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Abstract. Recently, learning-based Hyperspectral image (HSI) recon-
struction methods have demonstrated promising performance. However,
existing learning-based methods still face two issues. 1) They rarely
consider both the spatial sparsity and inter-spectral similarity priors
of HSI. 2) They treat all image regions equally, ignoring that texture-
rich and edge regions are more difficult to reconstruct than smooth re-
gions. To address these issues, we propose an uncertainty-driven HSI
reconstruction method termed Specformer. Specifically, we first intro-
duce a frequency-wise self-attention (FWSA) module, and combine it
with a spatial-wise local-window self-attention (LWSA) module in par-
allel to form a Spatial-Frequency (SF) block. LWSA can guide the net-
work to focus on the regions with dense spectral information, and FWSA
can capture the inter-spectral similarity. Parallel design helps the net-
work to model cross-window connections, and expand its receptive fields
while maintaining linear complexity. We use SF-block as the main build-
ing block in a multi-scale U-shape network to form our Specformer. In
addition, we introduce an uncertainty-driven loss function, which can
reinforce the network’s attention to the challenging regions with rich
textures and edges. Experiments on simulated and real HSI datasets
show that our Specformer outperforms state-of-the-art methods with
lower computational and memory costs. The code is available at https:
//github.com/bianlab/Specformer.

Keywords: Hyperspectral Imaging · Spatial-Frequency Transformer ·
Uncertainty-Driven Learning

1 Introduction

Compared with RGB images, hyperspectral images (HSI) have more spectral
bands, which makes them able to store richer spectral information and delineate
more detailed characteristics of the target scene. Benefiting from this property,
HSIs have been widely used in multiple computer vision tasks, such as object
detection [22, 40], remote sensing [1, 33] and medical image processing [31, 36].
Conventional hyperspectral imaging systems scan the scene along the spatial
or spectral dimension to obtain the HSI cubes. This scanning strategy is time-
consuming, making it unsuitable for capturing and measuring dynamic scenes.
Compared with traditional push-broom scanning spectral imaging techniques,
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Fig. 1: PSNR-Params-FLOPs and SSIM-Params-FLOPs comparisons with exsiting
HSI reconstruction methods. The circle radius represents the parameter numbers of
the model. The reported Specformer technique outperforms state-of-the-art methods
while requiring fewer FLOPs and Params.

snapshot compressive imaging (SCI) technology only requires one time of expo-
sure to obtain a complete HSI cube. These SCI systems compress both spatial
and spectral information into a single 2D measurement [52], and then use algo-
rithms to reconstruct an HSI data cube [6, 13, 30, 47, 48]. The Coded Aperture
Snapshot Spectral Imaging (CASSI) [47] technique stands out as a representative
SCI technique.

In recent years, researchers have proposed multiple reconstruction algorithms
to reconstruct 3D HSI cubes from 2D measurements. Traditional model-based
methods use handcrafted priors such as sparsity [23, 27, 47], total variability
[49, 51], and non-local similarity [28, 50, 53] to guide the reconstruction process.
However, these methods rely on manually tuned parameters and often require
different parameters for different scenes, which leads to poor generality and slow
reconstruction speed. Compared to model-based methods, CNN-based HSI re-
construction methods [20,34,35,37,38] do not require manual parameter tuning,
and produce improvements on generalization performance and reconstruction
speed. However, CNN-based methods show limitations in capturing non-local
self-similarity and long-range dependencies of HSI, which results in unsatisfac-
tory HSI reconstruction quality.

Recently, Transformer [46] has shown promising performance in image pro-
cessing. The self-attention mechanism in Transformer can model long-range de-
pendencies and non-local similarities. These advantages offer the possibility to
address the shortcomings of CNN-based methods. Based on the Transformer
technique, researchers have reported performance-leading HSI reconstruction
methods such as MST [3], CST [2], DAUHST [4], and PADUT [25]. However,
the existing Transformer-based methods still face the following issues. First,
in the global attention Transformer, the computational complexity is quadratic
to the spatial size. This burden is non-trivial and sometimes unaffordable. The
local-window self-attention (LWSA) [29] module can effectively reduce compu-
tational complexity, but the receptive field of LWSA module is quite limited.
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Second, Transformer-based methods often ignore the spatial sparsity of HSI.
These methods intensively collect all tokens and calculate global self-attention,
causing a lot of computing resources wasting in areas with sparse spectral in-
formation. Third, the original Transformer method [12] learns to capture the
long-range dependencies spatially, but the representations of HSIs are spectrally
highly self-similar. In this case, the inter-spectral similarities are not well mod-
eled.

