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In this supplementary material, we present additional implementation details
(Sec. S.1), additional results on the ablation studies (Sec. S.2, Sec. S.3, Sec. S.4,
Sec. S.5, and Sec. S.6), how bounding box weights change compared to GLIP con-
fidence scores (Sec. S.7), the reason for not replacing GLIP with SAM (Sec. S.8),
more analysis on results (Sec. S.9), outcomes with scanned data (Sec. S.10),
and comprehensive results covering all PartNet-Mobility categories (Sec. S.11,
Sec. S.12, and Sec. S.13).

Figure S1: Architecture of the weight prediction network used in PartSTAD. fb, db,
and pb represent the bounding box feature, view direction, and position in the 2D
image of the bounding box b, respectively. γ denotes the positional encoding function.
This network takes all bounding box features of a single object as input and outputs
bounding box weights.

S.1 Additional Implementation Details

Network Architecture. Fig. S1 shows the detailed network architecture of the
weight prediction network of PartSTAD. As mentioned in Sec. 4.2 of the main
paper, the network consists of small shared two-layer MLP with the context
normalization [10] layer between them to embed context information. This light
architecture design is inspired by LoRA [1] and PartSLIP [5] which add small
learnable parameters while keeping the original pretrained model parameters.

We add positional encoded vectors to each bounding box feature to embed
the positional information. For given bounding box feature fb, we do not directly
† This work was conducted when the author was at KAIST.
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feed fb to the network but feed f̂b which concatenates fb, positional encoding of
view direction db, and positional encoding of 2D bounding box position pb.
Positional encoding γ is defined as below:

γ(x1, x2, ..., xn) =

n⊕
i=1

(xi, sin(2
0πxi), cos(2

0πxi), ..., sin(2
L−1πxi), cos(2

L−1πxi)),

(1)

where ⊕ indicates the concatenation operation and L is set to 10 in our exper-
iments. Thus the input f̂b of the weight prediction network can be written as
below:

f̂b = fb ⊕ γ(db)⊕ γ(pb). (2)

We initialize all network parameters θi ∼ N (0, ϵ), where ϵ is a very small
number (ϵ is set to 0.0001 in our experiments) so that the initial MLP output
becomes 0. Since the last layer is modified ReLU layer ϕ (Eq. 7 of the main
paper), the initial weight is set to τ . This is inspired by zero convolution of
ControlNet [11], and this makes the training more stable by preventing drastic
weight changes.

Instead of using an attention-based network to consider the relations between
bounding boxes, we opt to add context normalization [10] between two MLP
networks in the weight prediction network. This allowed us to keep the network
lightweight while still considering the relations between bounding boxes.

Design of Modified ReLU. The modified ReLU function (Eq. 7 of the main
paper) is designed to set the initial value of the bbox weight, which is the output
of the weight prediction network, to a value τ > 0.

Training Details. We generate 2D images of size 800 × 800 from 10 fixed
viewpoints for each object that is normalized to fit in a unit sphere using the
Pytorch3D point cloud renderer with the fixed camera distance 2.2 following
the same procedure as described in PartSLIP [5]. After rendering, we obtain
bounding boxes for each image using the GLIP [4]. Subsequently, all bounding
box features corresponding to bounding boxes from a single object are simulta-
neously fed into the weight prediction network to calculate the weights. Training
is conducted using a single RTX 3090 GPU.

S.2 Results with Varying Parameters

Number of Views. Tab. S1 presents the results of the ablation study on the
number of views. It is observed that as the number of views increases, mIoU also
increases, with the most significant difference observed when the view changes
from 5 to 10. This highlights that having too few samples of bounding boxes
used in training can lead to suboptimal results.
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Table S1: Ablation study on the number of views.

# of Views 5 10 15 20

mIoU 59.4 65.0 66.3 67.2

Table S2: Ablation study on the number of training data. The experiment is conducted
on the StorageFurniture category as it only has more than 128 shapes (346 in total).

# of Training Data 8 16 32 64 128

mIoU 57.0 56.7 58.0 57.8 60.1

Table S3: Ablation study on the hyperparameter τ . The mIoU is measured for five
object categories: Chair, Table, StorageFurniture, Faucet, and TrashCan, which are
the five categories with the most test data.

