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Abstract. Vision-and-Language Navigation (VLN) involves guiding an agent
through indoor environments using human-provided textual instructions. Coarse-
grained VLN, with short and high-level instructions, has gained popularity as it
closely mirrors real-world scenarios. However, a significant challenge is these
instructions are often too concise for agents to comprehend and act upon. Previ-
ous studies have explored allowing agents to seek assistance during navigation,
but typically offer rigid support from pre-existing datasets or simulators. The ad-
vent of Large Language Models (LLMs) presents a novel avenue for aiding VLN
agents. This paper introduces VLN-Copilot, a framework enabling agents to ac-
tively seek assistance when encountering confusion, with the LLM serving as a
copilot to facilitate navigation. Our approach includes the introduction of a con-
fusion score, quantifying the level of uncertainty in an agent’s action decisions,
while the LLM offers real-time detailed guidance for navigation. Experimental
results on two coarse-grained VLN datasets show the efficacy of our method.

Keywords: Vision-and-Language - Navigation - Large Language Models

1 Introduction

The Vision-and-Language Navigation (VLN) tasks have attracted great attention from
researchers, which enables an agent to navigate to a specified destination indoors based
on the provided textual instructions and visual observations. The tasks of VLN show
great potential in real-world applications such as home assistant robots. Most VLN
tasks such as R2R [3]] and RxR [[17] efc. provide fine-grained step-by-step instructions,
such as “Go out the door in front of you across the room. Once in the hallway turn
Left. Walk forward and then turn left into the sitting area. Stop in right in front of the
fireplace.” However, though these detailed instructions could improve the agents’ ability
of instructions following, they impede the further application of VLN in the real world
since human beings would not like to give such long instructions to a robot in daily life.
Contrastive to these tasks, the coarse-grained instruction task represented by the Remote
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~

| am confused deciding
where to go, can you

help me?
Sure! Please describe the
current situation you face.

~{ The task is turn off the white table lamp in
o the bedroom.
| see candidate 1 is a white door leads to a
bedroom with a bed, electric fan and table, |
# see candidate 2 is a bathroom has a sink ...
I have passed a balcony with rocking chairs,
then | go to a hallway...

. 'I think the destination description
= information may be useful.

’The bedroom is a cozy and
comfortable space, typically
with a queen-sized bed in the
center of the room...

/

Fig. 1: Our proposed VLN-Copilot. When an agent is confused about making an action decision,
it will proactively seek help from the LLM, and then the LLM will assist the agent by analyzing
the situations faced by the agent and providing appropriate guidance.

Embodied Referring Expression (REVERIE) task [29] is more expected to enhance
the practical utility of VLN because it involves instructions that are closer to those
encountered in real-world scenarios, such as “Go clean the mirror in the bathroom.”
Giving such coarse-grained instructions to the agent would bring more challenges to
the agent’s navigation than fine-grained instructions.

VLN Agents navigating in environments can benefit from seeking external assis-
tance [34]]. Early works tried to let agents seek help from oracles or simulators,
but the assistance content obtained was fixed and limited. Since this assistance informa-
tion is based on pre-built ground truth information in datasets or simulators, which are
not consistent with real-life scenarios. Inspired by the development of Large Language
Models (LLMs) with rich internalized world knowledge, many works have been made
to exploit their capabilities to aid navigation tasks. One recent method named MiC
makes the first step to use LLM in the coarse-grained VLN task of REVERIE, which
queries the LLM to generate more detailed instructions by prompting the LLM with
extra planning examples. The promising performance of MiC shows the great potential
to use LLM in coarse-grained VLN tasks. However, MiC has some weaknesses in ap-
plying LLM for VLN. First, the way the agent seeks help from the LLM is a passive
way that depends on the change of the room where the agent is located. This approach
may not help the agent when it faces difficulties in making predictions while still in the
same room. Second, MiC generates fine-grained planning no matter what challenges
the agent faces. This practice lacks a thorough analysis of the difficulties the agent may
have and fails to give the agent diverse guidance for different scenarios.

To address these issues, we propose a novel method named VLN-Copilot that makes
the LLM a competent copilot to assist the agent in navigation. As shown in Figure [I]
before making a movement, the agent calculates a confusion score to assess the level of



LLM as Copilot for Coarse-grained Vision-and-Language Navigation 3

uncertainty associated with its current action choice. If this score surpasses a predefined
threshold, it triggers the agent to seek guidance. This practice is more proactive than
relying on the change of scenes which may be wrong. When the agent decides to seek
assistance, it consults the LLM and then the LLM conducts a comprehensive evaluation
of the situation, identifies the type of guidance required, and generates the necessary
guidance to aid the agent in navigating effectively. The types of guidance information
are selected from the in-depth pre-analysis of prevailing challenges the agent may face
in the sampled environment using LLM.

