
Supplementary Materials for SFPNet

Yanbo Wang1,2, Wentao Zhao1,2, Chuan Cao1,2, Tianchen Deng1,2, Jingchuan
Wang1,2, and Weidong Chen1,2,†

1 Institute of Medical Robotics and Department of Automation, Shanghai Jiao Tong
University, China

2 Key Laboratory of System Control and Information Processing, Ministry of
Education, Shanghai 200240, China

{yanbowang319,wentaozhao,alex008,dengtianchen,jchwang,wdchen}@sjtu.edu.cn

1 Introduction

In this supplementary materials, we provide our dataset details about sensors,
scenes, annotation process and label distributions in Sec. 2. Additional method
details are demonstrated in Sec. 3. More experiment results and network analysis
are given in Sec. 4. Limitations and future works are discussed in Sec. 5.

2 Dataset: SeMantic InDustry

2.1 Scenes

Many applications rely on the crucial aspect of comprehending semantic scenes.
However, most existing benchmarks [3,4,17,24] focus on driving scenes. To fill the
gap in public dataset of industrial outdoor scenes for robotic application, we
collect a total of 38904 frames of hybrid-solid LiDAR data in different substations
and have annotated 25 categories as shown in Fig. 2. Overall comparison with
previous benchmarks is shown in Tab. 1.

2.2 Sensors

Fig. 1 shows the sensors equipped on our industrial robot used to collect S.MID.
To the best of our knowledge, S.MID is the first large-scale outdoor hybrid-
solid LiDAR semantic segmentation dataset. In addition to the features
shown in the figures, Livox Mid-360 is much more cost-effective compared to
traditional mechanical spinning LiDAR.

In accordance with the illustration provided in Fig. 1 and Fig. 1 (b) in the
main text, Livox Mid-360 is suitable for industrial robots involving scene un-
derstanding tasks since it covers a broader range of scenes with non-repetitive
scanning mode. However, it is a double-edged sword. This mode will also make
the point cloud relatively sparse and randomly distributed. Therefore, the
single-frame hybrid-solid LiDAR segmentation task brings more challenges
to network design.

†Corresponding Author.
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Table 1: Semantic LiDAR dataset comparison. Frames† for train/val/test. Number of
classes ‡ for single frame evaluation and annotated total number in brackets.

Datasets Frames† LiDAR Types of LiDAR Classes‡ Applications
nuScenes 28130/6019/6008 Velodyne-HDL-32E Mechanical Spinning LiDAR 16 (32) Autonomous Vehicle

SemanticKITTI 19130/4071/20351 Velodyne-HDL-64E Mechanical Spinning LiDAR 19 (34) Autonomous Vehicle
S.MID 13101/5000/20803 Livox Mid-360 Hybrid-Solid LiDAR 14 (25) Industrial Robot

Livox Mid-360

Velodyne ULTRA
Puck VLP-32C 

Intel Realsense
D435i

Single frame point cloud

Cumulative 1-second point cloud

Fig. 1: Sensors and comparison between single frame and cumulative 1-second point
clouds for Livox Mid-360. Although the single-frame point cloud is relatively sparse,
the cumulative point cloud can better express the scene in the vertical direction. Please
also note that only data collected by Livox Mid-360 and the corresponding labels are
used in this research and have been released with S.MID.

2.3 Annotation Process

Considering the safety inspection tasks of robots and the common objects found
in substations, we have annotated a total of 25 categories under professional
guidance. Acknowledging the tools and annotation strategies provided by pre-
vious researchers [3], we first develop a high-precision LiDAR-inertial SLAM
system based on hybrid-state LiDAR for initial mapping. Subsequently, through
manual correction, high-precision maps for annotation purposes are obtained as
shown in Fig. 2.

Due to the presence of specialized equipment within the substations, there
is a requirement for the annotators’ expertise compared to that of annotators
for autonomous driving datasets. Following training conducted by professionals,
our dataset’s labels have been carefully annotated.

2.4 Label Distributions

For single-frame segmentation task, we merge the annotated labels into 14 classes
(knife switch, main transformer, arrester, voltage transformer, busbar, switch,
current transformer, scaffold, support column, road, other-ground, fence, fire
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grounding switch main xfmr neutral point surge arrester

busbar surge arrester
knife switch

voltage xfmr
busbar switch current xfmr scaffold road

other-ground
building fence

fire shelter

wall outlier

Fig. 2: Example of maps built in the annotation process.
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Fig. 3: Label distributions.

shelter, wall). The label distributions are shown in Fig. 3. The imbalanced count
of classes is common in substation scenes. Hence, similar to imbalanced class
distributions observed in autonomous driving datasets, addressing the issue of
imbalanced class distribution in S.MID is an integral aspect that methods must
contend with.

