1 Ablation studies

How much data is needed for fine-tuning the layout planner My ? As illustrated
in Table [T we conduct experiments with different data amount, including 0k,
2.5k, 5k, 10k, 50k, and 100k. Particularly, in the Ok setting, we provide two exam-
ples of few-shot learning inspired by LayoutGPT [13] and LayoutPrompter [26].
In the absence of examples, the result often fails to conform to the appropri-
ate format. We evaluate our approach using the MARIO-Eval benchmark |[3],
which consists of prompt and keyword pairs. Besides, the quotation marks in
the prompt are removed for evaluation. Since the LAIONEval subset within the
MARIO-Eval benchmark depends on OCR results to infer keywords for prompts,
it contains some noise and is unreliable for accurate assessments. Therefore, we
decided not to use it in this keyword extraction experiment. For evaluation,
we use accuracy, precision, recall, and F-measure to assess the model’s ability
to extract keywords. Additionally, we introduce an IoU metric to measure the
maximum IoU value between the generated boxes for each sample (only those
samples with more than one predicted box are calculated). The experimental
results showcase that the model achieves optimal performance in the majority of
metrics when fine-tuned with 5k data. We speculate the main reason that fine-
tuning with more than 5k data did not yield better performance is that the LLM
has been pre-trained on large-scale datasets, and a small dataset curated for our
text rendering task is adequate for good performance. Therefore, we employ the
model fine-tuned on 5k data for layout planning in subsequent experiments. We
visualize some samples in Figure [d] We notice that the language model exhibits
flexibility in generating keywords, such as determining the case of the keyword
or introducing appropriate words beyond the provided prompt. More samples
are shown in Appendix C.

How to represent the position of text lines? Apart from utilizing the top-left
and bottom-right corners to represent a text line, we also investigate alternative
single-point representations, such as employing the top-left point or the center
point. Intuitively, using a single point to represent a text line provides more
flexibility, enabling the generated text to exhibit greater diversity in angles and

TextDiffuser-2 9

TextDiffuser TextDiffuser-2 TextDiffuser TextDiffuser-2
{53 Auvenos” __HE ADVENTURES OF| “THE ADVENTURES OF
(™ per PETER RABBIT
#%Rabbn
L= 1
Zi o~ g

A picture of a

Creicn Q&‘;ﬂb."”.‘

America

3

Spidermman spiderman

Spidernman

A board with inclined text Welcome Hotel on the wall A curve logo of Spiderman

Fig. 4: Visualizations of layout predictions. We explicitly specify the keywords using
quotation marks for TextDiffuser. It is observed that TextDiffuser-2 generates more
visually pleasing and rational layouts compared with TextDiffuser. Specifically, the
layout planner of TextDiffuser-2 exhibits enhanced capabilities in terms of text line
breaking and alignment. Furthermore, according to the last row, it can predict boxes
with suitable sizes that accommodate the text style, such as inclined and curve.

sizes. In Appendix D, visualizations are shown to validate the diversity of the
generation using single-point conditions. However, as shown in Table[2] we notice
that there is a considerable decline in the OCR accuracy of the single-point
representation on the MARIO-Eval benchmark . For example, compared with
the LT-RB setting, the accuracy of the center and LR settings declined by 22.39%
and 29.26%. We also experiment without using newly added positional tokens. In
this case, the text encoder tokenizes coordinate numerals into individual digits
(for instance, ‘127 is tokenized as ‘1’ ‘2’, and ‘7’). Experimental results indicate
that, compared to the incorporation of new positional tokens, this approach
results in a 10.89% reduction in the OCR F-measure. Hence, we leverage the
top-left and bottom-right corners with introduced positional tokens to represent
the box in the following experiments. We also explore the inclusion of angle
information in Appendix E.

Should text be tokenized at the character or subword level? We also explore
Byte Pair Encoding (BPE) to tokenize keywords into the subword level. As
shown in Table [2] we observe that using subword-level tokenization significantly
underperforms character-level representation, i.e., it is lower by 42.1% on the
accuracy metric. When using subword-level tokenization, the model becomes
insensitive to the spelling of each token, which poses significant challenges to
the text rendering process.

10 Chen et al.

Table 3: Quantitative results of the text-to-image task on the MARIO-10M bench-
mark. ‘LP’ and ‘LE’ denote the layout planner and layout encoding. TextDiffuser-2
outperforms other text-to-image methods in terms of the FID, CLIPScore, and OCR
accuracy metrics. The proposed components can also be used for existing works. It
is observed that TextDiffuser and GlyphControl gain significant improvement when
trained with the layout encoding. *The training script of AnyText is not available
during submission so we cannot obtain the re-training results with the LE strategy.