We conduct experiments on the REVERIE and CVDN-target dataset and our model
surpasses the previous methods. Specifically, our VLN-Copilot obtains 42.32% on the
main navigation metric SPL and 26.55% on the main object grounding metric RGSPL
on the REVERIE dataset, and 4.47 in GP on the CVDN-target dataset, respectively.

In summary, our contributions are as follows:

— We propose a novel method named VLN-Copilot which utilizes LLM to analyze the
difficulties the agent may meet and give diverse guidance for different situations,
rather than to generate planning by prompting LLM with extra planning examples.

— We introduce the confusion score to help the agent proactively ask the LLM for help
when confused to make predictions rather than passively trigger conversations.

— We utilize LLM with elaborately designed prompts to conduct a detailed challenge
analysis of the agent’s different situations, enabling the LLM to provide better guid-
ance on the fly.

— Extensive experiments on two VLN benchmarks show the effectiveness of our pro-
posed method.

2 Related Work

2.1 Vision-and-Language Navigation

In recent years, Vision-and-Language Navigation (VLN) has attracted widespread at-
tention due to its promising applications in home assistant robots and related fields [9,
1211820128, /40]. Many different tasks have emerged in the field of VLN [4}/14]/16]
25,127,129,|37]]. In terms of the navigation space accessible to the agent, these cover
indoor [3,/16,/17]], outdoor [4135]], and aerial scenarios [8,25].

Early VLN task R2R [3] started from indoor environments requiring the agent to
reach the destination according to the given instructions, and there were some subse-
quent tasks (e.g., RxR [17] and VLN-CE [16])). These tasks all provide detailed natural
language instructions, such as “Walk down the stairs at the bottom of the stairs take a
left. Walk straight to get to the kitchen inside and wait just inside the door.” These de-
tailed instructions guide the agent through complex step-by-step processes and are more
focused on testing the agent’s ability to understand and follow instructions. Some other
tasks adopt an object-oriented perspective, such as REVERIE [29] and SOON [44].
These tasks require not only reaching a designated destination but also discovering spe-
cific target objects. Different from SOON providing detailed instructions and object
recognition prompts, such as “The cabinet is square, closed and wooden. The cabinet
is placed below the sink and the water-tap. There are some stools and table nearby.”,
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REVERIE's instructions appear more concise and natural, such as “Bring me the swivel
chair from the office.” These coarse-grained instructions, akin to instructions encoun-
tered in real-world scenarios, enhance the potential for innovative research within the
domain of coarse-grained instruction VLN. However, the task remains challenging due
to the limited information these instructions provide.

2.2 VLN Agents Asking for Help

Agents can gain advantages by seeking external assistance to assist navigation, and
there have been studies promoting navigation agents to seek help during navigation
tasks [27,34]. Thomason et al. [37|] introduce the Navigation from Dialog History
(NDH) task, which contains dialog history between agents and oracles during naviga-
tion. The agent follows guide instructions and asks questions to the oracle when needed.
The task provides a valuable resource for investigating the navigation interactions be-
tween agent and oracle. Similarly, HANNA [27]] builds a simulator where navigation
agents can request language-and-vision assistance when they face difficulties during
navigation. However, the agent’s signals asking for help are fixed and predefined in the
simulator. Additionally, the assistance provided is based on ground truth information
derived from the R2R dataset, which may not fully represent real-world navigation sce-
narios due to its reliance on pre-built datasets. Similarly, Zhu ez al. proposed SCoA [45]],
which enables navigation agents to ask questions from a set of pre-constructed can-
didate question-answer pairs to aid in navigation. Recently, LLM-Planner [36] and
MiC [31]] have attempted to leverage the knowledge of large language models (LLM)
to assist agents in navigation. Agents can query the LLM to generate detailed step-by-
step instructions to aid navigation. However, the ways the agents ask for help from both
methods are passive, either based on fixed time steps or when the room the agent is
in changes. This practice may miss the opportunity to help the agent when it has dif-
ficulties in prediction actions. Besides, these two methods concentrate on generating
planning by prompting LLM with extra planning data. Different from these methods,
we propose a method named VLN-Copilot that allows agents to proactively seek help
when they are not sure where to go in this work. Moreover, our VLN-Copilot pays
more attention to analyzing the difficulties the agent may meet and can dynamically
give appropriate types of guidance in diverse situations for the agent.