To address these issues, we propose an uncertainty-driven HSI reconstruc-
tion method termed Specformer. Specifically, inspired by the spatial sparsity
and inter-spectral similarity nature of HSIs, we first introduce frequency-wise
self-attention (FWSA), a conceptually simple but computationally efficient ar-
chitecture. It consists of the fast Fourier transform (FFT) [39], the learnable
global filter, and the inverse fast Fourier transform (IFFT) [45]. FWSA module
can calculate self-attention along the spectral dimension with linear complexity,
modeling the inter-spectral long-distance dependencies and capturing the inter-
spectral similarity of HSI. Next, we use a parallel design to combine it with
the spatial-wise LWSA module to form a basic block termed spatial-frequency
(SF) block. LWSA module can model the spatial sparsity and guide the network
to focus on the spatial regions with dense spectral information. Parallel design
helps the SF-block to model cross-window connections, and expand its receptive
field while maintaining linear complexity. We insert the SF-block as the main
building block in a U-shape architecture [44] to form our Specformer. In addi-
tion, considering that texture-rich and edge regions in HSIs are more difficult
to reconstruct, we introduce an uncertainty-driven self-adaptive loss function
to reinforce the network’s attention on those regions, thus improving the HSI
reconstruction quality. The contribution of this paper is summarised as follows,

– We propose a novel Specformer technique for HSI reconstruction. To the best
of our knowledge, it is the first attempt to embed both the spatial sparsity
and inter-spectral similarity of HSIs into learning-based reconstruction.

– We introduce a novel self-attention module termed FWSA, and combine it
with the LWSA module in a parallel design to form an SF-block. It can
model the spatial sparsity and inter-spectral similarity of HSIs.

– We introduce an uncertainty-driven self-adaptive loss to enhance the HSI
reconstruction quality in texture-rich and edge regions.

– Our Specformer outperforms state-of-the-art methods in both quantitative
evaluation and visual comparison, with lower computational and memory
costs.

2 Related work

2.1 HSI Reconstruction

Traditional model-based methods [23, 27, 47, 49, 51] recover 3D HSI cubes from
2D measurements based on hand-crafted priors. For example, Ref. [15] solved
the sparse HSI reconstruction problem using the gradient projection algorithm
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based on the spatial sparse prior of HSI. In Ref. [51], the nonlocal self-similarity
and low-rank properties of HSIs have been exploited to solve HSI reconstruction
problems. These model-based methods rely on hand-crafted parameters, and are
difficult to adapt to different scenes, leading to poor generalization ability and
slow recovery speed.

Compared with model-based methods, CNN-based methods show improve-
ments in generalization performance and reconstruction speed. The CNN-based
techniques can be categorized into end-to-end (E2E) methods, deep unfolding
methods, and plag-and-paly (PnP) methods. The E2E methods [16, 35, 38] aim
to learn a mapping function from 2D measurements to 3D HSI cubes. The deep
unfolding methods [11, 20, 32, 34] employ multi-stage CNNs trained to map the
measurements into the desired signal. Each stage contains two parts, i,e , linear
projection and passing the signal through a CNN functioning as a denoiser. The
PnP methods [7, 43] insert the pre-trained CNN denoiser into a model-based
optimization framework for HSI reconstruction. Despite of the developments,
CNN-based methods still have limitations in capturing long-distance dependen-
cies and modeling non-local similarities.

Recently, the Global Vision Transformer has achieved great success in im-
age classification [12]. However, for the dense image processing tasks such as
HSI reconstruction, the computational complexity of the Transformer technique
is quadratic with the image size, making it unable to be directly applied for
HSI reconstruction. Moreover, the existing Transformer-based methods [5, 19]
generally ignore the spatial sparsity of HSI, and intensively collect all tokens
and calculate global self-attention, causing a lot of computing resources waste
in the areas with sparse spectral information. The MST [3] method circumvents
the computational complexity and spatial sparsity problems by calculating self-
attention in the spectral domain, but this makes it unable to effectively model
spatial-wise local and non-local features. The CST [2] technique embeds the
HSI spatial sparsity into the learning process through a coarse-to-fine learning
scheme, which effectively reduces the computational complexity of the Trans-
former, but ignores the inter-spectral similarity.

2.2 Uncertainty-driven Loss

For the HSI reconstruction task, texture-rich and edge regions are more difficult
to reconstruct compared to smooth regions, and the reconstruction quality of
these regions is decisive for the final reconstruction quality. In previous HSI
reconstruction methods [2, 3, 5], researchers tend to improve the reconstruction
quality by designing deeper, larger, and more complex networks, where all pixels
are still treated equally. However, treating each pixel equally during the training
process is not the optimal choice for the HSI reconstruction task. Intuitively, we
need a spatially self-adaptive loss function.

Recently, the uncertainty loss function [8,17,21] has attracted certain atten-
tion. The uncertainty in deep learning can be roughly divided into two cate-
gories [10]. Epistemic/model uncertainty describes how much the model is un-
certain about its predictions. Another type is aleatoric/data uncertainty which
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refers to noise inherent in observation data. The GRAM [24] technique analyses
the effect of aleatoric/data uncertainty on image reconstruction. By decreasing
the loss attenuation of large variance pixels, GRAM achieves better results than
directly applying the above uncertainty loss to image enhancement. In these
tasks, pixels with a high degree of uncertainty are considered unreliable pixels
that will suffer loss attenuation. However, this contradicts the intuition that
the regions with rich textures and edges should be given priority in the HSI
reconstruction task. In this regard, different from the above methods, we pro-
pose a novel uncertainty-driven spatially self-adaptive loss function, which can
assign larger training weights to the texture-rich and edge regions of HSI, thus
improving the HSI reconstruction performance.

