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Abstract. Moiré patterns frequently appear when capturing screens
with smartphones or cameras, potentially compromising image quality.
Previous studies suggest that moiré pattern elimination in the RAW do-
main offers greater effectiveness compared to demoiréing in the sRGB
domain. Nevertheless, relying solely on RAW data for image demoiréing
is insufficient in mitigating the color cast due to the absence of essential
information required for the color correction by the image signal proces-
sor (ISP). In this paper, we propose to jointly utilize both RAW and
sRGB data for image demoiréing (RRID), which are readily accessible in
modern smartphones and DSLR cameras. We develop Skip-Connection-
based Demoiréing Module (SCDM) with Gated Feedback Module (GFM)
and Frequency Selection Module (FSM) embedded in skip-connections
for the efficient and effective demoiréing of RAW and sRGB features, re-
spectively. Subsequently, we design a RGB Guided ISP (RGISP) to learn
a device-dependent ISP, assisting the process of color recovery. Extensive
experiments demonstrate that our RRID outperforms state-of-the-art ap-
proaches, in terms of the performance in moiré pattern removal and color
cast correction by 0.62dB in PSNR and 0.003 in SSIM. Code is available
at https://github.com/rebeccaeexu/RRID.
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1 Introduction

With the increasing prevalence of smartphone cameras, it is common to record
on-screen content using smartphone cameras for convenience. However, this type
of photography often results in the presence of moiré patterns in the captured
images. The appearance of moiré patterns is caused by the spatial frequency
aliasing between the camera’s color filter array (CFA) and the screen’s LCD
subpixel [22], resulting in an unsatisfactory visual experience.

Moiré patterns present challenges to be eliminated due to their different
scales, indistinct shapes, diverse colors, and varying frequencies. Nowadays, many
learning-based image demoiréing approaches [1,5,6,14,15,18,21–23,27,32] have
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Fig. 1: Comparison of image demoiréing in different domains. (a) Image demoiréing in
sRGB domain. (b) Image demoiréing in RAW domain. (c) Our proposed RRID, which
performs image demoiréing in both RAW domain and sRGB domain

been proposed. Among the various methods employed, a commonly used ap-
proach is utilizing a multi-scale architecture to remove various sizes of moiré pat-
terns [1,5,18,21,27]. Besides, some works advocate the leverage of frequency com-
ponents and delicately design frequency-based demoiréing networks [6,14,22,32].

The aforementioned methods are developed to demoiré in the sRGB domain,
as depicted in Fig. 1(a). While this scheme seems to be the most direct approach,
its effectiveness is limited in removing moiré patterns from complex scenes. The
reason for this limitation probably lies in the fact that the nonlinear operations
in ISP such as demosaicing deteriorate the moiré patterns originally in the RAW
domain. Many schemes consequently suggest that eliminating moiré patterns in
the RAW domain is more effective than performing demoiréing in the sRGB do-
main [28,29]. Due to the easy accessibility of RAW data in modern smartphones
and DSLR cameras, image demoiréing in RAW domain can be both feasible
and advantageous. RDNet [29] is the pioneering study that investigates image
demoiréing in the RAW domain. They explore the demoiréing of RAW images
using an encoder-decoder and class-specific learning approach, followed by the
utilization of a pre-trained ISP for the RAW-to-sRGB conversion, as depicted in
Fig. 1(b). Nevertheless, relying exclusively on RAW data can lead to color cast
due to the uncertainty during RAW-to-sRGB conversion.