3 Method

3.1 Preliminaries

The main goal for the agent in the VLN task is to navigate to a specific destination fol-
lowing the high-level concise instructions. Specifically, the agent is asked to navigate in
the simulated environment, which can be described as an undirected graph G = {V, £},
where V represents the navigable nodes and £ represents the connectivity edges. Given
the natural language instruction L, the agent starts from the initial node Vj and per-
ceives a panoramic view R, of the current node V; to make the action a; at each time
step t. The panoramic view R has K single-view images r; and can be represented as
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Confusion
Score Query:

Tam confused to make a decision and need help.

Task: turn off the white table ...

Observation: I see candidate 1 is a white door leads ... I
see candidate 2 is a bathroom has a sink ...

History trajectory: I have passed a balcony with rocking
chairs, then I go to a hallway ...

O
Guidance:

Type : destination description

Information: The bedroom is a cozy and comfortable
space, typically with a queen-sized bed ... white linens
and fluffy pillows.

Observation

Instruction

Turn off the white table lamp
in the bedroom.

Fig.2: Overview of the VLN-Copilot. At each time step, the agent predicts the logits over the
candidate’s view of actions. After that, the agent will calculate the confusion score to decide
whether to ask LLM for help (Sec. [3.3). When the confusion score surpasses threshold 7, the
agent queries the LLM for help with the prompt that helps LLM perceive the environment (Sec.
[B4). Then the LLM generates useful guidance information, which will be returned to the agent
to assist in decision-making (Sec. @

R: = {ri}iK:l, of which 7r; is represented by an image feature vector with the corre-
sponding orientation feature vector. Besides, for the sub-task of object grounding, the
object features O, = {oi}f\il are extracted from the panoramic view R; with the an-
notated object bounding boxes or by object detectors. With these observations of the
environment, the agent takes a series of actions {ag, ...ay ) to navigate to the target
location, where each action a; selects one navigable node from the candidates. When
the target object is grounded or the pre-defined maximum navigation steps have been
achieved, the navigation ends.

3.2 Overview

As is shown in Figure 2] and Algorithm [T} given the coarse-grained instruction, the
agent first perceives the environment to obtain the current visual observation and starts
to predict a probability over candidate actions. Then, a confusion score is computed
according to the probability distribution, which determines whether the agent is con-
fused about making predictions in the current situation and whether the agent should
ask the LLM for help. If the confusion score exceeds a predefined threshold 7 (obtained
via grid search) which means the agent is confused about making decisions, the agent
initiates a conversation with the LLM to seek their help with an elaborately designed
prompt. Specifically, the prompt contains coarse-grained instruction, fine-grained scene
descriptions of candidate views, historical descriptions of trajectory scenes, and the re-
quirements for the LLM. Then, the LLM analyzes the agent’s situation and gives ad-
vice about which type of guidance information is useful as well as the details about that
guidance information. The types of guidance information are refined from the results of
challenge pre-analysis by LLM. Finally, the response about the guidance from the LLM
is appended after the coarse-grained instruction to guide the agent’s action prediction
collaboratively. This paradigm aims to optimize agents’ decision-making processes by
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combining instruction, observation, and LLM-based world knowledge via the conver-
sations between the agent and LLM.

Algorithm 1 VLN-Copilot

Notation Summary:

1I: high-level instruction

R: visual observation at timestep ¢

S confusion score at timestep ¢

W' fine-grained scene descriptions of all candidate views at timestep ¢
W™ historical trajectory description at timestep ¢

Tide: prompt template for LLM to generate guidance information
LLM: large language model

7: pre-defined treshold for confusion score

te—0 o Initial timestep
while ¢t <max-step and a; # “stop” do
if S; >= 7 then
Puide < Tuiae (I, W, W)
Rguigze < LLM(Pyige)
I™" « CONCAT (I, Ryuide)
4y «— Agent(I™, R;)
else
ar «— Agent(I,R¢)
end if
t—t+1
end while

3.3 When to Ask LLM for Help

Different from previous methods [31] that set fixed timestep for interactions with LLM
or trigger the interactions when the room scenes change, we select a more active practice
for the agent by using the confusion score to decide whether to ask for help. Specifically,
at each time step ¢, when the agent is going to predict the logits over the candidate nodes
for the next action a;, we calculate the entropy of the predicted probability distribution
over each candidate navigable node v; as the confusion score S;:

pe(v;) = Softmax(s;(v;)), €))
S¢ = — Zpt(vi) logy (pe(vi) +€), )

where s;(v;) is the predicted logits assigned by the agent to the i-th navigable node v;
at time step ¢, and € is a minimal number added to avoid numerical instability.