3 Additional Method Details

3.1 Overall Framework

Following the previous work [11, 30], we adopt a U-Net [16] structure as shown
in Fig. 4. We firstly apply regular voxelization to form a sparse tensor X ∈
RN×Cin . Our sparse focal point module is introduced in down stages and central
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Fig. 4: Overall Framework. Our network employs an encoder-decoder structure with
four down/up stages and one central stage. Similar to the transformer [21], our sparse
focal point block consists of core modulator SFPM, layer normalization, and MLP as
feed-forward network.

stage. After traversing through the backbone with skip connections, we employ
a simple projection head to get the segmentation result. Due to the long-tailed
data distribution in the prevalent LiDAR semantic segmentation datasets, we
adopt focal loss [12] to address the issue of class imbalance.

3.2 Properties Discussion

Proof of translation invariance can be found in Sec. 3.1 in the main text. Here,
we provide an extension analysis of explicit locality with contextual learning. The
realization of our aggregation step κfocal(·) is achieved through linear projection
and Eqs. (4) – (6). The set of increasing kernels of SubMconv layers in Eq. (4)
provides explicit locality and the operations before and after it will preserve this
property (element-wise multiplication or channel-wise calculation). By using the
gate mechanism described in Eq. (5), the input-dependent multi-level context
from Eq. (4) can be adaptively aggregated. Additionally, Eq. (5) provides a “soft
shape” in the sparse space through corresponding gate weight for each posi-
tion i. Heuristic thinking: When dealing with diverse point cloud distributions,
varying densities in each scan, and distinct classes, a qualified feature encoder
exhibits varying dependencies across different contextual levels and positions
within sparse space.

4 Additional experiments

More segmentation results on SemanticKITTI val and test sets are displayed
in Tabs. 3 and 4 and nuScenes test set in Tab. 5 and S.MID test set in Tab. 2
Additional ablation study on S.MID in Tab. 6. More visual comparisons between
SphereFormer [11] and ours on S.MID val set are shown in Fig. 5. More network
analysis results are shown in Fig. 6.

Since most of the previous training techniques and augmentation methods
such as Cutmix [11,26], Lasermix [10], Polarmix [23] and post-processing [9] are
designed for mechanical spinning LiDAR, in order to ensure the consistency of
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Table 2: Results of our proposed method and SOTA LiDAR Segmentation methods on
S.MID test set. Note that all results are obtained from open source code with carefully
chosen parameters.
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Cylinder3D [30] 68.1 82.9 69.8 74.8 44.1 79.1 92.9 93.5 79.9 54.7 57.0 37.9 77.6 28.4 81.0
SphereFormer [11] 68.3 84.2 71.5 75.5 49.8 80.1 96.6 96.7 86.6 47.5 60.8 40.1 74.7 8.9 83.4

Ours 70.9 88.8 90.4 85.2 50.4 76.1 97.1 96.9 89.2 60.2 57.6 29.7 83.1 1.2 87.3

Table 3: Results of our proposed method and state-of-the-art LiDAR Segmentation
methods on SemanticKITTI val set. Note that all results are obtained from the litera-
ture.
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SSCN [7] 66.6 96.3 44.6 76.3 89.6 58.6 77.3 91.3 0.0 94.3 51.7 81.8 1.2 91.0 62.5 88.3 70.2 75.3 64.6 51.4
SphereFormer [11] 69.0 97.0 53.4 77.2 95.1 67.0 78.2 93.7 0.0 95.2 55.5 83.1 2.8 91.0 60.4 89.2 72.5 76.9 66.3 55.9

Ours 69.2 97.2 53.2 80.2 93.1 70.6 75.4 91.5 0.0 95.2 56.3 83.4 3.3 92.2 66.8 89.3 72.6 76.7 65.0 51.9

the three different types of LiDAR experiments, we did not use any training tech-
niques. In this situation, SFPNet still shows competitive results on mechanical
spinning LiDAR test sets.

In both S.MID val (in the main text) and test set (Tab. 2), we can see that
when the distribution pattern of point clouds changes, the performance of cubic
and radial window attention will deteriorate or even become worse than that of
the improved SSCN. This shows that SFPM can better cope with different types
of LiDAR with various point distributions due to its adaptive mechanism.

5 Limitations and Future works

Our work focuses on the representational capabilities of the network on gen-
eral LiDAR point clouds. However, data augmentation, training techniques and
post-processing are also important topics for segmentation tasks. For instance,
3.7% ˜ 4.9% mIoU improvement for SSCN-based networks can be achieved on
mechanical spinning LiDAR through Polarmix [23] .