In order to correct the color cast and make the best use of RAW and sRGB in-
formation for the moiré pattern removal, we propose to jointly utilize both RAW
and sRGB data for image demoiréing (RRID), as demonstrated in Fig. 1(c). We
advocate that introducing paired RAW-sRGB data is advantageous to the moiré
pattern removal due to the following reasons: (1) RAW pixels provide more in-
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formation compared to sRGB pixels since they are typically 12 or 14 bits. (2)
Moiré patterns in the RAW domain are less apparent because they are not fur-
ther affected by nonlinear operations in the ISP. (3) The paired RAW and sRGB
data allows the model to learn a device-dependent ISP to aid the process of color
recovery. In RRID, we adopt a multi-scale architecture in the Skip-Connection-
based Demoiréing Module (SCDM), to effectively eliminate moiré patterns of
different sizes. In order to effectively perform demoiréing on RAW and sRGB
features, the Gated Feedback Module (GFM) and Frequency Selective Module
(FSM) are integrated into skip-connections within SCDM, as opposed to bru-
tally injecting them into the multi-scale layers. Specifically, for RAW features
demoiréing, we introduce the GFM into the skip connection, enabling adaptive
differentiation between texture details and moiré patterns through feature gat-
ing. Moreover, we design the FSM for the moiré sRGB features, leveraging a
learnable band stop filter to mitigate moiré patterns in the frequency domain.
Subsequent to the pre-demoiréing operations, we develop the RGB Guided Im-
age Signal Processor (RGISP) to integrate color information from the demoiréd
sRGB features with the demoiréd RAW features and learn a device-dependent
ISP, facilitating the color recovery process. Ultimately, for the image reconstruc-
tion, we utilize multiple Residual Swin Transformer Blocks (RSTBs) [12] and
convolutions to accomplish global tone mapping and detail refinement.

In summary, our contributions are listed as follows:

• We propose to exploit image demoiréing in both RAW and sRGB domains.
The incorporation of RAW data enhances the moiré pattern removal process,
while the inclusion of sRGB data facilitates the RAW-to-sRGB conversion
and aids in color restoration of images.

• We develop SCDM with specifically designed modules, GFM and FSM, em-
beded in the skip-connections to perform efficient and effective demoiréing
on the RAW and sRGB features.

• RGISP is designed for the RAW-to-sRGB conversion, incorporating color
information from the demoiréd sRGB features with demoiréd RAW features
and learn a device-dependent ISP, aiding the color deviation correction.

• Our RRID surpasses state-of-the-arts methods in both qualitative and quan-
titative evaluations.

2 Related Works

2.1 Image and Video Demoiréing

The purpose of image demoiréing is to restore the original clean image by re-
moving moiré patterns and correcting color deviations from an contaminated
image. Many learning-based image demoiréing [1, 6, 15, 18, 22, 23, 32] and video
demoiréing methods [2,19,26,28] have been introduced to mitigate the moiré pat-
terns. DMCNN [21] constructs the first real-world dataset for image demoiréing
and proposes a multi-resolution neural network to handle moiré patterns across
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various scales. MopNet [5] devises a multi-scale aggregated network that lever-
ages the edge guidance and pattern attributes for moiré pattern removal. WD-
Net [14] employs wavelet transformation to decompose images with moiré pat-
terns into separate frequency bands and establishes a dual-branch network to
restore both close-range and far-range information. FHDMi [6] formulates a two-
stage approach for simultaneous removal of substantial moiré patterns while pre-
serving image details. ESDNet [27] explores a lightweight model aimed at ultra-
high-definition image demoiréing. VDMoiré [2] collects the first video demoiréing
dataset and presents a baseline video demoiréing model with a relation-based
temporal consistency loss. The aforementioned methods all operate in the sRGB
domain. Since it has been observed that moiré patterns are less prominent in the
RAW domain, some schemes advocate performing image or video demoiréing in
the RAW domain. RDNet [29] introduces the first image demoiréing dataset with
RAW data and conducts the demoiréing process in the RAW domain. RawVDe-
moiré [28] proposes a temporal alignment method for RAW video demoiréing.
To remove moiré patterns in the RAW domain, the model have to simultane-
ously possess the capabilities of demoiréing and and RAW-to-sRGB conversion.
However, previous methods encounter challenges in color recovery due to the
uncertainty of RAW-to-sRGB conversion. Consequently, we propose an image
demoiréing network that utilizes paired RAW-sRGB data, facilitating the color
recovery process in image demoiréing.

2.2 Learning-Based RAW Image Processing

RAW pixels offer the potential for leveraging additional information due to their
broader bit depth, inherently containing a great wealth of data. Early research in
RAW image processing primarily centers on integrating demosaicing and denois-
ing techniques [4, 9, 10, 13]. RTF [9] devices a machine learning approach to the
demosaicing and denoising on RAW inputs. SGNet [13] introduces a self-guidance
network that leverages the inherent density-map guidance and green-channel
guidance for demosaicing and denoising on the RAW images. Recently, some
low-level vision tasks endorse the utilization of RAW data, including low-light
enhancement [3,7,8], super-resolution [16,25,30], and reflection removal [11,20].
The majority of the aforementioned RAW image processing methods only take
RAW images as input and generate restored sRGB images as output, indicat-
ing that the entire model is responsible for both the restoration and ISP tasks.
CR3Net [20] presents a cascaded network that harnesses both the RGB data and
their corresponding RAW versions for image reflection removal. Within CR3Net,
a module is formulated to emulate point-wise mappings within the ISP, convert-
ing the features from RAW to sRGB domain. To further mitigate the color
casting problem, our proposed method jointly utilize RAW and sRGB data to
learn a device-dependent ISP for image demoiréing.
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3 Methodology

Originally caused by frequency interference between the camera’s CFA and the
screen’s LCD subpixel, moiré patterns are further deteriorated by the nonlin-
ear processes in ISP. Therefore, introducing RAW data for image demoiréing
may offer greater effectiveness. However, relying solely on RAW data for image
demoiréing is insufficient in mitigating color cast due to the uncertainty during
the RAW-to-sRGB conversion. Consequently, in this work, we propose to utilize
paired RAW and sRGB data, which are readily accessible in modern smartphones
and DSLR cameras (e.g ., iPhone 15 Pro, HUAWEI P60 Pro). The RAW-sRGB
pairs essentially allows the model to learn a device-dependent ISP, aiding the
color recovery process. The potential applications in real-world scenarios can be
described as follows. When demoiréing function is enabled, the in-device ISP
generated sRGB image will not be directly outputted. Instead, together with its
corresponding RAW version, will be processed by our RRID to generate a new
sRGB image with much suppressed moiré patterns. Afterwards, the RAW image
could be discarded, depending on settings of the camera.

Fig. 2: The overview and detailed structures of our proposed RRID.

More specifically, Fig. 2 presents an overview of our proposed RRID for image
demoiréing with the paired RAW and sRGB data. As for the RGB branch, the
input is an sRGB image Irgb ∈ RH×W×3, where H ×W represents the spatial
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resolution. Given an input RAW image, it is first packed into the 4-channel
RGGB format Iraw ∈ RH

2 ×W
2 ×4, which serves as the input for the RAW branch.

RRID is designed to generate the final output sRGB image (Ŷrgb).
Concretely, shallow features Fraw and Frgb are respectively extracted from

the input data Iraw and Irgb using a convolutional layer and the Dilated Chan-
nel Attention Block (DCAB). It is worth noting that a down-sampling layer is
applied to the sRGB data to ensure the uniformity of feature shapes. Then, we
apply SCDM to acquire pre-demoiréd features Draw and Drgb in RAW branch
and RGB branch, respectively. GFM is introduced in the skip-connection of
SCDM for RAW features, enabling adaptive differentiation between texture de-
tails and moiré patterns through feature gating. Similarly, FSM is utilized to to
mitigate moiré patterns in the frequency domain. More details will be given in
Sec. 3.1. Subsequently, RGISP is designed to realize a RAW-to-sRGB conversion,
generating Dout. RGISP incorporates color information from coarsely demoiréd
sRGB features Drgb in a cross-attention mechanism, which will be introduced in
Sec. 3.2. For the final image reconstruction, 4 RSTBs [12] are utilized to generate
sRGB output Ŷrgb for their advantages in building long-range dependencies for
global tone mapping and detail refinement.

3.1 Design of SCDM

We propose SCDM, a multi-scale architecture designed to remove moiré patterns
from shallow RAW features Fraw and shallow sRGB features Frgb, as shown in
Fig. 2(a). Unlike the vanilla U-Net, SCDM is constructed upon DCAB, facili-
tating the encoding and decoding of informative features within the respective
layers. The features are downsampled twice in the spatial dimension during the
encoding process and then upsampled to the original resolution of the input
features during decoding. To emphasize the contextual information, we enhance
the learned features from the corresponding layers of the encoder with additional
modules at skip connections, that is GFM for RAW and FSM for sRGB. The
introduction of GFM and FSM in skip-connections is also intended to enhance
model efficiency. Then, we can obtain the pre-demoiréd features Draw and Drgb.

DCAB. DCAB is the essential building block of encoder-decoders for per-
forming RAW demoiréing and the RGB demoiréing, as shown in Fig. 2(b). DCAB
is designed using a series of dilated convolution layers followed by ReLU acti-
vation and the channel attention mechanism. The receptive field at each block
is expanded with the dilated convolution kernels, facilitating the demoiréing
operations. Furthermore, by incorporating the channel attention mechanism,
DCAB adaptively rescales features according to interdependencies among chan-
nels. Also, shortcuts are introduced to establish connections between the input
and output of DCAB, enabling the block to learn the residual features.

GFM. Embeded in the skip-connection of SCDM for RAW features, GFM
is introduced to enable adaptive differentiation between the texture and moiré
patterns through feature gating. The detailed structure of the GFM is shown in
Fig. 2(c). For efficiency, we employ point-wise and depth-wise convolutions to
aggregate channel and local content information, respectively. Then, the features
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are chunked along the channel dimension to generate Fgate and Fcontent. A point-
wise multiplication is applied on Fcontent and Fgate after a GELU activation.
During feature gating, we expect that the original image content is adaptively
selected and merged along both spatial and channel dimensions. The operations
can be formulated as:

{Fgate,Fcontent} = DConv(PConv(FGFM_in)), (1)
FGFM_out = PConv(Fcontent ⊙GELU(Fgate) + FGFM_in), (2)

where DConv and PConv represent depth-wise convolution and point-wise con-
volution, respectively. Here, ⊙ denotes the element-wise multiplication.

FSM. For sRGB demoiréing, we leverage a learnable band stop filter [32] to
mitigate moiré patterns in the frequency domain. Considering the formation of
moiré patterns is caused by the spatial frequency aliasing between the camera
CFA and screen’s LCD subpixel, demoiréing in the frequency domain becomes
a favorable approach. However, the frequency spectrum of the moiré pattern is
often mixed with that of the original contents, thereby making it challenging to
disentanglement. Therefore, we propose to perform the disentanglement within
small patches, where the moiré patterns tend to be more pronounced in a specific
range of frequency bands, facilitating the removal of moiré patterns. Inspired by
Zheng et al . [32], we utilize a band stop filter to amplify certain frequencies
and suppress others using Block DCT. However, obtaining the frequency prior
to separate moiré patterns from normal image textures is challenging and time-
consuming. To address this issue, a set of convolution layers are employed as
the learnable band stop filter B(·) to attenuate the specific frequencies of moiré
patterns while preserving the original image contents. The process of the FSM
can be represented as:

FFSM_out = IDCT(B(DCT(FFSM_in))), (3)

where DCT and IDCT denote the process of Block DCT and the corresponding
inverse process. The block size is set to 8× 8 for DCT and IDCT.

3.2 Design of RGISP

RGISP is proposed to transform pre-demoiréd RAW features Draw into sRGB
domain Dout. With the assistance of pre-demoiréd sRGB features Drgb, a device-
dependent ISP can be learned in RGISP. Matrix transformation is commonly em-
ployed in the traditional ISP pipelines [17]. It enables the enhancement or conver-
sion of image colors to another color space through a channel-wise matrix trans-
formation, which is facilitated by globally shared settings such as environmental
illumination and color space specifications [8]. Building upon this principle, we
introduce matrix transformation as a means to perform color transformation, as
illustrated in Fig. 3. The design of this matrix transformation is motivated by
recent advancements in transposed cross-attention. Given Draw ∈ RC×H

2 ×W
2 ,

the vectors of query Q ∈ RC×H
2

W
2 , key K ∈ RH

2
W
2 ×C are generated through the
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Fig. 3: The structure of RGISP.

projection with a 1 × 1 convolutional layer Conv and a flatten operation Flatten,
where C is the intermediate channel number. Similarily, value V ∈ RC×H

2
W
2 can

be produced by operations on Drgb ∈ RC×H
2 ×W

2 as:

{Q,K} = Flattern(Conv(Draw)), (4)
V = Flatten(Conv(Drgb)). (5)

Then, the transformation matrix M ∈ RC×C is obtained by matrix multiplica-
tion. The procedure can be formulated as:

M = Softmax(Q ·KT /λ), (6)

where a scaling coefficient λ is applied for numerical stability. Subsequently, the
vector V is transformed by the matrix M, performing color space conversion in
feature-level. The output feature after color transformation can be obtained by
Dout = M ·V. As a complement to the global matrix transformation, we use a
depth-wise convolution and a point-wise convolution to refine the local details,
generating the output in sRGB domain Dout.

3.3 Loss Function

To effectively remove the moiré patterns and adjust the color deviations, we
introduce supervision in both RAW and sRGB domains. The overall training
objective can be expressed as:

L = α∥Ŷraw −Yraw∥1 + ∥Ŷrgb −Yrgb∥1, (7)

where Yraw and Yrgb are the ground-truth RAW and sRGB images, respectively.
We empirically set α=0.5.

4 Experiments

4.1 Experimental Setup

Dataset. The experiments are conducted on the RAW image demoiréing dataset
published in TMM22 [29], which contains recaptured scenes of natural images,
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documents, and webpages. In TMM22, the dataset consists of 540 RAW and
sRGB image pairs with ground-truth for training, and 408 pairs for testing.
To facilitate the training and comparison process, patches of size 256×256 and
512×512 are cropped respectively for the training and testing sets. The moiré
images are captured using four different smartphone cameras and three display
screens of varying sizes. In addition, we utilize an image demoiréing dataset
FHIMi [6] to verify the generalization ability of our method. FHDMi contains
9981 sRGB image pairs for training and 2019 for testing, featuring diverse and
intricate moiré patterns. Notably, images in FHDMi have a higher resolution of
1920×1080, compared to TMM22.
Training Details. We train RRID using the AdamW optimizer with β1 = 0.9
and β2 = 0.999. A multistep learning rate schedule is employed, with the learning
rate initialized at 2×10−4. The RRID model is trained for 500 epochs using a
batch size of 80 on 4 NVIDIA RTX 3090 GPUs.

4.2 Quantitative Results

We compare our approach with several image demoiréing methods in sRGB
domain, including DMCNN [21], WDNet [14], ESDNet [27], and a RAW image
demoiréing method RDNet [29]. We further add comparison with a low-light
enhancement method DNF [8] with RAW input, a video demoiréing method
RawVDmoiré [28] with RAW input, and a de-reflection method CR3Net [20] with
paired RAW-sRGB data. To evaluate the performance of our proposed RRID, we
adopt the following three standard metrics to assess pixel-wise accuracy and the
perceptual quality: PSNR, SSIM [24], and LPIPS [31]. Additionally, the number
of parameters, FLOPs, and inference time are introduced to measure the model
complexity. To ensure a fair comparison, we modify the inputs of the sRGB-
based models to align with the dataset requirements. Subsequently, all models
are fine-tuned using the default settings as provided in their papers on TMM22
dataset. We select the better results from the pretrained and retrained models
for comparison, which provides an advantage over the competing methods.

Table. 1 presents the quantitative and the computational complexity compar-
isons. RRID outperforms the second-best method, RawVDmoiré, by 0.62dB in
PSNR and 0.003 in SSIM. As for LPIPS, our methods accomplishes the second-
best result at 0.079, surpassing most of the comparison methods. Even though
RRID utilizes both RAW and sRGB data as inputs, our approach can still achieve
a satisfactory demoiréing effect with a inference time of merely 0.089s. Com-
pared to previous methods, our RRID demonstrates superiority with acceptable
parameters and FLOPs, further demonstrating the superiority of our approach.

To verify the generalization performance of our method, we conduct addi-
tional experiments on an image demoiréing dataset FHIMi [6]. In order to adapt
to the FHDMi dataset with sRGB data as input, the RAW branch and RGISP are
removed. We select methods tailored for image demoiréing: DMCNN [21], Mop-
Net [5], MBCNN [32], FHDe2Net [6], and ESDNet [27] for comparison, as shown
in Table 2. Although RRID is initially designed for demoiréing on the RAW-
sRGB image pairs, it still achieves the second-best performance by 24.39dB in
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Table 1: Quantitative comparison with the state-of-the-art demoiréing approaches and
RAW image restoration methods on TMM22 dataset [29] in terms of average PSNR,
SSIM, LPIPS and computational complexity. The best results are highlighted with
bold. The second-best results are highlighted with underline.

Index
Methods

DMCNN WDNet ESDNet RDNet DNF RawVDmoiré CR3Net RRID
[21] [14] [27] [29] [8] [28] [20] (Ours)

# Input type sRGB sRGB sRGB RAW RAW RAW sRGB+RAW sRGB+RAW

PSNR↑ 23.54 22.33 26.77 26.16 23.55 27.26 23.75 27.88
SSIM↑ 0.885 0.802 0.927 0.921 0.895 0.935 0.922 0.938
LPIPS↓ 0.154 0.166 0.089 0.091 0.162 0.075 0.102 0.079

Params (M) 1.55 3.36 5.93 6.04 1.25 5.33 2.68 2.38
TFLOPs 0.102 0.055 0.141 0.161 0.013 0.022 0.883 0.093

Inference time (s) 0.052 0.284 0.115 1.094 0.070 0.182 0.058 0.089

Table 2: Quantitative comparison on FHDMi dataset [6].

Method PSNR↑ SSIM↑

DMCNN [21] 21.54 0.773
MopNet [5] 22.76 0.796
MBCNN [32] 22.31 0.810
FHDe2Net [6] 22.93 0.789
ESDNet [27] 24.50 0.835
Ours 24.39 0.830

PSNR and 0.830 in SSIM. Compared to ESDNet, an image demoiréing net-
work designed for ultra-high-definition sRGB images with more than twice of
the parameters, RRID also yields competitive results. The qualitative results on
the FHDMi dataset demonstrate that our method can not only perform well
in demoiréing on RAW-sRGB pairs but also solve sRGB image demoiréing, ex-
hibiting a certain degree of generalization.

4.3 Qualitative Results

We present visual comparisons among our approach and the existing methods in
Fig. 4. The results demonstrate the advantage of RRID in effectively removing
moiré artifacts and correcting color deviations. For the first scene demonstrat-
ing a recaptured flower with moiré patterns, previous methods tend to exhibit
residual moiré patterns in their restored images. While ESDNet successfully elim-
inates a significant portion of these patterns, it struggles to accurately restore
the original colors of the image. Apart from natural scenes, we also present a case
of webpages contaminated with moiré patterns. Through the utilization of both
RAW and sRGB data, our approach eliminates moiré patterns while preserving
fine image details, even in scenarios characterized by severe color deviations.
This ensures a more accurate restoration of the original colors and results in
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enhanced visual effects. Additional qualitative comparisons can be found in the
supplementary file.

Fig. 4: Qualitative comparison on RAW image demoiréing TMM22 dataset [29].

4.4 Ablation Study

1) Ablation study on the model architecture and inputs. In Table 3, we
investigate the architecture and inputs of RRID and validate the importance of
different individual components in the whole RRID. We conduct this ablation
study by comparing the proposed RRID and the following variants of RRID:

• B1. Both the RAW input and the RAW demoiréing branch are removed.
Due to the lack of RAW features, the entire RGISP is also deleted.

• B2. Both the sRGB input and sRGB demoiréing branch are removed.
• B3. The sRGB input is substituted with RAW input. The input channel

number is adjusted, while the rest of the architecture is kept unchanged.
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• B4. We replace RGISP with a two convolutional layers after a concatenation
of the RAW and sRGB features.

• B5. Reconstruction module is replaced with two convolutional layers.
• B6. The full model of RRID with both RAW and sRGB images as input.

Table 3: Comparison of baseline models for the evaluation of architecture and inputs.

Models PSNR↑ SSIM↑

B1 (w/o RAW in and RAW branch) 25.79 0.915
B2 (w/o sRGB in and sRGB branch) 27.24 0.929
B3 (w/o sRGB in) 26.51 0.923
B4 (w/o RGISP) 27.38 0.932
B5 (w/o Reconstruction) 26.93 0.926
B6 (full version) 27.88 0.938

Our proposed RRID leverages paired RAW-sRGB data as input. Removing
the RAW input and its corresponding RAW demoiréing module (B1) results in a
drastic decrease in PSNR of approximately 2dB. Likewise, eliminating the sRGB
input and its corresponding RGB demoiréing module (B2) leads to a PSNR of
only 27.24dB. In addition to the decline in numerical metrics, we can also assess

Fig. 5: Visualization of the ablation study for architecture and inputs comparison.

the visual performance from Fig. 5. When relying only on sRGB data and its
corresponding demoiréing modules, moiré patterns are less effectively removed,
as depicted in Fig.5(b). Conversely, Fig.5(c) demonstrates that using only RAW
data as input generates images with more pronounced color deviations. To fur-
ther validate the significance of RAW input for image demoiréing, we compare
B3 to B1 by solely removing the RAW input data while retaining the remaining
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model structures. Although B3 demonstrates some improvements in numerical
metrics compared to B1, its performance remains unsatisfactory due to the lack
of information provided by the RAW input and the fact that the original RAW
demoiréing module is specifically designed for RAW data. Additionally, we con-
ducted further comparisons by removing the originally designed RGISP (B4)
and Reconstruction modules (B5), resulting in inferior numerical metrics and
performance in Fig. 5 compared to the complete RRID model (B6).
2) Ablation study on SCDM. SCDM is designed to perform effective demoiréing
on both RAW and sRGB features. More specifically, we introduce GFM for RAW
features demoiréing and FSM for sRGB features demoiréing.

Table 4: Ablation study on SCDM.

Models PSNR↑ SSIM↑

S1 (w/o GFM & FSM) 27.00 0.926
S2 (w/o GFM) 27.17 0.927
S3 (w/o FSM) 27.39 0.930
S4 (all GFM) 27.50 0.933
S5 (all FSM) 27.32 0.930
S6 (w/o DCAB) 26.55 0.923
S7 (SCDM) 27.88 0.938

Table 4 demonstrates the effectiveness and indispensability of the meticu-
lously designed GFM and FSM integrated within the skip-connections. Remov-
ing the demoiréing modules on the skip-connections (S1-S3) individually result
in varying degrees of performance decline of the model. For instance, removing
both GFM and FSM leads to only 27.00 dB in PSNR. Furthermore, Fig.6(b)
demonstrates that the model’s ability to remove moiré patterns decreases upon
removing the GFM and FSM modules. Furthermore, to assess the specificity of
GFM and FSM, we substitute the original modules in S4 and S5, respectively.
Despite no reduction in the number of parameters, the PSNR decreases by ap-
proximately 0.3-0.5dB. Since DCAB is a crucial component module in SCDM, we
substitute DCAB with two convolutional layers to confirm its necessity. Fig. 6(c)
showcases more residual moiré patterns and significant color deviation compared
to our complete SCDM presented in Fig.6(d).

Fig. 6: Visualization of the ablation study for SCDM.
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Fig. 7: Visualization of the ablation study for RGISP.

3) Ablation study on RGISP. RGISP is designed to integrate color informa-
tion from the coarsely demoiréd sRGB features during the ISP stage, facilitating
the color recovery process. The process of the RGISP can be recognized as a
cross-attention mechanism. To assess the efficacy of the RGISP design, we com-
pare the following structures in Table 5. For R1, we concatenate the pre-demoiréd
RAW features with the sRGB features and subsequently apply a self-attention
mechanism. In R2, the pre-demoiréd RAW features undergo a self-attention
mechanism and are then concatenated with the pre-demoiréd sRGB features.
Table 5 shows that our proposed RGISP surpasses the self-attention mecha-
nisms (R1, R2), as well as other RAW-to-sRGB conversion methods RRM [20]
(R3). In addition, Fig. 7 depicts a webpage with globally distributed moiré pat-

Table 5: Ablation study on RGISP.

Models PSNR↑ SSIM↑

R1 (self-atten([raw, rgb])) 27.54 0.933
R2 ([self-atten(raw), rgb]) 27.42 0.931
R3 (RRM) 27.21 0.929
R4 (RGISP) 27.88 0.938

terns. R1-R4 are all capable of effectively removing the moiré patterns, but R4

exhibits the best performance in correcting color deviation. With the introduc-
tion of sRGB pre-demoiréd features, RGISP is able to learn a device-dependent
ISP and restore the original colors of the image effectively.

5 Conclusion

In this paper, we propose to jointly utilize RAW and sRGB data for image
demoiréing (RRID). Firstly, we introduce SCDM with GFM and FSM embed-
ded in skip-connections to handle the demoiréing of RAW and sRGB features,
respectively. Additionally, we present RGISP to learn a device-dependent ISP,
aiding the color recovery process. Extensive experiments demonstrate the supe-
rior performance of our RRID method in both moiré pattern removal and color
cast correction. Our approach outperforms state-of-the-art methods by 0.62dB
in PSNR and 0.003 in SSIM.
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