2.3 CASSI Model

CASSI [47] is a mature and widely used spectral imaging technology. All exper-
iments in this paper are based on CASSI. Figure 2(c) shows the principle of a
single-dispenser CASSI. We denote the 3D HSI cube as F ∈ RH×W×Nλ , where
H, W , and Nλ refer to the HSI’s height, width, and number of wavelengths, re-
spectively. F is first collected by the objective lens and spatially encoded along
the channel dimension by a coded aperture M∗ ∈ RH×W , which is denoted as

F′ (:, :, nλ) = F (:, :, nλ)⊙ M∗. (1)

Among them, F′ represents the signal modulated by the coded aperture, nλ ∈
[1, . . . , Nλ] represents different spectral wavelengths, and ⊙ represents element-
wise multiplication. The F′ passes through the disperser and becomes tilted,
which can be considered as sheared along the y-axis. Assuming λc is the reference
wavelength, then the dispersion can be formulated as

F′′ (u, v, nλ) = F′ (x, y + d (λn − λc) , nλ) , (2)

where F′′ ∈ RH×(W+d(Nλ−1))×Nλ is the signal after dispersion, d refers to the
step of spatial shifting, (u, v) locates the coordinate on the sensing detector, λn

represents the wavelength of the nλ-th channel, and d(λn − λc) refers to the
spatial shifting offset of the nλ-th channel on F′′. Eventually, the data cube is
compressed into a 2D measurement Y ∈ RH×(W+d(Nλ−1)) by integrating all the
channels as

Y =

Nλ∑
nλ=1

F′′(:, :, nλ) +G, (3)

where G ∈ RH×(W+d(Nλ−1)) represents the random noise during the imaging
process. The core task of HSI reconstruction is to recover the 3D HSI cube F
from the 2D measurement Y.
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Fig. 2: (a) The overall structure of Specformer. (b) Detailed structure of the Spatial-
Frequency (SF) block. We use a parallel design to combine the local-window self-
attention (LWSA) module with the frequency-wise self-attention (FWSA) module to
form the SF-block. LWSA can guide the network to focus on the regions with dense
spectral information. FWSA can capture the inter-spectral similarity. It consists of the
fast Fourier transform (FFT) [39], the learnable global filter K and the inverse fast
Fourier transform (IFFT) [45]. Parallel design helps the specformer to model cross-
window connections, and enlarge the receptive fields while maintaining linear complex-
ity. (c) A schematic diagram of the CASSI model.

3 Method

3.1 Overall Reconstruction Architecture

The overall architecture of the reported Specformer technique is shown in Fig.
2(a), which consists of an encoder and a decoder built based on the SF-block.
First, we reverse the dispersion process and shift back the measurement to obtain
the initialized signal H ∈ RH×W×Nλ as

H (x, y, nλ) = Y(x, y − d(λn − λc)). (4)

Next, we send H into Specformer. In Specformer, the input feature H is
first processed by the conv-steam layer to convert the number of channels into
C (we set C to be 32 in this work), and then obtain the preprocessing feature
X0 ∈ RH×W×C . Then, X0 is fed into the Specformer’s encoder. There are four
scales of encoding modules in the encoder, each of which contains several SF-
blocks and a downsampling layer. Consequently, the output feature of the i-th
stage of the encoder is denoted as Xe

i ∈ R
H

2i
∗W

2i
∗2iC . Except for being input to the

next encoding module, the output of the i-th encoding module is directly input
to the decoding module with the same scale through residual connections. The
decoder also contains four scales of decoding modules, each of which contains
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several SF-blocks and an upsampling layer. Similarly, the output of the i-th stage
of the decoder is denoted as Xd

i ∈ R
H

2i
∗W

2i
∗2iC . The final output features of the

decoder are fed into a 1×1 convolutional layer to convert the number of channels
into Nλ, and the final reconstruction result is H′ ∈ RH∗W∗Nλ .

3.2 Spatial-Frequency (SF) block

The detailed SF-block structure is shown in Fig. 2(b). Assuming that the inputs
of SF-block are feature maps Xin ∈ R

H

2i
∗W

2i
∗2iC at different scales. To be specific,

for an input feature map Xin, it is first passed through a 1× 1 convolution and
split evenly into two feature maps X1 and X2 as

X1,X2 = Split(Conv1× 1(Xin)). (5)

Next, X1 is fed into the LWSA module for further processing. In the LWSA mod-
ule, the feature map X1 is linearly mapped to generate a one-dimensional fea-
ture sequence S1 ∈ R2iC∗ di(d = HW

22i ), which is then multiplied by the learnable
weight matrices WQ ∈ R2iC∗ di , WK ∈ R2iC∗ di , and WV ∈ R2iC∗ di(d = HW

22i )
to generate Q, K and V, respectively, after layer normalization. The above cal-
culation process is denoted as

Q = S1WQ;K = S1WK ;V = S1WV . (6)

After obtaining Q, K and V, we implement the following calculation based on
the self-attentive mechanism as

Y
′

1 = SoftMax(IN(
QTK
2
√
2iC

))V, (7)

where IN represents the instance normalization. The 1D feature sequence Y
′

1 is
then resized into 2D features Y1 ∈ R

H

2i
∗W

2i
∗2iC using feature remapping.

Similarly, X2 is sent to the FWSA module. As shown in Fig. 2(b), in the
FWSA module, we propose to use a global learnable filter K as an alternative
to the self-attention mechanism to interchange information globally among the
Fourier domain tokens. For the input feature X2, we first perform layer normal-
ization (LN), and then use 2D FFT [26] to convert X2 to the Fourier domain as

XF = F(LN(X2)), (8)

where F(·) denotes the 2D FFT operation. The output feature XF represents
the Fourier spectrum of X2. We can then modulate the spectrum by multiplying
a filter K ∈ R

H

2i
∗W

2i
∗2iC to XF as

YF = K⊙XF, (9)

where ⊙ is element-wise multiplication. The filter K is called the global filter
since it has the same dimension as XF, which represents a learnable frequency
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filter for different hidden dimensions [42]. Finally, we adopt the inverse FFT
(IFFT) operation [45] to transform the modulated spectrum YF back to the
spatial domain and update the tokens as

Y2 = F−1(YF), (10)

where F−1(·) denotes the 2D IFFT.
Before concatenating, Y1 and Y2 need to be processed by a feed-forward

layer respectively, which consists of an LN layer and an MLP layer [46]. Finally,
Y1 and Y2 are concatenated as the input of a 1 × 1 convolution which has a
residual connection with the input Xin. As such, the final output of SF-block is
given by

Xout = Conv1× 1(Concat(Y1,Y2)) +Xin. (11)

3.3 Uncertainty-Driven Loss

To reinforce the network’s attention on the texture-rich and edge regions, as
shown in Fig. 3, we divide the training of the network into two stages. In the
first stage, the network estimates both the HSI cube and the uncertainty map.
In the second stage, the uncertainty values are used to generate a spatially
adaptive loss to guide the network to prioritize the pixels in the regions with
rich textures and edges. To better quantify the arbitrary uncertainty in HSI
reconstruction, as shown in Fig. 3, we use xi,yi to denote the measurement and
the corresponding ground truth, respectively. Let f(.) denote an arbitrary HSI
reconstruction network, and the aleatoric uncertainty is denoted by an additive
term θi. The overall HSI reconstruction model can be formulated as

yi = f(xi) + εθi, (12)

where ε represents the Laplace distribution with zero-mean and unit-variance.
For a given input measurement xi and corresponding HSI yi, a Laplace

distribution is assumed for characterizing the likelihood function as

p (yi,θi | xi) =
1

2θi
exp

(
−
∥yi − f (xi)∥1

θi

)
, (13)

where f(xi) denotes the reconstruction results, and θi denotes the uncertainty
(variance) which are learned by the network. Then, the log-likelihood can be
formulated as

ln p (yi,θi | xi) = −
∥yi − f (xi)∥1

θi
− lnθi − ln 2. (14)

For numerical stability, we train the Specformer network to estimate the
uncertainty variance si = ln(θi) as shown in Fig. 3. Finally, the maximum
likelihood estimate of Eq. 14 can be reformulated as minimizing the following
loss function to estimate the uncertainty in the reconstruction process

LossU =
1

N

N∑
i=1

exp (−si) ∥yi − f (xi)∥1 + si. (15)
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Fig. 3: The overview of the two-stage training strategy. The uncertainty estimation θ
serves as the bridge connecting two steps, i.e., it is the output of the first stage, and is
passed to the second stage as the guidance required for calculating LossUDL.

The loss function LossU includes two terms. The first term is associated with
reconstruction fidelity, and the second one prevents the network from predicting
infinite uncertainty for all pixels. Based on the spatial sparsity nature of HSI
and its uncertainty map, we propose to impose Jeffrey’s prior [14] p(w) ∝ 1

w on
uncertainty θi as

p(yi,θi|xi) = p(yi|xi,θi)p(θi) ∝
1

2θi
2 exp(−||yi − f(xi)||1

θi
). (16)

Then the log likelihood and loss function LossSU (SU represents sparse uncer-
tainty) can be separately formulated as

ln p (yi | xi) = −
∥yi − f (xi)∥1

θi
− 2 lnθi − ln 2, (17)

LossSU =
1

N

N∑
i=1

exp (−si) ∥yi − f (xi)∥1 + 2si. (18)

The above shows the loss function of the first training stage. When the LossSU

converges, the trained Specformer network can be used to estimate the recon-
struction uncertainty. Then, we construct a monotonically increasing function
ŝi = ln(1 + esi) to prioritize the uncertainty values, and then use the ranked
uncertainty as spatially adaptive weight to multiply with the HSI reconstruction
loss function in the second stage as

LossUDL =
1

N

N∑
i=1

ŝl (LossL1
+LossSSIM ) , (19)

where LossL1 and LossSSIM denote the Mean Absolute Error (MAE) loss and
Structure Similarity Index Measure (SSIM) loss [18], respectively. In LossUDL,
the texture and edge pixels with higher uncertainty tend to have greater weights
than smooth regions.
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4 Experiments

4.1 Experiment Setup

Datasets. For simulation comparison, we employed the CAVE [41] and the
KAIST [9] dataset. The CAVE dataset consists of 32 HSIs with a spatial size of
512×512 pixels. The KAIST dataset contains 30 HSIs of spatial size 2704×3376.
Following the settings of DGSMP [20], 28 wavelengths from 450nm to 650nm
were derived by spectral interpolation. The CAVE dataset was adopted as the
training set, while 10 scenes from the KAIST dataset were selected for testing.
For the real data experiment, five real HSIs collected in TSA-Net [35] were
used for evaluation. Each testing sample has 28 channels, with a spatial size of
660×660 pixels.