Future works can be done to explore augmentation methods for general Li-
DAR point clouds. We will also extend our methods to more LiDAR point cloud
tasks such as object detection and panoptic segmentation, and on fused various
types of LiDAR datasets. Efficiency improvement will also be considered in the
future.
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Table 4: Results of our proposed method and state-of-the-art LiDAR Segmentation
methods on SemanticKITTI test set. Note that all results are obtained from the liter-
ature. LiDAR-based methods in the table are listed by year of publication.
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PointNet++ [15] 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9
TangentConv [19] 40.9 90.8 2.7 16.5 15.2 12.1 23.0 28.4 8.1 83.9 33.4 63.9 15.4 83.4 49.0 79.5 49.3 58.1 35.8 28.5
SqueezeSegV2 [22] 39.7 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 26.3
DarkNet53Seg [3] 49.9 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2

RangeNet53++ [14] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
KPConv [20] 58.8 95.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 90.3 61.3 72.7 31.5 90.5 64.2 84.8 69.2 69.1 56.4 47.4

3D-MiniNet [1] 55.8 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6
SqueezeSegV3 [25] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
PointASNL [28] 46.8 87.9 0.0 25.1 39.0 29.2 34.2 57.6 0.0 87.4 24.3 74.3 1.8 83.1 43.9 84.1 52.2 70.6 57.8 36.9
RandLA-Net [8] 55.9 94.2 29.8 32.2 43.9 39.1 48.4 47.4 9.4 90.5 61.8 74.0 24.5 89.7 60.4 83.8 63.6 68.6 51.0 50.7
PolarNet [29] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5
SPVNAS [18] 67.0 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3
JS3C-Net [27] 66.0 95.8 59.3 52.9 54.3 46.0 69.5 65.4 39.9 88.9 61.9 72.1 31.9 92.5 70.8 84.5 69.8 67.9 60.7 68.7

Cylinder3D [30] 68.9 97.1 67.6 63.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2
(AF)2-S3Net [5] 70.8 94.3 63.0 81.4 40.2 40.0 76.4 81.7 77.7 92.0 66.8 76.2 45.8 92.5 69.6 78.6 68.0 63.1 64.0 73.3

RPVNet [26] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 43.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
RangeViT-CS [2] 64.0 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7
RangeFormer [9] 73.3 96.7 69.4 73.7 59.9 66.2 78.1 75.9 58.1 92.4 73.0 78.8 42.4 92.3 70.1 86.6 73.3 72.8 66.4 66.6

SphereFormer [11] 74.8 97.5 70.1 70.5 59.6 67.7 79.0 80.4 75.3 91.8 69.7 78.2 41.3 93.8 72.8 86.7 75.1 72.4 66.8 72.9
Ours 70.3 97.2 64.9 63.8 44.8 54.7 70.4 74.6 52.9 91.9 70.6 78.0 39.7 93.3 71.5 85.4 73.7 70.1 66.1 72.1

Table 5: Results of our proposed method and state-of-the-art LiDAR Segmentation
methods on nuScenes test set. Note that all results are obtained from the literature.
Methods in the table are listed by year of publication.
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PolarNet [29] L 69.4 87.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 78.1 84.5
AMVNet [13] L 77.3 90.1 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVCNN [18] L 77.4 89.7 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
JS3C-Net [27] L 73.6 88.1 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1

Cylinder3D [30] L 77.2 89.9 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
(AF)2-S3Net [5] L 78.3 88.5 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8

PMF [31] L+C 77.0 89.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0
2D3DNet [6] L+C 80.0 90.1 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2

RangeFormer [9] L 80.1 90.0 85.6 47.4 91.2 90.9 70.7 84.7 77.1 74.1 83.2 72.6 97.5 70.7 79.2 75.4 91.3 88.9
SphereFormer [11] L 81.9 91.7 83.3 39.2 94.7 92.5 77.5 84.2 84.4 79.1 88.4 78.3 97.9 69.0 81.5 77.2 93.4 90.2

Ours L 80.2 90.8 83.7 42.5 89.1 91.5 74.1 83.5 79.1 74.7 87.3 73.3 97.7 78.1 80.3 76.2 92.3 89.3

Table 6: Additional ablation study on S.MID val set.

Basic blocks Focal level = 2 Focal level = 3 Global Avg Pooling mIoU
Optimal design ✓ ✓ ✓ 71.9
Ablation 1 ✓ ✓ ✓ 69.9 (-2.0)
Ablation 2 ✓ ✓ 69.8 (-2.1)
Ablation 3 ✓ 67.6 (-4.3)
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knife switch arrester fence main xfmr voltage xfmr busbar switch scaffold wall other-ground

Input Sphereformer OursSphereformer OursGround Truth

Fig. 5: Visual comparison between SphereFormer [11] and ours on S.MID val set.
Details have been zoomed with red box. Difference maps are shown in the last two
columns.

Central stageStage 4Stage 3Stage 2Stage 1

Level 3
k=7  RF=13

Level 2
k=5  RF=7

Level 1
k=3  RF=3

(a) SemanticKITTI.

Central stageStage 4Stage 3Stage 2Stage 1

Level 3
k=7  RF=13

Level 2
k=5  RF=7

Level 1
k=3  RF=3

(b) S.MID.

Fig. 6: Visualization of parameters of SubMconvl3d at three focal levels in four down
stages and central stage in SFPNet. SemanticKITTI shows similar patterns to nuScenes
as demonstrate in the main text. S.MID shows a special pattern in the vertical direction
due to the particularity of its point cloud.
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