+# Methods FID| CLIPScoret OCR(F-measure)t OCR(Acc)t
Text-to-image without additional conditions

1 SD 1.5 |40] 51.30 30.15 0.02 0.00

2 SD 2.1 [40] 51.40 31.03 5.00 0.04

3 SD-XL |36 62.54 31.31 3.66 0.31

4 StableCascade |35 70.37 30.67 13.11 2.18

5 Deepfloyd [11] 34.90 32.67 17.62 2.62

6 PixArt-a [4] 87.09 27.88 0.03 0.02

7 TextDiffuser |3] 38.76 34.36 78.24 56.09

8 TextDiffuser-2 33.66 34.50 75.06 57.58
Proposed components for existing adaptive-text-style methods

9 TextDiffuser [3|+LP 37.05 34.56 85.70 62.02
10 TextDiffuser |3]+LP+LE 36-411,0.64 34.47“),09 87.3071‘60 62'25T0<23
11 GlyphControl [52|+LP 50.82 34.56 64.07 32.56
12 GlyphControl |52] +LP+LE 43-22J,7.60 34.627{)'06 70.58“3‘51 45'211‘12465
13 AnyText [48|+LP* 59.26 33.90 72.27 37.46
Proposed components for existing fized-text-style training-free methods

14 ControlNet [56|+LP 46.52 34.72 75.54 35.16
15 Brush Your Text [55|+LP 44.74 30.55 78.91 40.07

4.2 Experimental results

Quantitative results. As shown in Table [3] we conduct quantitative experiments
on the MARIO-Eval benchmark [3] to evaluate the text-to-image capability
(#1~#10) compared with open-source methods. The detail of each method is
shown in Appendix F. The experimental results demonstrate that TextDiffuser-
2 outperforms other methods in terms of the FID, CLIPScore, and OCR accu-
racy metrics. It is noteworthy that TextDiffuser mainly renders text in a stand
font (see Figure , thereby reducing the complexity of the rendering process.
This strategy sacrifices font style diversity to enhance the accuracy of text ren-
dering. By contrast, while maintaining the ability to generate accurate text,
TextDiffuser-2 can generate text with greater diversity.

We also explore the usage of proposed components for existing text rendering
methods (#9~+#15). The details about the incorporation of each method are in
the Appendix G. Specifically, the layout planner can replace the original low-
capability Layout Transformer in TextDiffuser, or serve as a plug-in module for
methods that do not support image generation conditioned only with prompts
(e.g., GlyphControl, AnyText, ControlNet, and Brush Your Text). Moreover,
we validate that the proposed layout encoding technique can further boost the

TextDiffuser-2 11

Prompt SD-XL StableCascade Ideogram* DALLE-3* Midjourney-v6* TextDiffuser TextDiffuser-2

A cat holds an image | |
saying hello world.

The sign Do not
wear shoes in the

pool hangs beside 100 NOT SHOES |

DO WEEAR SHOES

the pool
| THE POOL
e

N WEAR SHOES
B i THE PooL |

. e ; e jolly

A book cover with logo il o &)-* J Z x ERRY Y Ch,isjf:,,ﬁs
The Jolly Christmas . alLka

Postman on it

A greeting card of
happy birthday
to ABC

T-shirt with the word
. | DEEP
deep learning, i o i LERRNENG
handwritten font

A logo with curve

text brave superman SLpErman

Fig. 5: Visualizations of text-to-image results compared with open-source and closed-
source (marked with ‘*’) works. Note that we use additional quotation marks to spec-
ify keywords for other methods. Specifically, TextDiffuser-2 can automatically extract
keywords from prompts with specifications. Additionally, TextDiffuser-2 demonstrates
better rendering accuracy and follows the font styles specified in the prompts. The com-
pared methods are hindered by the spelling errors. Although TextDiffuser mitigates this
issue, it encounters limitations in text style diversity and exhibits disorganized layouts.

existing methods. For example, the rendering F-measure scores of TextDiffuser
and GlyphControl are boosted by 1.60% and 6.51%, respectively. It is also wor-
thy mentioning that, utilizing identical layout configurations as facilitated by
the same Layout Planner (LP) for fair comparison, TextDiffuser-2 exhibits sig-
nificantly better performance in the most challenging metric, exactly match-
ing OCR(Acc), compared with training-free methods (#14 and #15) guided by
strong contour-level conditions.

