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In this supplementary document, we present additional details on our algo-
rithm, datasets, and results. We also encourage readers to visit our website for
reference: https://turb-research.github.io/segment_with_turb.

1 Threshold δseed in Region-growing Scheme

Recall that in our region-growing scheme, we use the following criteria to deter-
mine whether or not to include a pixel in the growth:

|Mt(pnew)−Mt(pseed)| < δseed, (1)

where Mt is the motion featrue map; pnew is the pixel under consideration; pseed

is the seed pixel that we grow from; and δseed is the threshold for stopping the
growth.

Although we mentioned δseed = 0.2 × Mt(pseed) in Section 3.2 of the main
paper, this threshold is in fact dependent on turbulence strength and needs to be
adjusted for extreme cases. δseed = 0.2×Mt(pseed) is used for normal turbulence
strength. For stronger turbulence that causes severe distortions, we prefer larger
δseed and increase the multiplier from 0.2 to 0.3. For scenes with weak turbulence,
we decrease the multiplier to 0.1. In our experiments, we use δseed = 0.2 ×
Mt(pseed) for “normal turbulence” scenes; and δseed = 0.3×Mt(pseed) for “severe
turbulence” scenes.

2 Dataset Details

We have tested our methods on two datasets: a real long-range video dataset
(referred to as “dynamic object segmentation in turbulence” dataset or DOST)
and a synthetic dataset simulated by introducing the turbulence effect to an
existing segmentation dataset.

https://turb-research.github.io/segment_with_turb
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Fig. 1: Example scenes from our real dataset (DOST). We show frames from two types
of scenes, categorized based on turbulence strength: normal turbulence and severe
turbulence.

Real Dataset (DOST): DOST has 38 high-definition videos with a reso-
lution 1920×1080, captured using a Nikon Coolpix P1000 camera with telelens.
Scenes recorded in the videos are in the range of 50 meters to 1 kilometer from
the camera. Our scenes contain a variety of subjects, including people, cars, air-
planes, bikes, etc., and various everyday movements and interactions, such as
walking, running, driving, etc.

For each video, we save individual frames as images in PNG format. In DOST,
the number of frames per video ranges from 24 to 56. Fig. 1 shows example
frames from different videos under varied turbulence strengths, i.e., “normal” and
“severe”. We manually annotate per-frame masks for moving objects in each video
using the latest online segmentation tools, i.e., Computer Vision Annotation
Tool (CVAT) [1]. Our masks are binary with 1 indicating moving objects and 0
indicating static background. It is important to note that our dataset is the first
turbulent video dataset with motion segmentation masks. Furthermore, DOST is
not only designed for benchmarking the motion segmentation tasks, but also can
potentially benefit other tasks, including turbulence restoration, object detection
and tracking etc.
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Synthetic Dataset: We also generated a set of synthetic turbulence videos
for more comprehensive evaluations. We take videos and ground truth segmenta-
tion masks from the DAVIS 2016 dataset [5] and use a physics-based turbulence
simulator P2S [4] to add turbulence to DAVIS video frames. By controlling
the ratio between the telescope aperture diameter (D) and the atmospheric
coherence diameter (r0) used in the simulator, our synthetic set provides a com-
prehensive range of imaging conditions and turbulence intensities, ensuring a
robust assessment of the object segmentation performance across different en-
vironments. Fig. 2 shows examples of simulated turbulent video frames of two
different strengths.

Fig. 2: Sample frames from our synthetic dataset simulated with a physics-based tur-
bulence simulator, showing two different turbulence strengths.

3 Additional DOST Results

In this section, we present additional qualitative comparisons using videos from
our DOST dataset. Based on the analysis detailed in our paper, TMO [2] emerges
as the most effective method for segmenting moving objects in videos affected
by atmospheric turbulence. Therefore, here, we mainly show comparison results
with TMO.

Fig. 3 presents segmentation results of consecutive frames from two videos in
the “normal turbulence” category. We can see that our segmentation results have
better accuracy and robustness than TMO. In “Video 1”, our method accurately
segments the walking person, whereas TMO’s segmentation includes the static
board in the front. This is because their algorithm uses more appearance cues
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Fig. 3: Additional visual comparison results on DOST dataset (normal turbulence). In
video 2, although TMO can segment the moving person, its mask is not tight to the
object (e.g., the arms).

Fig. 4: Additional visual comparison results on DOST dataset (severe turbulence).
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and is less dependent on motion. In “Video 2”, although TMO can segment the
moving woman, its mask is not tight to the object. In contrast, our method well
discerns details of the moving object, such as the person’s arms.

Fig. 4 shows segmentation results of consecutive frames from two videos in the
“severe turbulence” category. We can see that TMO’s performance downgrades
significantly in both examples. It even fails to generate segmentation masks for
“Video 4”. In contrast, our method still outputs accurate segmentation masks
under severe turbulence distortions. This demonstrates the robustness of our
method.

Moreover, Fig. 5 presents additional results from SAM [3]. SAM, which fo-
cuses on segmenting all semantic objects, solves a different problem compared to
our approach that targets only moving objects. SAM requires user annotation or
prompting to initialize the algorithm, which contrasts with our automated seg-
mentation of moving objects. While SAM demonstrates significant challenges in
segmenting whole objects under strong turbulence, it performs fairly accurately
in semantic segmentation under weak to medium turbulence. These qualitative
comparisons highlight the limitations of SAM in the presence of strong turbu-
lence. However, it remains future work to investigate the potential of SAM for
semantic segmentation in turbulent environments.

Fig. 5: Qualitative and quantitative comparisons against SAM. Considering that SAM
can generate multiple masks, we select the mask with the maximum IoU to represent
SAM’s performance.

4 Additional Synthetic Results

Fig. 6 shows visual comparison results for synthetic videos with two different
turbulence strengths (turb strength: D/r0 = 2.5 and 5.0). Note that this exam-
ple is very challenging as the moving car has similar color to the background.
Although the accuracy of both TMO and our method downgrades in the severe
case, our segmentation has been better consistency than TMO.

5 Additional Ablation Results

Here we show qualitative results for ablation on our method’s variants. Recall
that we test on three variants: A only employs the region-growing algorithm
(with Refine-Net excluded); B uses both region-growing and Refine-Net but ex-
cludes the grouping loss for refinement; and C is implemented as our full ap-
proach. The segmentation results on a car scene are shown in Fig. 7.
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Fig. 6: Visual comparison results on synthetic data with different turbulence strengths.

The segmentation results directly obtained from the seeded region grow-
ing may be inconsistent and incomplete (see model A results). Introducing the
Refine-Net enhances the mask consistency across all frames (see model B re-
sults). Finally, adding the grouping function in network optimization further
improves the spatial consistency of masks (see model C results).

The main paper showed ablation studies for region growing and the refine-
ment network. In Table 1, we also evaluated the effectiveness of our optical flow
stabilization and geometric consistency check.

Table 1: Ablation studies

Metric [c]w/o optical flow stab. & geo. check [c] w/o geo. check [c]Ours

J 0.354 0.685 0.703
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Fig. 7: Qualitative comparison results on variants of our method (C is our full model).
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