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The supplementary document provides remaining system details (§A,§B,§C) and
additional experimental results (§D) as mentioned in the main paper. Please also
refer to the video results at our project page https://map-tracker.github.io,
demonstrating the local and global reconstructions in the video format with the
input perspective image streams.

⋄ §A: Remaining details of MapTracker, including 1) The transformation loss
for PropMLP; 2) The query propagation module; and 3) The strided memory
selection mechanism.

⋄ §B: Remaining details/analyses of our consistent vector HD mapping bench-
marks, including details on 1) consistent ground truth generation; 2) the
track extraction algorithm for detection-based baseline approaches; and 3)
the consistency-aware mAP (C-mAP).

⋄ §C: Details of our online merging algorithm that generates the global vector
HD maps from per-frame reconstructions.

⋄ §D: Additional experimental results and analyses, including 1) The C-mAP
results of all methods using the track extraction algorithm with different look-
back parameters; 2) Check the temporal consistency of MapTR’s ground truth
data using our consistent-aware benchmarks; and 3) Additional qualitative re-
sults.

A Remaining Details of MapTracker

This section explains the remaining details of MapTracker (refer §3 of the main
paper).

A.1 Transformation loss details

The transformation loss Ltrans trains the PropMLP to ensure the latent trans-
formation maintains the geometry and class type. The inputs and outputs of
the PropMLP are described in §3.3, Figure 2, and Figure 3 of the main paper.
For the propagated vector latents M∗

VEC(t − 1) from t − 1 to t, we apply the
vector output heads to get the predictions Y∗(t−1). We then derive the ground
truth Ŷ∗(t − 1) by directly applying the transformation matrix to the ground
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truth Ŷ(t− 1). Since we have the optimal bipartite match ω(t− 1) of t− 1, the
transformation loss is defined by

Ltrans = Lfocal({ĉ∗i (t− 1)}|ω(t−1), {p∗i (t− 1)})
+ Lline({V̂ ∗

i (t− 1)}|ω(t), {V ∗
i (t− 1)}),

where Ŷ∗(t− 1) = {V̂ ∗
i (t− 1), ĉ∗i (t− 1)} and Y∗(t− 1) = {V ∗

i (t− 1), p∗i (t− 1)}.

A.2 Memory fusion details

§3.2 and §3.3 of the main paper have explained our BEV and vector memory
fusion. We provide more implementation details here.
Strided memory selection. We present the concrete implementation steps
of our strided memory selection in the following. Firstly, we sort all memory
entries based on the distance to the current location. Then, we select one closest
memory entry for each stride value, starting from the farthest stride (i.e., 15m).
If the memory buffer contains less than four history latents, we simply take all.
Vector fusion layer. For the per-instance cross-attention of the vector fusion
layer, we compute the absolute value of the relative frame difference from the
history to the current frame, encode it with the sin/cos positional encoding,
and use the encoding as the position encoding for the key and values of the
cross-attention.

B Remaining Details of Benchmark Contributions

This section presents thorough details of our consistent vector HD mapping
benchmarks, complementing §4 of the main paper.

B.1 Consistent ground truth

We review the typical problems of the two existing ground-truth data and demon-
strate the improved quality of our consistent ground truth.
Pedestrain-crossing (nuScenes and Argoverse2). Figure 1 shows typical
failure cases in MapTR [2] and StreamMapNet’s [4] ground truth (GT) for the
pedestrian crossing class. The examples are from the nuScenes dataset, where
the raw annotations are many small polygon pieces. A merging algorithm must
merge the pieces to get a correct global polygon for each pedestrian crossing
instance. MapTR’s merging algorithm merges all small polygons with overlaps
in a brute-force way, making some polygons merge and split when crossing the
perception boundary and introducing temporal inconsistency. StreamMapNet’s
merging algorithm considers the orientation of each polygon piece to avoid merg-
ing orthogonal pedestrian crossings, thus achieving better temporal consistency.
However, the algorithm sometimes fails to handle noisy small pieces near the
perception boundary. We borrow the merging algorithm from StreamMapNet
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Fig. 1: Typical examples of problematic pedestrian crossing annotations in existing
ground truth for nuScenes. (Top) MapTR’s ground truth merges or splits nearby pedes-
trian crossings at the perception boundary, leading to temporal inconsistencies. (Bot-
tom) StreamMapNet’s ground truth does not have the above merge/split issue but
sometimes fails to fuse small polygons (from raw annotations) into a global one.

and impose more geometric constraints as conditions when merging the polygon
pieces, resulting in almost perfect temporal consistency.

In Argoverse2, the raw annotations of each pedestrian crossing are two line
segments, making the ground truth processing easier. However, MapTR and
StreamMapNet’s processing codes sometimes produce open-loop curves at the
perception boundary. We fix their codes to always produce closed polygon loops.
Divider (Argoverse2). Figure 2 shows the failure cases of the lane divider
class in MapTR and StreamMapNet’s ground truth. The examples are from Ar-
goverse2, where the raw annotations are many short divider segments, and a
merging algorithm should merge the segments belonging to the same divider
instance. MapTR employs a graph-tracing algorithm to connect the line seg-
ments, where each segment is a node, and segments of the same instance are
connected by tracing from a root to the leaf. However, some annotations are
corrupted with incomplete graph information, making the graph tracing algo-
rithm fail completely and miss entire dividers. For StreamMapNet, owing to its
unstable threshold-based rules to connect divider segments, it sometimes fails to
produce correct long dividers, leading to temporal inconsistency.

To obtain better ground truth, we first fix the graph-tracing algorithm to
avoid missing entire dividers. To handle the noisy/corrupted graph information
from the annotations, we then borrow the threshold-based rules from StreamMap-
Net to further connect the dividers produced by the graph tracing algorithm.

B.2 Track extraction algorithm

We show details of the track extraction algorithm in Algorithm 1. This algo-
rithm forms tracks for 1) our consistent ground truth to generate the temporal
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Fig. 2: Typical failure cases in MapTR and StreamMapNet’s ground truth dividers
on Argoverse2. (Top) MapTR’s ground truth fails to properly merge short divider
segments into a global one, and the entire dividers can even be missing due to the
failure of its graph tracing algorithm. (Bottom) StreamMapNet’s ground-truth dividers
suffer from temporal inconsistency (split and merge constantly as the car goes).

alignments and 2) the baseline methods to form tracks from per-frame recon-
structions. The algorithm has a “look-back” hyper-parameter N , specifying how
many previous frames to check when determining the temporal correspondence
(i.e., assigning a global ID to an element in the current frame). Larger look-
back parameters better tolerate missing reconstructions by re-identification but
greatly slow down the entire vector HD mapping pipeline.

The ground-truth track formation uses N = 1 (See §4.1 of the main paper).
In the main paper, the baselines use N = 1 to have similar real-time inference
speeds for fair evaluations. A large N improves the C-mAP metric for all the
methods but is computationally expensive due to the per-instance rasterization
and the bipartite matching. For example, the track extraction algorithm alone
is almost 4 times more expensive than the MapTRv2 baseline (with ResNet50)
when N = 5. As reference, this appendix (§D.1) provides additional results when
N = 3 or N = 5.
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Algorithm 1 Track Generation Algorithm
1: Input: Sequence of predicted vectors {V (t), t = 1, ..., T}, Sequence of predicted

scores {p(t), t = 1, ..., T}, filter threshold τ = 0.4, look-back frame number N
2: Output: {MID(t), t = 1, ...T}, MID(t) records the global id of positive predictions

in V (t)
3: for t = 1 : T do
4: Init MID(t) as an empty mapping
5: Obtain a subset of positive vectors V ′(t) = {Vj(t) ∈ V (t), pj(t) > τ}
6: if t = 0 then
7: Assign a new global id to each v′j(t), update MID(t)
8: continue
9: end if

10: for k = 1 : N do
11: Transform V ′(t−k) to the current frame, V ′

t (t−k)= Affine(V ′(t−k), P t
t−k)

12: Do bipartite matching between V ′(t) with V ′
t (t− k) using the IoU between

rasterized masks, store the optimal bipartite matching as Brec(k)
13: end for
14: for k = 1 : N do
15: for v′j(t) in V ′(t)
16: if v′j(t) doesn’t have a global id in MID(t), and v′j(t) in Brec(k) then
17: Get the global id of v′j(t)’s matched instance in MID(t− k),
18: Assign this id to v′j(t), update MID(t)
19: end if
20: end for
21: end for
22: for v′j(t) in V ′(t)
23: if v′j(t) doesn’t have a global id in MID(t) then
24: Assign a new global id to v′j(t), update MID(t)
25: end if
26: end for
27: end for

B.3 Consistent-aware mAP

Algorithm 2 presents the algorithmic details for computing our Consistent-aware
mAP (C-mAP). Note that the algorithm computes the C-mAP of one distance
threshold, while the actual evaluation metrics compute the results of three dis-
tances and take the average. The consistency check is at the line 11 of the
algorithm. The definition of the C-mAP metric does not include the track ex-
traction algorithm and does not introduce extra hyperparameters. An ideal vec-
tor HD mapping method should explicitly predict tracks of reconstruction like
MapTracker, instead of relying on an external algorithm for track formation.

The conventional distance-based mAP (reported in the main paper) consid-
ers all predictions, including those with low confidence scores, when computing
the area under curve to get per-class average precision (AP). However, since
the tracks are only defined for positive predictions (negative predictions do not
have a “global ID”), the computation of C-mAP excludes negative predictions.
Therefore, the value of C-mAP can never reach the conventional mAP, even
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Algorithm 2 Consist-aware mAP

1: Input: Predicted vectors V , GT vectors V̂ , Predicted Global ID I, GT Global ID
Î, Predicted scores P , a Chamfer distance threshold σ (e.g ., 0.5m)

2: Output: The C-mAP on the test set
3: for each sequence in the test set do
4: Brec records the matching between predictions and GT across the sequence
5: for each timestep t do
6: Obtain the optimal bipartite matching between V (t) and V̂ (t), denoted as

I(t)→ Î(t), and sort V (t) in descending order based on P (t)
7: for vj(t) in V (t)
8: if vj(t) has a matched GT vector with Chamfer distance ≤ σ then
9: Define Îj as the global ID of the GT vector that matches vj(t)

10: if Îj has existed in Brec then
11: if its matched prediction ID is not Ij // Consistency check
12: Consider vj(t) as FP (False Positive)
13: else
14: Consider vj(t) as TP (True Positive)
15: end if
16: else
17: Consider vj(t) as TP (True Positive), and update Brec

18: end if
19: else
20: Consider vj(t) as FP
21: end if
22: Record the TP/FP for vj(t), along with its score pj(t)
23: end for
24: Get TP, FP, and scores for V (t)
25: end for
26: Get TP, FP, and scores for the entire sequence
27: end for
28: Sort TP and FP of all sequences with the scores in descending order to calculate

the AP, get the consistency-aware AP (C-AP).
29: The C-mAP is the average C-AP across all classes

with perfectly predicted temporal correspondences. To set up an upper bound
for C-mAP when all consistency checks are passed, §D.1 reports the results of
“C-mAP”, which computes C-mAP by ignoring the consistency checks.

C Details of Online Merging Algorithm

Algorithm 3 presents the high-level pseudo-code for our online merging algo-
rithm, which merges per-frame reconstructions into a global vector HD map.
Note that our merging algorithm is simple and not perfect, and may occasion-
ally fail to accurately merge the per-frame data. However, the main goal of
implementing this merging algorithm is to investigate and analyze the consis-
tency of per-frame reconstructions. More advanced algorithms can be designed
and implemented if we need high-quality merged global maps.
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Algorithm 3 Online Merging Algorithm
1: Input: Predicted set Y (t) for each timestep t;
2: Dictionary D[I] records the merged vectors, I represents the global ID of the pre-

dicted vectors
3: for each timestep t do
4: for each pair (Vi, ci) in Y (t) do
5: Ii ← Global ID of Vi

6: if Ii is not in D then
7: D[Ii] = Vi

8: continue
9: else

10: if ci == Pedestrian Crossing then
11: D[Ii] = MergeCrossing(D[Ii], Vi) // Merge crossing by finding the con-

vex hull that contains all points in D[Ii] and Vi

12: else if ci == Lane Divider then
13: D[Ii] = MergeDivider(D[Ii], Vi) // Merge divider by interpolating D[Ii]

and Vi

14: else if ci == Road Boundary then
15: D[Ii] = MergeBoundary(D[Ii], Vi) // Merge boundary by interpolating

D[Ii] and Vi

16: end if
17: end if
18: end for
19: end for

D Additional Experimental Results and Analyses

This section presents additional experimental results and analyses, complement-
ing §5 of the main paper.

D.1 Full C-mAP results

As discussed in §B.2, the track extraction algorithm is more robust to temporal
inconsistency in the reconstructions when using higher look-back parameters.
Table 1 and Table 2 in this appendix extend the Table 1 and Table 2 of the main
paper by providing C-mAP results with different look-back parameters. The first
row of each method is the same as the results reported in the main paper, and
MapTracker directly uses the predicted track. §D.3 contains qualitative results
with different look-back parameters. We analyze the results of the three methods
below.
MapTRv2 gets huge boosts on C-mAP with increased look-back parameters,
especially on the nuScenes dataset. This suggests that MapTRv2 suffers from
poor temporal consistency, and the predicted road elements frequently disappear
and reappear within 2 or 3 consecutive frames.
StreamMapNet also benefits from higher look-back parameters. Note that we
tried to derive the tracks from StreamMapNet’s hidden query propagation but
found almost no temporal correspondence – very few propagated elements stay
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Table 1: Full C-mAP on nuScenes [1].†: Epochs for our multi-frame training.

Method Epoch Lookback C-APp C-APd C-APb C-mAP C-mAP

MapTRv2 110
1 frame 55.8 43.8 57.9 50.5

64.93 frames 61.5 54.0 61.3 58.9
5 frames 62.5 55.4 62.2 60.0

StreamMapNet 110
1 frame 58.6 53.5 57.1 56.4

65.93 frames 62.8 59.7 58.9 60.5
5 frames 63.1 60.8 59.3 61.0

MapTracker 72†

∅ (predicted) 75.4 65.0 66.9 69.1

72.51 frame 75.5 65.9 67.6 69.7
3 frames 76.3 66.8 68.2 70.4
5 frames 76.9 67.0 68.4 70.7

Table 2: Full C-mAP on Argoverse2 [3]. †: Epochs for our multi-frame training.

Method Epoch Lookback C-APp C-APd C-APb C-mAP C-mAP

MapTRv2 24*4
1 frame 58.4 52.5 57.4 56.1

67.73 frames 63.2 62.1 62.8 62.7
5 frames 63.9 64.1 63.0 63.7

StreamMapNet 72
1 frame 63.0 53.3 56.2 57.5

65.83 frames 65.5 58.8 58.9 61.0
5 frames 65.6 59.5 59.0 61.4

MapTracker 35†

∅ (predicted) 70.8 68.3 66.0 68.3

72.81 frame 72.6 69.5 67.4 69.8
3 frames 73.2 71.0 68.3 70.8
5 frames 73.4 71.3 68.3 71.0

positive in the next frame. This is mainly because the detection-based formu-
lation cannot exploit tracking labels, and the model treats the propagated in-
formation as extra conditions without capturing explicit temporal relationships.
StreamMapNet’s C-mAP results are worse than MapTRv2 on Argoverse2, fur-
ther indicating the limitations of its temporal modeling designs.

MapTracker predicts tracks and obtains good results without the track extrac-
tion algorithm. Note that the track extraction algorithm and our VEC module
use different thresholds for determining positive road elements. Our VEC mod-
ule uses higher thresholds and output fewer positive elements, leading to slightly
lower C-mAP compared to the result of using the track extraction algorithm
with N = 1. When increasing the look-back parameters, the C-mAP of Map-
Tracker can also keep improving – Although MapTracker obtains much more
consistent reconstructions than the baselines, the predicted temporal correspon-
dences are sometimes incorrect, and road elements are still occasionally unstable
(i.e., disappear and reappear within several frames).
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As explained in §B.3, C-mAP is the upper bound of C-mAP when the recon-
structions pass all consistency checks. MapTracker gets very close to the C-mAP
when we use the track extraction algorithm with N = 5 to trade running time
for track quality – The gap (1.8) is much smaller than the gap of the baselines,
again demonstrating our superior consistency.

D.2 Check MapTR ground truth

Table 3 investigates the quality of MapTR’s ground truth by evaluating its data
on our consistent benchmarks. The tracks of MapTR’s ground truth are ex-
tracted using Algorithm 1 with look-back parameter 1. The results in the table
are consistent with what we have analyzed in §B.1: 1) the pedestrian crossings
of MapTR data suffer from temporal inconsistencies on both datasets; 2) the
dividers have severe issues (e.g ., entirely dropped) on Argoverse2.

Table 3: Evaluating MapTR’s ground-truth data with our consistent benchmarks.
The goal is to understand the temporal consistency of MapTR’s ground truth.

C-APp C-APd C-APb C-mAP

nuScenes 80.6 100 100 93.5
Argoverse2 95.6 65.7 100 87.1

According to the table, we observe failure in Pedestrian Crossing for both
datasets and severe misalignment in Argoverse2, which matches the conclusion
of our observation mentioned in the main paper.

D.3 More qualitative results

Figure 3 to Figure 8 present additional qualitative comparisons. We show two
additional rows for each example compared to Figure 4 of the main paper: (the
second row, “Merged LB5” is the merged results for all the methods when
using the track extraction algorithm with look-back parameter N = 5; (the
third row, “Unmerged”) is the raw unmerged results that simply place the
reconstructions of all frames together. For the first row, MapTracker uses the
predicted tracks while the baselines use the track extraction algorithm with
look-back parameter N = 1.

Note that since our VEC module and the track extraction algorithm use dif-
ferent thresholds for determining the positive predictions, MapTracker’s results
in the first and second rows of each example can be slightly different. The sec-
ond row of MapTracker sometimes has more positive road elements than the first
row, and we use the predicted tracks to plot the unmerged results. Comparing
each row of each example, MapTracker’s results are cleaner and more consistent,
further validating our contributions toward consistent vector HD mapping.
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Fig. 3: Additional qualitative results on the nuScenes dataset.
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Fig. 4: Additional qualitative results on the nuScenes dataset.
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Fig. 5: Additional qualitative results on the nuScenes dataset.
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Fig. 6: Additional qualitative results on the Argoverse2 dataset.
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Fig. 7: Additional qualitative results on the Argoverse2 dataset.
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Fig. 8: Additional qualitative results on the Argoverse2 dataset.
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