Qualitative results. The text-to-image visualizations are demonstrated in Figure
We compare our method with some representative open-source works includ-
ing SD-XL [36], StableCascade [35], TextDiffuser [3], and some closed-source
works including Ideogram , DALLE-3 , Midjourney-v6 . It is observed
that while SD-XL and StableCascade show good performance in rendering short
text like “hello world”, they still face challenges in rendering longer text like
“happy birthday to ABC”. Besides, although closed-source works showcase su-
perior image quality, they do not perform as well in rendering text, sometimes

12 Chen et al.

Layout Planner Layout Planner

Prompt Result] TextDiffuser Brush Your Text ~ AnyText Result2 i Brush Your Text ~ AnyText
The sign Do not : *d iy
wear shossinthe WEAR SHOES T, e
pool hangs beside IN THE POOL | f e
the pool Wi ‘
e Rl REwCTr
A new year [3 =) Lo 7 o8
2024 work harder, iRz i@
surrounded by flowers

Fig. 6: The layout planner for existing text rendering methods. By replacing the orig-
inal Layout Transformer used in TextDiffuser, the layout aesthetics is improved. The
layout planner can be incorporated into other methods that do not support text-to-
image generation. We use two seeds to sample different layouts from the layout planner.

omitting keywords or introducing extraneous, unwarranted text. Compared to
TextDiffuser, our method generates more aesthetically pleasing layouts, avoid-
ing misalignment or discordant font sizes. We conduct comparisons with some
methods that are neither open-source nor offer APIs, such as GlyphDraw
and Character-Aware Model using the samples shown in their corresponding
papers in Appendix H.

We also investigate the contributions of our proposed layout planner to exist-
ing text rendering methods, with visualizations shown in Figure [6] Initially, we
can substitute the Layout Transformer of TextDiffuser with our layout planner,
resulting in a significant improvement in the aesthetic quality of the text layouts.
Subsequently, for methods that are incapable of direct text-to-image generation
(i.e., need users to manually specify text positions), our layout planner can be
utilized to autonomously determine text locations from a given prompt, which
can then be integrated into their original frameworks for generation.

We further explore the generation diversity in Figure [7} When rendering
“Winter”, our method demonstrates greater diversity in terms of inclined angle
and font style compared to other methods. In contrast, TextDiffuser, which uses
character-level guidance and standard font to obtain intermediate masks, mainly
renders rigid font styles. Furthermore, training-free Brush Your Text heavily
depends on the contour of given templates and exhibit limited style diversity.

Text inpainting. Similar to TextDiffuser, the architecture of TextDiffuser-2 adapts
well for training on text inpainting tasks. We only need to modify the channel of
the input convolution kernel in the U-Net. Specifically, we augment the original
4-dimensional latent feature with another 5 additional dimensions, including 4
dimensions of non-inpaint area features and 1 dimension for the mask. Moreover,
only the text position and content from the inpaint area are required as condi-
tions for the diffusion model. In Figure[9} we qualitatively compare TextDiffuser-
2 with text inpainting methods DiffSTE and TextDiffuser . It is worth
noting that DiffSTE can not tackle multiple texts simultaneously so an iterative
process is needed. We notice that the inpainting results are not in harmony with
the surrounding text, and the image quality suffers from degradation. Besides,

TextDiffuser-2 13

ControlNet GlyphControl TextDiffuser
B mﬁ’ Ny ' '
e @ Wl |
Bm__sl} Your Text Textlefuser—Z

4 Winter SR inte ier | iver *W ’lkr

2

e, AT

Fig. 7: Visualization of diversity in generating three images under the same prompt:
“A logo of Winter in artistic font, made by snowflake”. TextDiffuser-2 can generate

artistic fonts with diverse character positioning. See more samples in Appendix J.

1'2&1

ControlNet

SDXL (2.7 Brush Your Text

(137%)
SmbleCascade DiffSTE

24.9% 16.4% T“")z‘f“:;r 22.9%

TextDiffuser-2 GlyphControl -
TextDiffuser-2 TextDiffuser-2
47.9% AnyText 47.7%

13.7%
Te;(g.)Alf.:user ':ixtsl:ffuser 2 TextDiffuser
TextDiffuser . 29.4%
Midjourney-v 17.8%
13.3%
(a) Text quality (b) Text style diversity (c) Layout aesthetics (d) Inpainting ability

Fig. 8: User studies. TextDiffuser-2 achieves the best across four metrics.