Implementation Details. We implemented Specformer on ubuntu20 using
the PyTorch framework, and trained it using the Adam optimization algorithm
on NVIDIA RTX3090. During training, the batchsize was set to 4, and the
Specformer was trained for a total of 600 epochs with a learning rate of 0.0001
(400 epochs for state 1, 200 epochs for stage 2). When conducting simulation
comparison, patches at a spatial size of 256×256 cropped from the 3D cubes
were fed into the networks. As for real HSI reconstruction, the patch size was
set to 660×660 to match the real-world measurements. The shifting step d in
dispersion is set to 2 pixels. Consequently, the measurement size was 256×310
and 660×714 for simulation and real data experiment, respectively.

λ-Net DGSMP MST CST Ours GT

RGB Image Measurement

476.5nm

504.0nm

584.5nm

625.0nm

RDLUFGAP-TVSpectral Density Curves HDNet

Fig. 4: Simulation reconstruction comparison of an exemplar Scene 7 with 4 out of 28
spectral channels. The results of 7 SOTA algorithms and our Specformer are presented.
The spectral curves (bottom-left) correspond to the marked regions of the green box
on the RGB image.

4.2 Quantitative Results

We compared the HSI reconstruction performance of our Specformer with other
11 SOTA methods, including 2 model-based methods (GAP-TV [34], and DeSCI
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Table 1: Quantitative reconstruction comparison on 10 scenes. We adopt PSNR and
SSIM [18] as the metrics to evaluate the HSI reconstruction performance. The best
results were marked in bold.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

GAP-TV [34]
26.82
0.754

22.89
0.610

26.31
0.802

30.65
0.852

23.64
0.703

21.85
0.663

23.76
0.688

21.98
0.655

22.63
0.682

23.10
0.584

24.36
0.669

DeSCI [28]
27.13
0.748

23.04
0.620

26.62
0.818

34.96
0.897

23.94
0.706

22.38
0.683

24.45
0.743

22.03
0.673

24.56
0.732

23.59
0.587

25.27
0.721

λ-net [38]
30.10
0.849

28.49
0.805

27.73
0.870

37.01
0.934

26.19
0.817

28.64
0.853

26.47
0.806

26.09
0.831

27.50
0.826

27.13
0.816

28.53
0.841

TSA-Net [35]
32.03
0.892

31.00
0.858

32.25
0.915

39.19
0.953

29.39
0.884

31.44
0.908

30.32
0.878

29.35
0.888

30.01
0.890

29.59
0.874

31.46
0.894

DGSMP [20]
33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

HDNet [19]
35.14
0.935

35.67
0.940

36.03
0.943

42.30
0.969

32.69
0.946

34.46
0.952

33.67
0.926

32.48
0.941

34.89
0.942

32.38
0.937

34.97
0.943

MST [3]
35.40
0.941

35.87
0.944

36.51
0.953

42.27
0.973

32.77
0.947

34.80
0.955

33.66
0.925

32.67
0.948

35.39
0.949

32.50
0.941

35.18
0.948

CST [2]
35.96
0.949

36.85
0.955

38.16
0.962

42.44
0.975

33.25
0.955

35.72
0.963

34.86
0.944

34.34
0.961

36.51
0.957

33.09
0.945

36.12
0.957

DAUHST [5]
37.25
0.958

39.02
0.967

41.05
0.971

46.15
0.983

35.80
0.969

37.08
0.970

37.57
0.963

35.10
0.966

40.02
0.970

34.59
0.956

38.36
0.967

PADUT [25]
37.36
0.962

40.43
0.978

42.38
0.979

46.62
0.990

36.26
0.974

37.27
0.974

37.83
0.966

35.33
0.974

40.86
0.978

34.55
0.963

38.89
0.974

RDLUF [11]
37.94
0.966

40.95
0.977

43.25
0.979

47.83
0.990

37.11
0.976

37.47
0.975

38.58
0.969

35.50
0.970

41.83
0.978

35.23
0.962

39.57
0.974

Specformer
38.82
0.973

41.93
0.982

43.98
0.983

47.77
0.989

38.78
0.983

38.61
0.982

39.91
0.977

36.72
0.982

42.82
0.985

36.73
0.969

40.61
0.981

[28]), 3 CNN-based methods (λ-net [38], TSA-Net [35], and DGSMP [20]), and 6
recent Transformer-based methods (HDNet [19], MST [3], CST [2], DAUHST [5],
PADUT [25] and RDLUF [11]). All the techniques were trained using the same
datasets and evaluated under the same settings as DGSMP [20]. The quantitative
reconstruction results on the 10 scenes of the KAIST dataset are presented in
Tab. 1. Compared to DGSMP [20], MST [3], CST [2], DAUHST [5], and RDLUF
[11], the reported Specformer method achieved PSNR improvements of 7.98 dB,
5.43dB, 4.49dB, 2.25dB and 1.04dB on average, respectively. Additionally, the
reported method requires lower memory and computational costs as shown in
Fig. 1. This demonstrates the effectiveness of simultaneously embedding the
spatial sparsity and inter-spectral similarity of HSI into the learning process.
It also validates that the parallel design can help the SF-block to model cross-
window connections, and enlarge the receptive fields while maintaining linear
complexity.
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4.3 Qualitative Results

Simulation HSI Reconstruction. Figure 4 shows the visualized HSI recon-
struction results of 7 SOTA methods and our Specformer technique. From the
reconstructed HSIs and the zoom-in patches of the selected yellow boxes, we
can see that the reconstruction performance of previous methods in texture-rich
regions and edge regions is unsatisfactory. They either produce overly smooth re-
sults, sacrificing fine-grained structural content and textural detail, or introduce
undesirable color artifacts and speckled textures. In contrast, our Specformer
can accurately reconstruct the details of texture-rich regions and edge regions,
as well as preserve the spatial smoothness of the homogeneous regions. This
is because the uncertainty-driven self-adoptive loss can reinforce the network’s
attention on the regions with rich textures and edges, thus improving the HSI
reconstruction quality of these regions. In addition, we plot the spectral density
curves (bottom-left) corresponding to the picked region of the green box in the
RGB image (top-left). The highest correlation and coincidence between our curve
and the ground truth demonstrate the spectral-wise consistency restoration ef-
fectiveness of our Specformer. This is because FWSA can accurately model the
spectral-wise long-distance dependencies and capture the inter-spectral similar-
ities.

Real HSI Reconstruction. We further applied the approaches to real HSI
reconstruction. Similar to DGSMP [20], we retrained all the networks on all
scenes of CAVE [41] and KAIST [9] datasets. The reconstruction results on
real measurements are presented in Fig. 5, from which we can see that compared
with existing methods, our Specformer technique produced higher reconstruction
quality in texture-rich and edge regions. Meanwhile, Specformer also produced
better performance in suppressing noise.

Ours

504.0nm

476.5nm

584.5nm

RGB Image

Measurements

487.0nm

504.0nm

GAP-TV λ-Net DGSMP MST CST

Wd8，11，6，22

RDLUFHDNet

Fig. 5: Real reconstruction comparison of an exemplar Scene 1 with 4 out of 28 spectral
channels. The results of 7 SOTA algorithms and our Specformer are presented. Please
zoom in for a better view.
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5 Ablation Study

To validate the effectiveness of each component in the Specformer network, we
conducted a series of ablation studies on the CAVE [41] and KAIST [9] datasets.
We consider several factors including the FWSA and LWSA modules in the SF-
block, and the uncertainty-driven loss (UDL) function. The comparison results
are presented in Tab. 2. The baseline (BL) model is derived by removing SF-
block and UDL from Specformer. The “Serial” and “Parallel” represent combining
the LWSA and FWSA modules using serial and parallel design, respectively.

Effectiveness of SF-Blcok. From Tab. 2, we can see that the absence of any
component in the SF-block will result in performance degradation, which demon-
strates the effectiveness of each component in the SF-block and the effectiveness
of their combination. Moreover, the reconstruction performance of “BL+FWSA”
is better than that of “BL+LWSA”. This is because spectral representations are
spatially sparse and spectrally highly self-similar. Hence, capturing spatial inter-
actions may be less effective than modeling inter-spectra dependencies. However,
only using FWSA cannot model the spatial sparsity, which is why the recon-
struction performance of “BL+FWSA” is not as good as “BL+LWSA+FWSA”.
Furthermore, we can see that using a parallel design to combine FWSA and
LWSA modules results in better reconstruction performance than using a se-
rial design. Moreover, the computational and memory costs of parallel design
(2.48M, 39.85G) are also lower than that of serial design (2.82M, 46.73G). This
is because parallel design helps the SF-block to model cross-window connections,
enlarges the receptive fields while maintaining linear complexity, and enables the
complementary fusion of frequency-wise and spatial-wise features.

Table 2: Break-down ablation study. The models of different combinations were
trained on the CAVE dataset and tested on the KAIST dataset. The first row is the
baseline model.

BL LWSA FWSA Serial Parallel UDL PSNR SSIM Params GFLOPs
✓ 31.08 0.874 1.42M 14.87
✓ ✓ 33.34 0.927 1.89M 23.14
✓ ✓ 35.97 0.958 1.67M 19.79
✓ ✓ ✓ ✓ 37.58 0.966 2.82M 46.73
✓ ✓ ✓ ✓ 39.82 0.978 2.48M 39.85
✓ ✓ ✓ ✓ ✓ 40.61 0.981 2.48M 39.85

Effectiveness of UDL. We further investigated the contribution of the
UDL function. The visualization results in Fig. 6 demonstrate the UDL’s ability
to enhance the reconstruction quality in texture-rich and edge regions. From
Tab. 2, we can also see that by enhancing the HSI reconstruction quality for
the regions with rich textures and edges, the PSNR and SSIM of Specformer’s
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Attention Map
0.0

0.25

0.5

0.75

1.0

Ground TruthStep2Step1(W/O UDL)

Fig. 6: Ablation study of the UDL. Step1 represents the HSI reconstructed by the
Specformer that has not been trained by LossUDL, and step2 represents the HSI re-
constructed by the specformer that has been trained by LossUDL.

reconstruction results are increased. Moreover, we can see from Tab. 2 that the
improvements achieved by UDL do not bring any additional memory (Params)
and computational (GFLops) costs during testing. This is because the two-stage
training strategy of UDL does not change the structure of the final model, but
only increases the training time by about 30%. However, owing to the low mem-
ory and computational costs of Specformer, we can still complete training within
6 hours on a single RTX 3090 GPU.

6 Conclusion

In this work, we explored how to simultaneously embed the spatial sparsity and
inter-spectral similarity nature of HSI into the learning-based reconstruction pro-
cess. To this end, we proposed a novel uncertainty-driven method, termed Spec-
former, for HSI reconstruction. Specifically, we first introduced FWSA module,
and used a parallel design to combine it with an LWSA module to form an SF-
block. LWSA can guide the network to focus on the image regions with dense
spectral information. FWSA can model the inter-spectral similarity. Parallel
design helps the SF-block to model cross-window connections, and enlarge its
receptive fields while maintaining linear complexity. We inserted the SF-block as
the main building block in a U-shape encoder-decoder architecture to form Spec-
former. In addition, considering that texture-rich and edge regions in HSI are
more difficult to reconstruct than smooth regions, we designed an uncertainty-
driven self-adaptive loss function, which assigns greater priority to the regions
with rich textures and edges during training, thus improving the reconstruc-
tion quality of these regions. Extensive quantitative and qualitative experiments
demonstrate that the reported Specformer technique outperforms other SOTA
methods with lower computational and memory costs.



Specformer 15

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(Nos. 62322502, 61827901, 62131003), the Guangdong Province Key Laboratory
of Intelligent Detection in Complex Environment of Aerospace, Land and Sea
(2022KSYS016), and the Guangdong Cross domain Intelligent Detection and
Information Processing Innovation Team (2023KCXT044).

References

1. Borengasser, M., Hungate, W.S., Watkins, R.: Hyperspectral remote sensing: prin-
ciples and applications. CRC press (2007)

2. Cai, Y., Lin, J., Hu, X., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Gool,
L.V.: Coarse-to-fine sparse transformer for hyperspectral image reconstruction. In:
ECCV (2022)

3. Cai, Y., Lin, J., Hu, X., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Gool, L.V.:
Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruc-
tion. In: CVPR (2022)

4. Cai, Y., Lin, J., Wang, H., Yuan, X., Ding, H., Zhang, Y., Timofte, R., Gool,
L.V.: Degradation-aware unfolding half-shuffle transformer for spectral compressive
imaging. NIPS 35, 37749–37761 (2022)

5. Cai, Y., Lin, J., Wang, H., Yuan, X., Ding, H., Zhang, Y., Timofte, R., Gool,
L.V.: Degradation-aware unfolding half-shuffle transformer for spectral compressive
imaging. In: NIPS (2022)

6. Cao, X., Yue, T., Lin, X., Lin, S., Yuan, X., Dai, Q., Carin, L., Brady, D.J.:
Computational snapshot multispectral cameras: Toward dynamic capture of the
spectral world. IEEE Signal Process. Mag. 33(5), 95–108 (2016)

7. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play admm for image restoration:
Fixed-point convergence and applications. IEEE T COMPUT IMAG 3(1), 84–98
(2016)

8. Chang, J., Lan, Z., Cheng, C., Wei, Y.: Data uncertainty learning in face recogni-
tion. In: CVPR. pp. 5710–5719 (2020)

9. Choi, I., Kim, M., Gutierrez, D., Jeon, D., Nam, G.: High-quality hyperspectral
reconstruction using a spectral prior. Tech. rep. (2017)

10. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? does it matter? Struc-
tural safety 31(2), 105–112 (2009)

11. Dong, Y., Gao, D., Qiu, T., Li, Y., Yang, M., Shi, G.: Residual degradation learning
unfolding framework with mixing priors across spectral and spatial for compressive
spectral imaging. In: CVPR. pp. 22262–22271 (2023)

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

13. Du, H., Tong, X., Cao, X., Lin, S.: A prism-based system for multispectral video
acquisition. In: ICCV. pp. 175–182. IEEE (2009)

14. Figueiredo, M.: Adaptive sparseness using jeffreys prior. Advances in neural infor-
mation processing systems 14 (2001)



16 Lintao Peng et al.

15. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse re-
construction: Application to compressed sensing and other inverse problems. IEEE
J-STSP 1(4), 586–597 (2007)

16. Fu, Y., Zhang, T., Wang, L., Huang, H.: Coded hyperspectral image reconstruction
using deep external and internal learning. IEEE TPAMI 44(7), 3404–3420 (2021)

17. Gu, Y., Jin, Z., Chiu, S.C.: Active learning combining uncertainty and diversity
for multi-class image classification. IET Computer Vision 9(3), 400–407 (2015)

18. Horé, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: ICPR. pp. 2366–2369
(2010). https://doi.org/10.1109/ICPR.2010.579

19. Hu, X., Cai, Y., Lin, J., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Gool, L.V.:
Hdnet: High-resolution dual-domain learning for spectral compressive imaging. In:
CVPR (2022)

20. Huang, T., Dong, W., Yuan, X., Wu, J., Shi, G.: Deep gaussian scale mixture prior
for spectral compressive imaging. In: CVPR. pp. 16216–16225 (2021)

21. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? NIPS 30 (2017)

22. Kim, M.H., Harvey, T.A., Kittle, D.S., Rushmeier, H., Dorsey, J., Prum, R.O.,
Brady, D.J.: 3d imaging spectroscopy for measuring hyperspectral patterns on
solid objects. TOG 31(4), 1–11 (2012)

23. Kittle, D., Choi, K., Wagadarikar, A., Brady, D.J.: Multiframe image estimation
for coded aperture snapshot spectral imagers. Applied optics 49(36), 6824–6833
(2010)

24. Lee, C., Chung, K.S.: Gram: Gradient rescaling attention model for data uncer-
tainty estimation in single image super resolution. In: ICMLA. pp. 8–13. IEEE
(2019)

25. Li, M., fu, Y., Liu, J., Zhang, Y.: Pixel adaptive deep unfolding transformer for
hyperspectral image reconstruction. In: ICCV (2023)

26. Li, S., Xue, K., Zhu, B., Ding, C., Gao, X., Wei, D., Wan, T.: Falcon: A fourier
transform based approach for fast and secure convolutional neural network predic-
tions. In: CVPR. pp. 8705–8714 (2020)

27. Lin, X., Liu, Y., Wu, J., Dai, Q.: Spatial-spectral encoded compressive hyperspec-
tral imaging. ACM Transactions on Graphics (TOG) 33(6), 1–11 (2014)

28. Liu, Y., Yuan, X., Suo, J., Brady, D.J., Dai, Q.: Rank minimization for snapshot
compressive imaging. IEEE TPAMI 41(12), 2990–3006 (2018)

29. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: ICCV. pp.
10012–10022 (2021)

30. Llull, P., Liao, X., Yuan, X., Yang, J., Kittle, D., Carin, L., Sapiro, G., Brady, D.J.:
Coded aperture compressive temporal imaging. Optics express 21(9), 10526–10545
(2013)

31. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J BIOMED OPT 19(1),
010901–010901 (2014)

32. Ma, J., Liu, X.Y., Shou, Z., Yuan, X.: Deep tensor admm-net for snapshot com-
pressive imaging. In: ICCV. pp. 10223–10232 (2019)

33. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images
with support vector machines. IEEE Trans Geosci Remote Sens 42(8), 1778–1790
(2004)

34. Meng, Z., Jalali, S., Yuan, X.: Gap-net for snapshot compressive imaging. arXiv
preprint arXiv:2012.08364 (2020)

35. Meng, Z., Ma, J., Yuan, X.: End-to-end low cost compressive spectral imaging with
spatial-spectral self-attention. In: ECCV. pp. 187–204. Springer (2020)

https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/ICPR.2010.579


Specformer 17

36. Meng, Z., Qiao, M., Ma, J., Yu, Z., Xu, K., Yuan, X.: Snapshot multispectral
endomicroscopy. Optics Letters 45(14), 3897–3900 (2020)

37. Meng, Z., Yu, Z., Xu, K., Yuan, X.: Self-supervised neural networks for spectral
snapshot compressive imaging. In: ICCV. pp. 2622–2631 (2021)

38. Miao, X., Yuan, X., Pu, Y., Athitsos, V.: l-net: Reconstruct hyperspectral images
from a snapshot measurement. In: ICCV. pp. 4059–4069 (2019)

39. Nussbaumer, H.J., Nussbaumer, H.J.: The fast Fourier transform. Springer (1982)
40. Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral

images. IEEE TPAMI 25(12), 1552–1560 (2003)
41. Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using

multiplexed illumination. In: ICCV. pp. 1–8. IEEE (2007)
42. Pitas, I.: Digital image processing algorithms and applications. John Wiley & Sons

(2000)
43. Qiao, M., Liu, X., Yuan, X.: Snapshot spatial–temporal compressive imaging. Op-

tics letters 45(7), 1659–1662 (2020)
44. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-

ical image segmentation. In: MICCAI. pp. 234–241. Springer (2015)
45. Vaibhav, V.: Fast inverse nonlinear fourier transform. Physical Review E 98(1),

013304 (2018)
46. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,

Ł., Polosukhin, I.: Attention is all you need. NIPS 30 (2017)
47. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded

aperture snapshot spectral imaging. Applied optics 47(10), B44–B51 (2008)
48. Wagadarikar, A.A., Pitsianis, N.P., Sun, X., Brady, D.J.: Video rate spectral imag-

ing using a coded aperture snapshot spectral imager. Optics express 17(8), 6368–
6388 (2009)

49. Wang, L., Xiong, Z., Gao, D., Shi, G., Wu, F.: Dual-camera design for coded
aperture snapshot spectral imaging. Applied optics 54(4), 848–858 (2015)

50. Wang, L., Xiong, Z., Shi, G., Wu, F., Zeng, W.: Adaptive nonlocal sparse represen-
tation for dual-camera compressive hyperspectral imaging. IEEE TPAMI 39(10),
2104–2111 (2016)

51. Yuan, X.: Generalized alternating projection based total variation minimization
for compressive sensing. In: ICIP. pp. 2539–2543. IEEE (2016)

52. Yuan, X., Brady, D.J., Katsaggelos, A.K.: Snapshot compressive imaging: Theory,
algorithms, and applications. IEEE Signal Process. Mag. 38(2), 65–88 (2021)

53. Zhang, S., Wang, L., Fu, Y., Zhong, X., Huang, H.: Computational hyperspectral
imaging based on dimension-discriminative low-rank tensor recovery. In: ICCV.
pp. 10183–10192 (2019)


	Uncertainty-Driven Spectral Compressive Imaging with Spatial-Frequency Transformer