Initial Weight (τ) 1 5 10 15 20

mIoU (5 categories) 54.8 55.6 55.8 55.6 55.6

Number of Training Data. Tab. S2 presents the results of the ablation study
based on the number of training data. Only the StorageFurniture category has
more than 128 data, so the experiment is conducted only for this category. There
is a tendency for mIoU to increase as the number of training data increases, but
the difference is not significant. This demonstrates that even using only 8 data
points can yield sufficiently good results.

Hyperparameter τ . Tab. S3 shows the ablation results for the hyperparameter
τ . The results are best when τ is 10, but they also demonstrate that the τ value
does not significantly impact the results when it is greater than zero.

S.3 Random Viewpoints vs. Fixed Viewpoints

Table S4: Comparison between cases of rendering with random viewpoints and fixed
viewpoints.

Category Chair Kettle Lamp Suitcase Scissors

Random 85.5 82.5 66.8 71.3 64.8
Fixed (Ours) 85.3 84.2 68.4 68.3 68.5

Tab. S4 shows the results with random viewpoints and shows that the out-
comes are not sensitive to the choice of viewpoints.
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S.4 Cross-Entropy Loss vs. mRIoU Loss

Table S5: Comparison with the cases of using cross-entropy loss and mRIoU loss
(Ours).

Method mIoU (%)

PartSLIP [5] + SAM Mask Integration

(Baseline)
61.9

PartSTAD + Cross-Entropy - mRIoU 63.5
PartSTAD + Cross-Entropy 64.5

PartSTAD (Ours) 65.0

As mentioned in Sec. 4.1 of the main paper, the use of mRIoU loss is crucial
for achieving significant improvement in our task adaptation. To demonstrate
the effectiveness of our mRIoU loss, we conduct an experiment comparing it with
the alternative, cross-entropy loss.

Tab. S5 shows the ablation results for different loss types. Baseline at the 1st
row in Tab. S5 represents the result which only applies SAM [3] mask integration
to PartSLIP [5] (same as our method without weight prediction). When using the
commonly used cross-entropy loss for segmentation tasks, the mIoU decreases
by 1.5%p compared to using the mRIoU loss. Even when both losses are used
together, the mIoU decreases by 0.5%p. This indicates that the mRIoU loss is
more effective for 3D segmentation task adaptation, and it shows its highest
effectiveness when used alone.

S.5 Vanilla GLIP vs. Finetuned GLIP

Figure S2: Qualitative comparison between vanilla GLIP and finetuned GLIP on Om-
niObject3D [8], a real-scanned dataset.

Tab. S6 compares results using vanilla GLIP and finetuned GLIP. Vanilla
GLIP yields significantly worse results, emphasizing the substantial impact of
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Table S6: Quantitative comparison between vanilla GLIP and finetuned GLIP on
PartNet-Mobility [9] dataset.

Method Vanilla GLIP Finetuned GLIP (Ours)

PartSLIP [5] 27.2 58.0
PartSTAD (Ours) 48.9 (+ 21.7) 65.0 (+ 7.0)

bounding box prediction on the final outcome. At the same time, when we use
the vanilla GLIP, our weight prediction network significantly improves the mIoU
from 27.2 to 48.9. This indicates that our weight prediction network is more
effective when the 2D prediction is inaccurate.

In our experiments with scanned objects (Sec. 5.4 of the main paper), we
used a finetuned GLIP instead of the vanilla GLIP, as it exhibited better per-
formance in detecting the parts, even for real images, due to its finetuning for
the specific parts. Fig. S2 illustrates the superior performance of the finetuned
GLIP compared to the vanilla GLIP for the OmniObject3D dataset.

S.6 GLIP Confidence Score vs. Mask Weight

Table S7: Comparison with the cases of using GLIP confidence score as weight and
predicted mask weight (Ours).

Method mIoU (%)

PartSLIP [5] + SAM Mask Integration

(Baseline)
61.9

PartSTAD + GLIP Conf. 53.3
PartSTAD + Normalized GLIP Conf. 62.3

PartSTAD (Ours) 65.0

It is worth noting that the GLIP [4] model also outputs a confidence score
for each predicted bounding box. This implies that we can consider using the
GLIP confidence scores as weights in the voting scheme (W (b) in Eq. 5 of the
main paper). Thus, we compare the results when using GLIP confidence scores
and the predicted mask weights from our method.