TextDiffuser requires a text mask as a condition to specify the position of each
character, which can be cumbersome in practical applications. Additionally, the
text mask may limit the style of the generated results. For example, when ren-
dering the word “Curve”, the generated result cannot produce a visually curved
effect due to the constraints of the character-level segmentation mask. In con-
trast, the inpainting process of TextDiffuser-2 is more flexible, thus resulting in
a better user experience. For quantitative results, we sample 10,000 cases from
the test set of MARIO-10M to evaluate the text inpainting task compared with
DiffSTE. Note that since TextDiffuser requires an additional mask to specify the
position of each character as input, we were unable to conduct such large-scale
quantitative experiments. We achieve 76.42% OCR. accuracy, better compared
with DiffSTE (72.25%). More details about the training and evaluation process
are shown in Appendix I.

User studies. As shown in Figure [§] we design questions covering four aspects:
text quality, text style diversity, layout aesthetics, and text inpainting ability.
Each aspect contains six questions. We involved a total of 21 human participants
in our study. Based on the results, TextDiffuser-2 has achieved the best perfor-
mance in all metrics in studies. We also use GPT-4V to conduct this user study
and results reveal that GPT-4V generally favors the results of TextDiffuser-2.
Details about the user study and GPT-4V evaluation are shown in Appendix K.

14 Chen et al.

Original Image Inpaint Mask DiffSTE TextDiffuser TextDiffuser-2

FiL
Mermaid Beauty

D=0 e 8\ = O =

E

) It i It Ik

A boy paints deep learning on a board.

Make Curve Text.

Fig. 9: Visualizations of the text inpainting task compared with DiffSTE and TextD-
iffuser. TextDiffuser-2 can generate more coherent text.

4.3 Discussions

Natural image generation without text. By omitting the text position and con-
tent guidance, TextDiffuser-2 can generate images without text. We randomly
select 10,000 prompts from the Microsoft COCO dataset for generation and
compare the results with those generated by SD 1.5 . The visualization and
quantitative results are Appendix L. Although fine-tuned on domain-specific
data, it still maintains its generative capabilities in the original domain.

Compatibility of more control signals. It is also feasible if users already spec-
ify the placement of text. The second stage can work independently by directly
starting from user-provided layouts. Furthermore, TextDiffuser-2 is also com-
patible with ControlNet. We present samples in the Appendix M demonstrating
that we can employ an off-the-shelf ControlNet to offer fine-grained guidance, as
well as additionally train a ControlNet to represent the fine-grained text regions.

Generation based on overlapping layouts. Occasionally, we notice that there exist
overlapping boxes during the layout prediction stage. We present TextDiffuser-2,
as well as the results generated by GlyphControl and TextDiffuser using overlap-
ping layouts in Appendix N. Experimental results indicate that TextDiffuser-2
demonstrates greater robustness towards overlapping boxes.

5 Conclusion

In this paper, we introduce TextDiffuser-2, aiming to unleash the power of lan-
guage models for the text rendering task. Specifically, we attempt to tame two
language models, one for layout planning and the other for layout encoding.
Experimental results validate that TextDiffuser-2 is capable of generating more
diverse images while maintaining the accuracy of the generated text. Mean-
while, the proposed components in TextDiffuser-2 can support existing meth-
ods with better accuracy, automation, and layout aesthetics. For the limitation,
TextDiffuser-2 currently lacks the capability to layer the generated text, a feature
that is commonly utilized in practical graphic design applications.

TextDiffuser-2 15

Acknowledgements

This research was supported by the Research Grant Council of the Hong Kong
Special Administrative Region under grant number 16203122.

References

10.

11.

12.

13.

14.

15.

16.

17.

Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M., Aila,
T., Laine, S., Catanzaro, B., et al.: ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)

Chen, C., Qin, R., Luo, F., Mi, X., Li, P., Sun, M., Liu, Y.: Position-enhanced
visual instruction tuning for multimodal large language models. arXiv preprint
arXiv:2308.13437 (2023)

Chen, J., Huang, Y., Lv, T., Cui, L., Chen, Q., Wei, F.: Textdiffuser: Diffusion
models as text painters. In: NeurIPS (2023)

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z., Kwok, J., Luo, P.,
Lu, H., et al.: Pixart-a: Fast training of diffusion transformer for photorealistic
text-to-image synthesis. arXiv preprint arXiv:2310.00426 (2023)

Chen, T., Saxena, S., Li, L., Fleet, D.J., Hinton, G.: Pix2seq: A language modeling
framework for object detection. In: ICLR (2021)

Chen, T., Saxena, S., Li, L., Lin, T.Y., Fleet, D.J., Hinton, G.E.: A unified sequence
interface for vision tasks. In: NeurIPS (2022)

Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S.,
Zhuang, Y., Gonzalez, J.E., Stoica, 1., Xing, E.P.: Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality (2023), https://lmsys.org/blog/
2023-03-30-vicuna/

DALLE-3: Link: https://openai.com/dall-e-3 (2023), https://openai.com/dall-
e-3

Daras, G., Dimakis, A.G.: Discovering the hidden vocabulary of dalle-2. arXiv
preprint arXiv:2206.00169 (2022)

Das, A., Roy, P., Bhattacharya, S., Ghosh, S., Pal, U., Blumenstein, M.: Fast:
Font-agnostic scene text editing. arXiv preprint arXiv:2308.02905 (2023)
DeepFloyd: Github link: https://github.com/deep-floyd/if (2023), https://
github.com/deep-floyd/IF

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols, J.,
Kumar, R.: Rico: A mobile app dataset for building data-driven design applica-
tions. In: UIST (2017)

Feng, W., Zhu, W., Fu, T.j., Jampani, V., Akula, A., He, X., Basu, S., Wang, X.E.,
Wang, W.Y.: Layoutgpt: Compositional visual planning and generation with large
language models. In: NeurIPS (2023)

GPT-4: Link: https://openai.com/gpt-4 (2023), https://openai.com/gpt-4

Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen, D., Yuan, L., Guo, B.: Vector
quantized diffusion model for text-to-image synthesis. In: CVPR, (2022)

Gupta, K., Lazarow, J., Achille, A., Davis, L.S., Mahadevan, V., Shrivastava,
A.: Layouttransformer: Layout generation and completion with self-attention. In:
ICCV (2021)

He, L., Lu, Y., Corring, J., Florencio, D., Zhang, C.: Diffusion-based document
layout generation. In: ICDAR (2023)

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openai.com/dall-e-3
https://openai.com/dall-e-3
https://github.com/deep-floyd/IF
https://github.com/deep-floyd/IF
https://openai.com/gpt-4

16

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chen et al.

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS
(2020)

ideogram: Link: https://ideogram.ai/ (2023), https://ideogram.ai/

Ji, J., Zhang, G., Wang, Z., Hou, B., Zhang, Z., Price, B., Chang, S.: Improving
diffusion models for scene text editing with dual encoders. Transactions on Machine
Learning Research (2024)

Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: Layoutvae: Stochastic scene
layout generation from a label set. In: ICCV (2019)

Krishnan, P., Kovvuri, R., Pang, G., Vassilev, B., Hassner, T.: Textstylebrush:
Transfer of text aesthetics from a single example. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2023)

Lee, J., Kim, Y., Kim, S., Yim, M., Shin, S., Lee, G., Park, S.: Rewritenet: Reliable
scene text editing with implicit decomposition of text contents and styles. arXiv
preprint arXiv:2107.11041 (2021)

Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: Layoutgan: Generating graphic
layouts with wireframe discriminators. In: ICLR (2019)

Li, Y., Liu, H., Wu, Q., Mu, F., Yang, J., Gao, J., Li, C., Lee, Y.J.: Gligen: Open-set
grounded text-to-image generation. In: CVPR (2023)

Lin, J., Guo, J., Sun, S., Yang, Z., Lou, J.G., Zhang, D.: Layoutprompter: Awaken
the design ability of large language models. NeurIPS (2024)

Lin, J., Guo, J., Sun, S., Yang, Z.J., Lou, J.G., Zhang, D.: Layoutprompter: Awaken
the design ability of large language models. In: NeurIPS (2023)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

Liu, R., Garrette, D., Saharia, C., Chan, W., Roberts, A., Narang, S., Blok, 1.,
Mical, R., Norouzi, M., Constant, N.: Character-aware models improve visual text
rendering. In: ACL (2023)

Lv, T., Huang, Y., Chen, J., Cui, L., Ma, S., Chang, Y., Huang, S., Wang, W.,
Dong, L., Luo, W, et al.: Kosmos-2.5: A multimodal literate model. arXiv preprint
arXiv:2309.11419 (2023)