Then, if the computed confusion score .S; surpasses a predefined threshold 7, which
means the agent is confused about making a decision among some candidate nodes, it
will send a message to LLM asking for help.

3.4 How LLM Perceives the Environment

LLMs would give inaccurate advice for the agent’s navigation since they are not able to
directly acquire visual content from the environment. Both current visual observations
from the agent and previously observed scenes are essential for the LLM to analyze the
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navigation and supply important information. Thus, enhancing the LLM’s environmen-
tal awareness as far as possible is a critical first step to making it a competent copilot. To
solve this problem, we translate the dynamic observations and trajectories into multi-
grained spatiotemporal descriptions as the eye for the LLM, using the out-of-the-box
vision-and-language model of BLIP [[19] model. Detailedly, the visually-grounded de-
scription mainly consists of three parts: the coarse-grained scene description of the cur-
rent panoramic view R, the fine-grained scene description of each view r; of selected
candidate navigable nodes at the current time step ¢, and the trajectory description of
previously observed scenes before the current time step ¢.

Specifically, we obtain both the panoramic view image R of the agent’s observation
and the single view image r; of each candidate navigable node at the time step ¢t. We
first feed R; to the BLIP model to generate the coarse-grained scene description W&
for the agent’s current location. For the fine-grained scene description, the agent is
provided with k candidate views for selection. Then, we feed each single-view image
r; of the k selected candidate navigable nodes to BLIP to generate the fine-grained
scene description WtF i

W = BLIP(R;), 3)
W[l = BLIP(r;), 4)

Then we concatenate all previous coarse-grained scene descriptions W< of each
time step before the current time ¢ as the historical trajectory description W, such as
“I passed a bedroom, and then I passed ...". This process can be formulated as follows:

W] = CONCAT(WS,...,WE ), )

Note that we only generate the fine-grained scene descriptions and trajectory descrip-
tions when the agent is confused to make the action prediction and asks the LLM for
help, while we generate coarse-grained scene descriptions at each time step. In addition,
for better comprehension of LLM, we added the candidate view id ¢ as the prefix to each
corresponding native fine-grained scene description WtF ‘. For example, we converted
the generated scene description of “A room with a tilted ceiling, a bathroom mirror on
the wall, and a skylight above the window.” into the candidate view description with the
following format: “I see candidate O is a room with a tilted ceiling ..."

3.5 Difficulty and Useful Guidance-Type Pre-Analysis

Before asking the agent to query an LLM to generate guidance for assistance, it would
be beneficial to explore the difficulties the agent may encounter in making decisions
and what guidance information the LLM should provide to be useful for the agent’s
navigation. However, manual analysis by humans is costly and impractical. Thus, we
turn to LLM for analysis. Specifically, we first collect some navigation samples. When
the agent finds it difficult to make decisions during the navigation process, we convert
the situation the agent encountered into a text description and save it as a navigation
sample. Then, we use an elaborate prompt to query the LLM to analyze the situation
encountered by the agent in the current navigation example, such as what is the reason
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##H#System: You are a helpful assistant for navigation. There is an agent navigating indoors according to task instructions and current observation. At
each step, the agent needs to choose one of the candidate directions to go. | will tell you which direction is correct.

You need to first analyze the current situation, such as what difficulties the agent encountered during navigation that made it difficult to choose a
direction and what types of guidance information may be useful.

Task instruction: Turn off the white table lamp in the bedroom

Observation:

| see candidate 1 is a white door leads to a bedroom with a bed, electric fan and table

| see candidate 2 is a bathroom has a sink and the door leads to the shower room

| see candidate 3 is a hallway with white walls, stairs, and a door on the second floor

History trajectory: | have passed a balcony with rocking chairs and a table, then | go to a hallway with a picture of a bedroom.
Correct answer: candidate 1

#HtAssistant:
Difficulty: The agent encountered difficulties in choosing a direction because there are multiple doors at the same time. This makes it challenging for
the agent to determine which direction could find the lamp.

Please list possible type of guidance may be useful.

#iHtAssistant:
Guidance Type: The agent needs to the destination information to make an informed decision.

Fig. 3: Prompt template for LLM to pre-analyze the difficulties the agent encounters and what
type of guidance information maybe useful. The color of red, blue represent multi-turn responses
generated from LLM.

for the difficulty in making a decision, and the helpful types of guidance. Finally, we
collect the guidance information generated by LLM and cluster it to obtain the final
guidance categories.

Navigation Samples Collection We first let the agent navigate around the environ-
ment with confusion scores computed. If the confusion score surpasses the pre-defined
threshold at the time step ¢, which means the agent comes across difficulties in making
the action prediction, then we collect the tuple (I, W, W,I™ A;) of the high-level task
instruction I, fine-grained candidate scene descriptions W/, the trajectory description
WtTT and the ground-truth action A; as a sample data D g pie for analysis. Note that
W includes k fine-grained scene descriptions of the selected candidate views. In total,
we randomly collect 5,000 samples.

Propmt Design To make the LLM better analyze the situation that the agent meets,
we elaborately designed a prompt template for multi-turn query-and-response. We first
set the unified system prompt Py sep, that requires the LLM as a helpful assistant for
navigation. Then, we transform each sample data D, pi1e into sample prompt Pygpmpie
by respectively adding the prefix of “Task instruction:”, “Observation:”, “History
trajectory:” and “Correct answer:” into I, W', W™ and A;. Next, we decompose
the task of analyzing the challenge into two sub-tasks, the first of analyzing what dif-
ficulties the agent may meet in making decisions and the second of analyzing what
types of guidance may be useful for navigation in an iterative way. Correspondingly,
we use “###Assistant: Difficulty: ” and “###Assistant: Guidance Type:” as the sub-
task prompts Pg;¢r and Pyy;q.. We concatenate the prompts of Psystems Psampte and
Pyipy as Piask1 and feed Pygs1 to LLM, which will generate the response Fg; ¢ ¢ about
the difficulty the agent may meet. We further feed P.,s;2 to LLM, the concatenation

]
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s ~
###System: You are a helpful assistant for navigation. There is an agent navigating indoors according to task instructions and current observation. At
each step, the agent needs to choose one of the candidate directions to go.

You need to analyze what additional guidance information the agent need to make the choice. There are four types of information: location,
prioritization, destination description, previous observations. You can only give one answer from these types.

Task instruction: Turn off the white table lamp in the bedroom

Observation:

| see candidate 1 is a white door leads to a bedroom with a bed, electric fan and table

| see candidate 2 is a bathroom has a sink and the door leads to the shower room

| see candidate 3 is a hallway with white walls, stairs, and a door on the second floor

History trajectory: | have passed a balcony with rocking chairs and a table, then | go to a hallway with a picture of a bedroom.

#H#t#Assistant:
Guidance Type: Destination description

Please give description of the destination.
#HHiAssistant:

The bedroom is a cozy and comfortable space, typically with a queen-sized bed in the center of the room. The bed is dressed with crisp, white linens
and fluffy pillows.
L

Fig. 4: Prompt template for LLM to generate guidance information.

of Piask1, Raify and Pyyiqe and we will get the response R4 about what types of
guidance may be useful for navigation. The prompt template is depicted in Figure 3]

Guidance-Type Clustering After the above-mentioned operations, we obtain a col-
lection of the guidance response Rgy;q.. We first use Sentence-BERT [33]] to embed
each Ry.;q. and get the corresponding embedding Ey;q4.. Then we employ the sil-
houette coefficient [15]] to determine the optimal number of clusters for K-Means clus-
tering. The silhouette coefficient is an indicator to evaluate the quality of clustering.
It combines the two factors of clustering cohesion and separation, calculates a silhou-
ette coefficient value for each sample, and then calculates a silhouette coefficient value
through all samples. By calculating the average silhouette coefficient under different
cluster numbers k, the clustering quality under each cluster number can be evaluated.
In general, the number of clusters with the highest average silhouette coefficient is con-
sidered the optimal number of clusters because it provides the best balance of cohesion
and separation. And clustering result shows that the best number of clusters is seven.
In addition, after analysis based on the practical situation, we found that some of the
guidance content is similar, and some guidance is not executable, such as “Room Lay-
out", which cannot be obtained from the environment. Thus, we manually merge these
duplicate types, remove infeasible types, and finally reserve four applicable categories:

— Location: information about the agent’s current position and the destination.

— Prioritization: information about the urgent task that needs to be completed based
on an assessment of agent progress.

— Destination Description: detailed information about the target location, providing
more cues to reach its destination.

— Previous Observations: information about the agent’s navigation trajectory, lets
the agent remember history information.
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3.6 LLM Guides the Agent On-the-Fly

After the pre-analysis of the agent’s navigation, we employ the analysis result and a new
prompt to ask LLM to aid the agent on the fly when it is confused to make decisions.
We first illustrate the modification of the prompt for the on-the-fly guidance. Then, we
show how LLM guides the agent with different types of guidance information.

Prompt Design We also designed the prompt template to ask the LLM to analyze
the agent’s current situation and decide which guidance type from the selected four
categories might be useful in that situation. This prompt template is similar to the pre-
analysis prompt template, but with some modifications to guide agent navigation. The
full prompt template is shown in Figure [} First, we modify the system prompt Py, stem
by asking the LLM to choose which guidance information is useful from the four
pre-selected categories instead of analyzing the difficulties and generating unlimited
guidance information. Second, we delete the ground truth action in the sample prompt
Piampie. At last, the task prompt is revised to “###Assistant: Guidance Type:”.

Integrating Guidance with Instruction During the navigation of the agent, when the
confusion score S; surpasses the pre-defined threshold 7 at time step ¢, it will ask the
LLM for guidance. With the help of the above-mentioned prompts, the LLM can per-
ceive the environment and trajectory of the agent, analyze the situation, and select the
guidance type from the pre-selected four categories. For different types of guidance, the
LLM will generate different guidance information I to assist the navigation. Specif-
ically, the LLM will generate detailed content about the type of “Location”, “Prioriti-
zation” and “Destination Description” according to its internalized world knowledge.
For these three types of guidance, the generation process is also interactive, which first
generates the type of information and then generates the details according to the type
of information. Such a two-step process ensures the quality of generated guidance. For
the type of “Previous Observations”, we re-use the historical trajectory as the guidance
information. Some examples of generated guidance information can be found in Fig-
ure [7| Finally, we append the guidance information I to the high-level instruction 7,
and then the agent will navigate under the guidance of the integrated instruction I/"¢".

4 Experiment

4.1 Settings

Datasets We evaluate our method on two VLN tasks: REVERIE and CVDN-target,
which are all based upon the MP3D indoor environments. Compared to Room-to-Room
(R2R) task, these instructions are high-level and concise, such as “Bring me the swivel
chair from the office”. CVDN-target is our proposed VLN setup similar to REVERIE.
The instruction contains a target and conversation history. Here we remove the conver-
sation history and only keep the information containing the target as the instruction,
such as “To find a book in the room.”
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Table 1: Comparison with the state-of-the-art methods on REVERIE.

Val Unseen Test Unseen
Methods Navigation Grounding Navigation Grounding
TL OSRT SRT SPLT|RGST RGSPLf| TL OSR{ SRf SPLT|RGSf RGSPL{
Human | - - - - | - - |21.18 86.83 81.51 53.66|77.84 51.44
RecBERT [13] [16.78 35.02 30.67 24.90[18.77 15.27 [15.86 32.91 29.61 23.99]16.50 13.51
Airbert [1T] [18.71 34.51 27.89 21.88|18.23 14.18 |17.91 34.20 30.28 23.61|16.83 1328
HAMT [5]  |14.08 36.84 32.9530.20/18.92 17.28 |13.62 33.41 30.40 26.67|14.88 13.08
VLN-PETL [32](14.47 37.03 31.81 27.67|18.26 15.96 |14.00 36.06 30.83 26.73|15.13 13.03
LANA [39] |16.28 38.54 34.00 29.26|19.03 16.18 |16.75 36.41 33.50 26.89|17.53  14.25
HOP+ [30] |14.57 40.04 36.07 31.13{22.49 19.33 |15.17 35.81 33.82 28.24(20.20 16.86
DUET [7] |22.11 51.07 46.98 33.73|32.15 23.03 |21.30 56.91 52.51 36.06|31.88 22.06
Lily [22]  |21.87 53.71 48.11 34.43|32.15  23.43 |21.94 60.51 54.32 37.34(32.02 21.94
BEVBert 1] | - 5640 51.78 3637|3471 2444 | - 57.26 52.81 36.41|32.06 22.09
AutoVLN [6] | - 62.14 55.8940.8536.58 26.76 | - 6230 55.17 38.88(32.23 22.68
AZHP [[10] |22.32 53.65 48.31 36.63(34.00 2579 | - 5531 51.5735.85(3225 2244
BSG [24]  |24.71 58.05 52.12 35.59(35.36  24.24 |22.90 62.83 56.45 38.70(33.15 22.34
KERM [20] |21.85 55.21 50.44 35.38(34.51 24.45 |17.32 57.58 52.43 39.21|{3239 23.64
ScaleVLN[42] | - - 569741.84/3576 2605 | - - 56.1339.52(32.53 22.78
GRidMM [41] |23.20 57.48 51.37 36.47|34.57 2456 |19.97 59.55 53.13 36.60|34.87 2345
MIC [31]  |20.64 62.37 56.97 43.60{37.52 28.72 |18.11 62.40 55.74 41.97|3525 26.17
VLN-Copilot |21.89 62.62 57.40 43.63|38.88 29.75 |21.72 63.26 57.81 42.32|36.56  26.55

Evaluation Metrics We utilize the standard evaluation metrics to evaluate our method,
we report Success Rate (SR), Success weighted by Path Length (SPL) [2], and Goal
Progress (GP) as the main navigation metrics, Remote Grounding Success rate (RGS)
and RGS weighted by Path Length (RGSPL) as the main object grounding metrics.

Implementation Details We implement our proposed method using PyTorch. The
model is trained on one single NVIDIA RTX 4090 GPU. For REVERIE, we fine-
tuned the pre-trained model from [6] with a batch size of 4 for 100k iterations. For
the CVDN-target, we fine-tuned the pre-trained model from [7] with a batch size of
4 for 50k iterations. AdamW [26] optimizer is adopted and the learning rate is set to
1 x 1075, The threshold 7 is set as 1. For the baseline agent, we use the recent state-
of-the-art model of AutoVLN [6]]. When collecting data for pre-analysis, we use two
agents based on pre-trained AutoVLN [[6] and HAMT [5] to avoid agent bias. LLM is
integrated into the training process, we use the open-source Vicuna-7B-1.5 model [43]],
which is fine-tuned from Llama 2 [38]].

4.2 Comparison with State-of-the-Art Methods

REVERIE As shown in Table[I] our method achieves competitive performance on the
REVERIE benchmark compared to previous methods, such as AutoVLN [6], Mic [31]
and ScaleVLN [42]. Particularly, compared with the SOTA method MiC [31]], our method
outperforms MiC in terms of the object grounding metric RGSPL with 1.36% and
RGSPL with 1.03% on the Val Unseen split. It is worth noting that compared with
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Table 2: Comparison on CVDN-

Table 3: Ablati f LLM Anal :
target Validation Unseen. able 3 ation © nalyzer

Navigation Grounding
Methods TL GP{ Method TL OSR{ SR? SPL1 RGS{ RGSPL?
HAMTT [5] 37.04 2.74 No-Selection (Baseline)|21.96 57.82 52.77 40.15 34.76  26.37
DUET' 7] 78.53 3.70 All-Inclusive 20.70 59.76 55.50 41.36 36.47 27.33
AutoVLN' [6] 61.97 3.98 Random-Selection 20.15 58.02 53.79 42.16 35.30 27.08

- LLM-Selection (Ours) |21.89 62.62 57.40 43.63 38.88 29.75
VLN-Copilot 40.38 4.47

Table S: Ablation study of the guidance information.
Table 4: Ablation of different

threshold 7. Navieati -
Method avigation Grounding
TL OSRf SR? SPLT RGSt RGSPL?
T 08 1 12 14 Baseline 21.96 57.82 52.77 40.15 34.76 26.37
+ Location 20.97 6220 56.80 42.97 37.74 28.46
SPLT 4278 43.63 43.68 42.55 + Prioritization 20.48 59.47 54.70 41.74 35.86 27.40

RGSPLT 28.35 29.75 28.17 28.42 + Destination Description|19.21 59.59 53.99 41.91 34.99 27.11
+ Previous Observations |19.22 57.96 53.73 42.83 35.64 27.12

ScaleVLN [42]], which collects 4.9M instruction-trajectory pairs to train the model, our
method still achieves better performance (2.8% on SPL and 3.77% on RGSPL).

CVDN-target As shown in Table[2] we compare VLN-Copilot with three main-stream
VLN models HAMT [5]], DUET [[7], and AutoVLN [6] on the CVDN-target dataset. For
a fair comparison, both models are trained on the CVDN-target dataset. T represents the
reproduction results of these methods. It highlights the effectiveness of VLN-Copilot,
especially in terms of GP metrics, where it outperforms all other methods. Although
TL is slightly higher than HAMT, its significantly improved GP emphasizes its overall
advantage in handling unseen validation data.

4.3 Ablation Study

Effect of LLM Analyzer To evaluate the ability of LLM for guidance type selec-
tion, we conduct an ablation study, there are four settings, as follows: (1) No-Selection:
our baseline, which means the agent does not use any guidance information; (2) All-
Inclusive: the agent lets the LLM generate all types of guidance and integrates this infor-
mation; (3) Random-Selection: the agent randomly selects one of four guidance types
and lets the LLM generate corresponding guidance information; (4) LLM-Selection:
our method, the LLM outputs guidance type and generates the information. As illus-
trated in Table[3] we can see that the LLM-Selection method achieved the highest nav-
igation main metric spl with a value of 43.63%, followed by the Random-Selection
method with a score of 42.16%. This suggests that blindly combining all types of guid-
ance information is not the best option, probably due to the redundancy of excessively
detailed information. Compared to the Baseline, the LLM-Selection method improves
the SR by 4.63%, SPL by 3.48%, RGS by 4.12%, and 3.38%.

Different Threshold of Confusion Score As shown in Table[d, we conduct an ablation
study on threshold 7 in the confusion score. Although when 7 = 1, SPL is slightly lower
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Fig. 5: Confusion Score Fig. 6: Learning Curve

than 7 = 1.2, while RGSPL reaches a higher value, so considering the two indicators
of SPL and RGSPL, we set 7 to 1.

Effect of Guidance To validate the effect of different types of guidance information,
we conducted an ablation study that only adds one type of information. As shown in Ta-
ble[5] adding each type of the four categories of guidance information contributes to per-
formance improvement. As shown in Line 1, adding location information contributes
mostly, which shows that letting the agent know its own location and target location
is of great help. As shown in Line 4, adding previous observations information, the
agent’s SPL increased significantly (2.681), but the SR increased slightly (0.961). This
may be attributed to the agent’s ability to reference historical trajectories, thereby gain-
ing a better understanding of the navigation environment. This, in turn, helps to avoid
redundant observations and improve navigation efficiency. Destination Description and
Previous Observations reduce TL from 21.96 to 19.21 and 19.22, which shows such
two guidance can help the agent reach the destination faster.

Trends of Confusion Score We plot the agent’s cumulative confusion score at each
time step every 5k training iterations. As shown in Figure [5] the trend of confusion
score is decreasing, especially in the model using VLN-Copilot, the curve is steeper,
illustrating that our model could reduce the agent’s confusion degree in navigation.

Learning Curves We compared the learning curves between methods with and without
VLN-Copilot during training. As shown in Figure[6} our VLN-Copilot converges faster
than the model without Copilot and can achieve better performance (i.e. higher SPL
value) in fewer iterations.

4.4 Qualitative Results

We present some examples to see the qualitative results of the LLM-generated guidance.
As shown in Figure [/} for the example on the left, LLM selects “Destination Descrip-
tion” as the guidance type. Since the guidance information contains a description of
the destination and matches candidate direction 2, it is easier to select the answer. For
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REVERIE Instruction: REVERIE Instruction:
Go to the office on level 1 and pick up the phone. Go to the kitchen and wipe the middle counter top.
Direction Candidates: Direction Candidates:
m Z -
k |
Candidate 1 Candidate 2 Candidate 1 Candidate 2 Candidate 3

A hallway with a A home office with You reached the A large refrigerator A kitchen with a

staircase and a a desk, chair, and destination. in a kitchen of a stove top oven

door to another pictures on the wall home under a hood
Confusion Score: 1.01 Confusion Score: 1.13
Guidance Type by LLM: Guidance Type by LLM:
Destination Description Location
Guidance Information by LLM: Guidance Information by LLM:
The destination is office. It is typically a building or a room with a Your current location is a large kitchen with wooden cabinets and
desk, chair, and other office equipment appliances.

The destination is the kitchen.

Fig. 7: Examples of the LLM-generated Guidance.

the example on the right, since Candidate 2 and Candidate 3 are both in the kitchen,
and the task is to go to the kitchen, it looks like each candidate is similar, making the
choice difficult. While LLM predicts that the guidance type is “location” and provides
the agent’s current location and destination, we find that the agent has reached the target
location and therefore should stop rather than select a direction to go. More results can
be found in supplementary material.

5 Limitations and Future Work

In this work, we utilize Large Language Models (LLMs) to analyze the navigation
environment by transforming the dynamic environment into textual descriptions. This
practice may be sub-optimal for environmental perception. Our future work will focus
on how to effectively apply Multimodal Large Language Models (MLLMs) such as
LLaVA [23] and Video-LLaVA [21]] to perceive the navigation environment and provide
guidance information.

6 Conclusion

In this work, we propose a method named VLN-Copilot that enables the agent to proac-
tively ask for help and lets the LLM act as a co-pilot to assist the agent in completing the
coarse-grained VLN task. We first introduce a confusion score calculation mechanism
that allows the agent to actively query the LLM when it feels uncertain about the di-
rection of choice. Then, we use LLM to analyze the challenges faced by the agent, and
then generate appropriate guidance information for different situations that the agent
is in. We conduct extensive experiments on two coarse-grained VLN tasks, including
quantitative and qualitative experiments, demonstrating our method’s effectiveness.
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