Tab. S7 presents the comparison results between using GLIP confidence as
weights and using weights predicted from the network. We compare those meth-
ods with the baseline (1st row in Tab. S7) which only applies SAM [3] mask
integration to PartSLIP [5] (same as our method without weight prediction).
As the confidence scores from GLIP range in [0, 1], utilizing them directly as
weights causes an overall score reduction, resulting in segments are not gener-
ated. Consequently, the outcome is notably poor, with a 53.3 mIoU. To ensure a
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Input GT
GLIP Confidence Mask Weight (Ours)

Top 1
(view 1)

Seg. Result Top 1
(view 2)

Seg. Result

view 1 view 2 view 1 view 2 view 1 view 2 view 1 view 2

Figure S3: Comparison of results using GLIP confidence scores and Mask Weights.
The 5th and the 8th columns depict masks with the highest scores (weights), where red
rectangles represent bounding boxes from GLIP, and the white regions are segmentation
masks after integrating SAM. From the top row to the bottom, each corresponds to
the Bottle, Stapler, and two StorageFurniture categories. When using GLIP confidence,
the highest score mask for Bottle (1st row) and Stapler (2nd row) includes an incorrect
region, leading to inaccurate segmentation (denoted as red arrows). In contrast, our
method assigns the highest score to the correct mask, indicating that the incorrect mask
has a lower score. Additionally, when using the GLIP confidence score, the highest score
mask for the 3rd and the 4th rows each indicates a completely wrong part (the backside
of StorageFurniture). However, our method assigns the highest score to the handle and
the correct door part at the front side for the 3rd row and the 4th row, respectively.

fair comparison, we normalize the weights to maintain the same sum as before.
With these normalized weights, as presented in the second row of Tab. S7, the
result becomes 62.3 mIoU, a slight increase of 0.4%p compared to the baseline.
However, this is still 2.7%p lower than utilizing predicted mask weights from a
network trained with 3D mRIoU loss. In conclusion, our method provides results
more optimized for 3D segmentation than GLIP confidence scores, demonstrat-
ing the effectiveness of our method.

As shown in Fig S3, GLIP confidence scores occasionally assign the highest
score to incorrect bounding boxes, leading to suboptimal segmentation results.
In contrast, the weights predicted by our method consistently assign the highest
weight to the correct regions. For instance, using the GLIP confidence score as
the weight results in the highest score masks for Bottle (1st row) and Stapler
(2nd row) including incorrect regions, leading to inaccuracies in segmentation
(indicated by red arrows). In contrast, our method assigns the highest score to
the correct mask, indicating that the incorrect mask has a lower score. Addi-
tionally, with the GLIP confidence score, the highest score masks for the 3rd
and the 4th rows each indicate completely wrong parts (the backside of Stor-
ageFurniture). However, our method assigns the highest score to the handle and
the correct door part at the front side for the 3rd row and the 4th row, respec-
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Figure S4: The smaller part (handle) has a higher weight compared to the bigger part
(door), and the rear view (fewer GT parts) has a lower weight compared to the front
view (more GT parts).

tively. Those results demonstrate that utilizing the mask weight predicted from
the network trained with 3D mRIoU loss produces more accurate predictions
compared to using the GLIP confidence score as the weight.

S.7 Learned Bounding Box Weights

As seen in the example of Fig. S4 for the storage furniture category, smaller parts
like handles tend to have relatively higher weights compared to larger parts like
doors. Additionally, in rear views where there are no ground truth parts, there
is a tendency for the average weight to be lower compared to front views with
many ground truth parts. This indicates that learned weight is influenced by
both view direction and part labels, unlike the GLIP confidence score, which
has a uniform average without distinct trends regarding view and parts.

S.8 Reasons for Not Replacing GLIP [4] with SAM [3]

SAM [3] allows text prompts as inputs, which could enable direct replacement of
GLIP with SAM. However, since the pretrained model supporting text prompts
has not been released, we resort to an alternative approach. We serialize GLIP
and SAM by using a bounding box predicted by GLIP as an input prompt for
SAM.

Note that Grounded-SAM [7] and other recent 2D segmentation methods
based on text prompts (e.g., SAM-HQ [2]) also involve the serialization of a
bounding box prediction network (like GLIP) and SAM. Grounded-SAM specif-
ically uses GroundingDINO [6] instead of GLIP. We believe that the selection of
the bounding box prediction network should not impact our contributions.
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S.9 More Analysis on Results

Predicted Bbox

Predicted Mask
after SAM Integration

(a) Failure case of SAM Integration.

: switch
: spout

switch:16.6 spout:18.6 

spout:15.6 

(b) Failure case of Weight Prediction.

Figure S5: Failure cases of PartSTAD.

The qualitative and quantitative results in the main paper demonstrate that
our PartSTAD provides more specialized 2D predictions tailored to 3D seg-
mentation compared to PartSLIP [5]. However, in some categories, there are
cases where removing specific components from PartSTAD leads to better re-
sults or even where PartSLIP outperforms PartSTAD (e.g., Faucet category).
Fig. S5 illustrates cases where each component performs worse predictions than
the baseline.

When the initially given bounding box contains few wrong points but includes
many correct points, there are cases where the new mask obtained through SAM
does not include the previously contained correct points (Fig. S5a). In such cases,
the performance may deteriorate when SAM mask integration is applied. In the
Faucet category, both the switch part and the spout part protrude prominently,
resulting in the initial bounding box containing few irrelevant points. Therefore,
it appears that the performance deteriorates when correct points are excluded
rather than irrelevant points through SAM mask integration.

Secondly, in visually similar parts, weights might be inaccurately predicted.
Fig. S5b illustrates the predicted bounding boxes and weights of the Faucet
object, showing that the switch part is predicted as the spout with the highest
bounding box weight. In such cases where parts are not visually distinguishable,
the weight prediction may not be properly learned. Additionally, adding weight
prediction in these cases may lead to a decrease in performance.

Note that such cases are rare and do not significantly impact the overall
improvement, as shown in Tab. 1 and Tab. 2 in the main paper.

Additionally, for some parts such as door and drawer sometimes have ex-
tremely low IoU. This is mainly caused by GLIP, as it fails to detect the parts
due to a lack of data. For example, in the Table class, there is no training data
that includes the door part.
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Category Cart Chair Dispenser Display Faucet

Text Prompt wheel arm,back,leg,
seat,wheel

head,lid base,screen,
support

spout,switch

Input

PartSLIP [5]

PartSTAD
(Ours)

Category Kettle KitchenPot Storage
Furniture

Suitcase TrashCan

Text Prompt lid,handle,
spout

lid,handle door,drawer,
handle

handle,
wheel

footpedal,
lid,door

Input

PartSLIP [5]

PartSTAD
(Ours)

Figure S6: Qualitative results on real-world scan data. In the highlighted red circle,
it is evident that our method achieves more accurate segmentation than PartSLIP [5].

S.10 Results on Real-World Scanned Data

Fig. S6 illustrates the results of semantic segmentation on the real-world scan
data used in PartSLIP [5], which is captured by smartphone. As seen in the
figure, our method demonstrates its robustness by successfully predicting not
only with higher-quality real-world scans like OmniObject3D [8] as illustrated in
Fig. 5 of the main paper but also with lower-quality scan data. Also, our method
provides more accurate segmentation than PartSLIP [5]. In the case of the Chair,
our method accurately segments the arm part, while PartSLIP fails to do so.
For the Kettle, our method better identifies the spout compared to PartSLIP.
Additionally, in the cases of StorageFurniture and TrashCan, PartSLIP segments
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parts that should not be segmented (the backside of StorageFurniture and the lid
of TrashCan). On the other hand, for the KitchenPot, while PartSLIP finds the
lid part that our method misses, its boundary is still not perfect. We demonstrate
that our approach identifies more accurate parts while simultaneously predicting
more precise boundaries.

S.11 Complete Quantitative Results of PartSTAD

Tab. S8, Tab. S9, and Tab. S10 show the full table of quantitative results for
semantic segmentation, part-aware instance segmentation, and part-agnostic in-
stance segmentation, respectively. Overall, our method demonstrates the best
results across whole categories and parts. Please refer to the complete table on
the subsequent page for comprehensive information. Moreover, after quantita-
tive result tables, additional qualitative results are illustrated in Sec. S.12 and
Sec. S.13.
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Table S8: Full table of semantic segmentation results on the PartNet-Mobility [9]
dataset.

Baselines Ablations

Category Part SATR SATR
+SP

PartSLIP w/o
Weight
Pred.

w/o
SAM
Integ.

Ours

Bottle lid 50.0 55.5 80.7 85.9 81.0 83.6

Box lid 50.6 54.9 77.9 84.3 82.8 81.1

Bucket handle 6.6 7.5 21.1 85.4 52.4 83.6

Camera button 10.2 20.8 46.1 48.0 53.3 51.6
lens 24.1 27.5 79.1 77.8 76.6 77.1

Cart wheel 30.8 37.2 78.8 85.4 81.2 85.0

Chair

arm 22.1 24.4 65.4 68.8 63.5 69.7
back 52.3 59.4 88.8 88.0 88.2 87.5
leg 39.8 45.2 90.8 93.1 92.1 93.9
seat 39.1 46.6 78.8 83.1 78.4 82.7

wheel 12.1 12.8 90.5 91.9 93.4 92.8

Clock hand 3.9 16.1 40.5 54.3 46.2 47.4

Coffee
Machine

button 2.9 3.6 5.9 5.9 5.8 6.3
container 41.5 44.9 54.3 52.0 50.6 44.8

knob 5.6 9.9 28.8 29.0 30.6 31.4
lid 30.2 34.7 59.9 59.4 61.6 60.7

Dish-
washer

door 21.3 20.7 68.6 70.3 67.2 68.1
handle 4.6 16.9 49.5 52.4 51.3 53.0

Dispenser head 34.5 36.3 55.2 56.6 59.1 63.2
lid 42.0 46.4 86.4 84.4 84.9 84.2

Display
base 26.8 33.9 96.7 97.0 95.4 96.8

screen 35.4 40.0 70.3 73.1 76.3 70.7
support 19.4 28.0 78.6 80.8 72.1 79.4

Door
frame 14.3 15.1 19.5 20.0 58.4 61.0
door 55.2 61.4 68.7 72.4 68.9 74.4

handle 5.9 15.3 47.3 48.2 47.4 48.9

Eyeglasses body 69.9 78.5 88.2 86.8 95.9 95.8
leg 57.1 69.8 90.2 90.6 88.3 89.1

Faucet spout 43.4 46.2 75.3 75.2 74.0 75.3
switch 30.9 33.4 57.1 55.7 54.1 55.3

Folding
Chair

seat 58.1 63.7 83.6 90.4 90.4 91.6

Globe sphere 83.1 83.5 93.0 98.1 95.7 93.5

Kettle
lid 48.3 55.1 71.8 83.9 89.4 84.1

handle 17.2 17.5 70.2 89.3 81.3 89.4
spout 11.3 10.3 78.7 82.6 73.1 79.2

Keyboard cord 6.3 9.0 89.1 99.0 87.0 91.0
key 39.4 42.4 55.9 50.6 72.2 73.8

Kitchen
Pot

lid 50.1 54.7 76.7 87.0 74.4 72.5
handle 13.6 14.5 56.9 70.1 64.7 74.5

Knife blade 36.3 39.9 62.6 64.0 64.4 63.8

Lamp

base 64.9 72.9 88.1 89.3 82.8 89.3
body 41.5 45.1 77.7 79.6 75.2 82.1
bulb 0.0 0.0 13.1 13.3 13.0 12.7
shade 51.9 55.2 86.6 89.4 83.8 89.4

Laptop

keyboard 19.3 24.2 68.3 68.9 68.3 67.9
screen 18.2 20.7 55.6 58.3 68.5 74.4
shaft 0.2 0.1 2.7 3.1 3.9 3.4

touchpad 17.0 14.1 16.2 15.3 14.9 15.5
camera 1.3 3.1 13.1 11.6 12.2 11.6

Lighter
lid 32.4 32.5 69.8 72.3 67.8 70.9

wheel 2.0 3.8 51.5 63.0 53.0 64.1
button 1.6 2.2 58.3 64.3 63.8 62.6

Baselines Ablations

Category Part SATR SATR
+SP

PartSLIP w/o
Weight
Pred.

w/o
SAM
Integ.

Ours

Microwave

display 1.5 0.0 28.4 28.3 27.9 51.0
door 17.7 16.6 41.8 52.2 62.2 58.8

handle 4.5 25.4 77.2 86.9 90.0 84.9
button 0.7 0.5 23.6 25.7 25.0 41.5

Mouse
button 7.7 6.7 16.7 21.0 8.5 8.8
cord 29.1 31.0 63.5 65.9 66.2 65.9
wheel 29.4 64.1 50.9 52.4 45.8 71.9

Oven door 22.7 22.0 73.6 72.2 78.9 73.4
knob 2.6 6.1 67.2 67.5 69.3 70.3

Pen cap 61.4 60.9 68.6 59.3 60.4 50.7
button 40.8 53.7 69.1 69.2 69.9 70.5

Phone lid 60.5 63.4 80.0 86.8 80.7 89.8
button 15.8 20.4 29.6 28.6 34.9 36.5

Pliers leg 70.2 75.1 46.7 35.5 99.3 99.3

Printer button 1.2 4.0 5.9 6.3 6.8 7.9

Refrige-
rator

door 23.2 23.1 57.0 56.4 52.2 52.6
handle 8.6 24.4 49.7 53.4 40.8 54.5

Remote button 17.2 28.0 36.5 36.6 46.8 53.4

Safe
door 21.2 24.5 68.0 74.0 62.9 66.5

switch 3.4 17.0 33.8 35.7 33.4 39.2
button 6.0 8.2 4.9 5.5 1.2 4.7

Scissors
blade 39.7 47.6 73.3 72.7 75.5 76.1
handle 59.5 66.5 86.7 87.1 87.8 88.4
screw 11.2 15.1 23.7 22.7 39.2 40.9

Stapler body 74.1 87.3 85.7 86.6 84.6 86.0
lid 65.2 78.5 68.8 76.7 75.2 85.6

Storage
Furniture

door 31.6 36.6 50.4 55.1 61.0 63.9
drawer 25.6 35.5 35.7 37.0 30.5 36.7
handle 4.7 14.5 71.0 77.7 70.5 77.9

Suitcase handle 30.3 43.3 77.0 87.4 81.5 82.3
wheel 20.6 24.2 51.1 52.7 52.3 54.2

Switch switch 21.4 37.0 52.1 51.9 53.0 57.9

Table

door 0.0 0.0 0.0 0.0 0.0 0.0
drawer 20.0 25.3 36.7 37.2 38.8 41.8

leg 42.9 48.6 70.9 72.2 70.3 72.6
tabletop 46.8 54.4 71.8 79.3 78.6 82.0
wheel 26.5 30.9 68.0 61.3 63.9 63.7
handle 3.8 8.7 19.9 20.1 22.6 26.4

Toaster button 6.4 21.3 51.3 52.0 52.0 52.4
slider 7.3 17.8 48.6 50.8 66.2 64.8

Toilet
lid 36.6 40.9 69.6 75.9 69.5 77.9
seat 8.8 11.1 22.6 31.6 16.4 28.6

button 7.5 14.5 59.1 62.3 62.3 65.9

TrashCan
footpedal 0.0 0.0 0.0 0.0 0.1 0.3

lid 34.1 47.7 62.0 66.2 54.6 54.6
door 0.8 0.1 8.0 6.8 0.4 8.7

USB cap 26.1 27.8 55.1 55.6 52.0 49.9
rotation 34.4 39.0 49.1 58.6 55.2 69.8

Washing
Machine

door 13.4 18.1 57.3 56.7 63.6 56.4
button 1.3 2.6 32.1 32.7 39.0 39.9

Window window 67.7 69.2 78.3 72.6 78.6 76.1

Mean 29.3 34.8 58.0 61.9 62.1 65.0
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Table S9: Full table of part-aware instance segmentation results on the PartNet-
Mobility [9] dataset.

Baselines Ablations

Category Part PartSLIP w/o
Weight
Pred.

w/o
SAM
Integ.

Ours

Bottle lid 73.4 74.9 79.5 77.4

Box lid 56.3 72.2 60.7 62.9

Bucket handle 10.2 78.2 39.3 78.2

Camera button 37.6 36.7 39.7 38.7
lens 35.8 32.7 29.6 29.8

Cart wheel 69.5 74.0 68.3 71.6

Chair

arm 59.1 50.2 58.9 50.2
back 94.2 92.3 94.8 93.2
leg 72.8 79.8 72.0 81.8
seat 90.1 95.0 89.1 91.1

wheel 94.8 95.3 96.1 96.1

Clock hand 18.7 32.3 18.6 18.5

Coffee
Machine

button 1.3 1.3 1.3 1.4
container 23.6 23.2 24.2 20.6

knob 13.4 12.5 12.5 11.0
lid 24.8 24.9 24.0 22.3

Dishwasher door 49.0 49.0 48.8 53.5
handle 31.7 34.4 40.6 47.1

Dispenser head 36.1 39.6 49.8 44.3
lid 76.6 81.8 85.0 86.6

Display
base 96.1 94.0 98.6 94.1

screen 49.9 59.0 68.0 70.7
support 60.9 52.0 45.6 51.9

Door
frame 5.1 5.5 8.5 11.2
door 13.9 15.1 16.5 20.2

handle 23.9 23.8 27.7 28.1

Eyeglasses body 57.2 51.8 55.7 60.6
leg 82.5 85.2 84.9 83.5

Faucet spout 54.4 50.8 46.4 43.6
switch 31.5 28.9 30.5 27.0

Folding
Chair

seat 86.4 89.6 100.0 91.3

Globe sphere 92.1 100.0 98.8 84.3

Kettle
lid 67.7 88.9 88.9 82.0

handle 66.0 74.9 74.9 74.9
spout 68.6 68.6 57.3 66.3

Keyboard cord 78.6 80.2 95.2 91.6
key 34.4 31.2 47.4 49.0

KitchenPot lid 95.1 95.1 69.8 76.4
handle 39.9 53.8 49.6 57.4

Knife blade 44.5 41.3 39.2 32.3

Lamp

base 84.4 81.5 71.6 76.5
body 85.2 85.2 70.4 85.5
bulb 15.8 15.8 7.6 7.6
shade 89.7 90.2 86.6 90.2

Laptop

keyboard 54.5 67.6 62.4 70.1
screen 24.0 42.2 42.2 60.0
shaft 2.0 2.0 3.2 3.5

touchpad 7.4 9.0 9.4 10.0
camera 1.0 1.0 1.0 1.0

Lighter
lid 38.9 38.9 17.2 29.8

wheel 34.9 70.1 33.3 56.1
button 28.6 35.8 31.3 30.1

Baselines Ablations

Category Part PartSLIP w/o
Weight
Pred.

w/o
SAM
Integ.

Ours

Microwave

display 33.7 33.7 33.7 38.1
door 39.0 23.2 42.7 27.2

handle 50.5 50.5 60.4 50.5
button 12.0 12.0 12.9 13.6

Mouse
button 5.0 3.0 5.0 5.0
cord 66.3 66.3 66.3 66.3
wheel 50.5 50.5 50.5 50.5

Oven door 27.9 38.1 32.0 42.5
knob 66.0 69.4 72.2 71.7

Pen cap 51.0 30.3 54.6 25.9
button 48.0 48.5 52.4 52.1

Phone lid 28.8 28.1 16.5 23.0
button 34.2 34.8 35.0 35.7

Pliers leg 3.2 4.1 31.1 31.1

Printer button 1.1 1.1 1.7 1.6

Refrige-
rator

door 27.2 25.6 20.4 19.6
handle 36.5 39.3 21.3 30.0

Remote button 19.9 20.3 29.6 33.7

Safe
door 70.7 76.2 65.4 71.1

switch 19.3 19.3 20.2 21.8
button 1.0 1.0 0.0 1.0

Scissors
blade 13.2 14.8 13.0 15.5
handle 52.9 55.7 47.1 54.0
screw 4.8 6.0 9.2 9.9

Stapler body 86.1 86.6 87.0 87.0
lid 73.4 83.2 80.0 94.1

Storage
Furniture

door 16.2 20.6 21.8 25.6
drawer 8.9 9.2 7.7 9.9
handle 62.1 71.5 58.7 71.1

Suitcase handle 74.3 72.0 74.9 73.1
wheel 39.4 33.7 30.1 43.0

Switch switch 21.2 22.2 19.7 22.1

Table

door 0.0 0.0 0.0 0.0
drawer 8.9 10.9 11.6 10.1

leg 40.2 42.4 40.4 40.4
tabletop 61.4 63.1 67.7 68.3
wheel 73.0 54.3 61.9 66.6
handle 12.1 14.3 12.5 13.9

Toaster button 36.8 30.1 37.1 31.6
slider 29.6 32.1 49.0 45.6

Toilet
lid 49.7 54.9 47.5 57.2
seat 2.1 6.1 1.4 5.0

button 56.9 61.3 59.2 59.5

TrashCan
footpedal 0.0 0.0 0.0 0.0

lid 32.8 34.6 37.0 32.0
door 2.0 2.0 1.0 2.9

USB cap 17.1 15.3 25.3 19.6
rotation 24.7 19.5 24.2 33.4

Washing
Machine

door 35.3 27.4 35.6 22.9
button 12.4 12.4 17.3 17.3

Window window 23.6 19.3 26.1 20.0

Mean 41.6 44.7 44.2 45.6
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Table S10: Full table of part-agnostic instance segmentation results on the PartNet-
Mobility [9] dataset.

Baselines Ablations

Category SAM3D PartSLIP w/o
Weight
Pred.

w/o
SAM
Integ.

Ours

Bottle 15.3 73.4 74.9 79.5 76.2

Box 18.2 56.3 72.2 60.7 69.6

Bucket 12.0 10.2 78.2 39.3 78.2

Camera 2.2 37.1 35.5 37.8 37.0

Cart 8.5 69.5 74.0 68.3 71.2

Chair 5.7 80.7 81.1 81.2 83.3

Clock 1.0 18.7 32.3 18.6 18.5

Coffee
Machine

3.6 9.8 9.5 9.4 9.4

Dishwasher 6.7 39.0 41.9 47.1 49.7

Dispenser 20.9 59.0 59.9 69.0 65.5

Display 34.1 61.5 66.4 66.0 68.4

Door 17.2 11.5 11.6 13.9 16.0

Eyeglasses 27.6 71.8 72.1 72.6 73.9

Faucet 23.7 42.8 37.1 37.9 35.6

Folding
Chair

27.2 86.4 89.6 100.0 91.3

Globe 4.2 92.1 100.0 98.8 84.3

Kettle 41.8 69.5 75.3 76.3 75.9

Keyboard 1.0 34.1 31.0 47.3 48.9

KitchenPot 31.9 55.4 66.2 52.3 65.4

Knife 2.2 44.5 41.3 39.2 32.1

Lamp 48.4 77.0 77.7 66.5 75.9

Laptop 1.9 19.5 26.5 27.4 34.1

Lighter 8.9 32.7 49.9 26.6 39.8

Baselines Ablations

Category SAM3D PartSLIP w/o
Weight
Pred.

w/o
SAM
Integ.

Ours

Microwave 1.4 15.0 12.9 18.7 16.2

Mouse 2.5 12.9 11.2 20.5 21.0

Oven 1.0 46.8 55.6 56.4 62.0

Pen 8.2 40.8 35.8 47.2 34.5

Phone 1.1 31.0 33.3 31.6 34.7

Pliers 22.2 3.2 4.1 31.1 31.1

Printer 1.0 1.1 1.1 1.7 1.5

Refrige-
rator

1.8 27.7 30.5 19.4 22.0

Remote 1.0 19.9 20.3 29.6 33.7

Safe 2.0 15.5 15.6 14.1 15.2

Scissors 7.4 27.0 29.4 24.9 26.2

Stapler 45.1 76.0 80.4 85.0 82.7

Storage
Furniture

1.2 29.7 35.9 34.8 41.7

Suitcase 1.8 47.3 46.2 47.1 43.8

Switch 5.0 21.2 22.2 19.7 22.4

Table 10.8 28.7 29.2 27.6 28.2

Toaster 1.8 34.8 35.9 38.6 39.2

Toilet 3.6 35.4 40.0 36.6 41.0

TrashCan 7.6 22.6 24.5 24.3 22.8

USB 23.4 20.5 15.2 27.3 23.5

Washing
Machine

2.8 17.5 14.6 21.4 19.6

Window 18.0 23.6 19.3 26.1 19.5

Mean 12.1 38.9 42.6 42.6 44.1
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S.12 Additional Qualitative Results for Semantic
Segmentation

We present additional part segmentation results below, encompassing semantic
segmentation. Each row shows the same object with different views.

view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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view 1 view 2

Input GT SATR SATR
+SP

PartSLIP Ours Input GT SATR SATR
+SP

PartSLIP Ours
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S.13 Additional Qualitative Results for Instance
Segmentation

We present additional part segmentation results below, encompassing instance
segmentation. Each row shows the same object with different views.

view 1 view 2

Input GT SAM3D PartSLIP Ours Input GT SAM3D PartSLIP Ours
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view 1 view 2

Input GT SAM3D PartSLIP Ours Input GT SAM3D PartSLIP Ours
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view 1 view 2

Input GT SAM3D PartSLIP Ours Input GT SAM3D PartSLIP Ours



24 H. Kim and M. Sung

view 1 view 2

Input GT SAM3D PartSLIP Ours Input GT SAM3D PartSLIP Ours
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