Ma, J., Zhao, M., Chen, C., Wang, R., Niu, D., Lu, H., Lin, X.: Glyphdraw: Learn-
ing to draw chinese characters in image synthesis models coherently. arXiv preprint
arXiv:2303.17870 (2023)

Midjourney-v6: (2023), https://www.midjourney-v6.com/

Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: Recursive autoen-
coders for document layout generation. In: CVPRW (2020)

Peng, Z., Wang, W., Dong, L., Hao, Y., Huang, S., Ma, S., Wei, F.: Kosmos-2:
Grounding multimodal large language models to the world. In: ICLR (2024)
Pernias, P., Rampas, D.; Richter, M.L., Pal, C., Aubreville, M.: Wiirstchen: An
efficient architecture for large-scale text-to-image diffusion models. In: ICLR (2024)
Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Miiller, J., Penna,
J., Rombach, R.: Sdxl: improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952 (2023)

Qu, Y., Tan, Q., Xie, H., Xu, J., Wang, Y., Zhang, Y.: Exploring stroke-level
modifications for scene text editing. In: AAAT (2023)

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research (2020)

https://ideogram.ai/
https://www.midjourney-v6.com/

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

56.

57.

58.

59.

60.

TextDiffuser-2 17

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022)

Roy, P., Bhattacharya, S., Ghosh, S., Pal, U.: Stefann: scene text editor using font
adaptive neural network. In: CVPR (2020)

Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., Norouzi,
M.: Palette: Image-to-image diffusion models. In: SIGGRAPH (2022)

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. In: NeurIPS (2022)
Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: ACL (2016)

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Roziére, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 (2023)

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bash-
lykov, N., Batra, S., Bhargava, P., Bhosale, S., et al.: Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

Tuo, Y., Xiang, W., He, J.Y., Geng, Y., Xie, X.: Anytext: Multilingual visual text
generation and editing. arXiv preprint arXiv:2311.03054 (2023)

Wu, L., Zhang, C., Liu, J., Han, J., Liu, J., Ding, E., Bai, X.: Editing text in the
wild. In: ACM MM (2019)

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts, A.,
Raffel, C.: Byt5: Towards a token-free future with pre-trained byte-to-byte models.
Transactions of the Association for Computational Linguistics (2022)

Yang, F., Su, T., Zhou, X., Di, D., Wang, Z., Li, S.: Self-supervised cross-language
scene text editing. In: ACM MM (2023)

Yang, Y., Gui, D., Yuan, Y., Ding, H., Hu, H., Chen, K.: Glyphcontrol: Glyph
conditional control for visual text generation. In: NeurIPS (2023)

You, H., Zhang, H., Gan, Z., Du, X., Zhang, B., Wang, Z., Cao, L., Chang, S.F.,
Yang, Y.: Ferret: Refer and ground anything anywhere at any granularity. arXiv
preprint arXiv:2310.07704 (2023)

Yu, Y., Zeng, Z., Hua, H., Fu, J., Luo, J.: Promptfix: You prompt and we fix the
photo. arXiv preprint arXiv:2405.16785 (2024)

Zhang, L., Chen, X., Wang, Y., Lu, Y., Qiao, Y.: Brush your text: Synthesize any
scene text on images via diffusion model. arXiv preprint arXiv:2312.12232 (2023)
Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: ICCV (2023)

Zhang, S., Sun, P., Chen, S., Xiao, M., Shao, W., Zhang, W., Chen, K., Luo,
P.: Gptdroi: Instruction tuning large language model on region-of-interest. arXiv
preprint arXiv:2307.03601 (2023)

Zhao, S., Chen, D., Chen, Y.C., Bao, J., Hao, S., Yuan, L., Wong, K.Y.K.: Uni-
controlnet: All-in-one control to text-to-image diffusion models. In: NeurIPS (2023)
Zheng, L., Chiang, W.L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li,
Z., Li, D., Xing, E.P., Zhang, H., Gonzalez, J.E., Stoica, I.: Judging llm-as-a-judge
with mt-bench and chatbot arena (2023)

Zhou, Q., Yu, C., Zhang, S., Wu, S., Wang, Z., Wang, F.: Regionblip: A unified
multi-modal pre-training framework for holistic and regional comprehension. arXiv
preprint arXiv:2308.02299 (2023)

	TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering

