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LiDAR-Event Stereo Fusion with Hallucinations

Supplementary Material

This document provides additional details regarding ECCV 2024 paper
“LiDAR-Event Stereo Fusion with Hallucinations". Specifically, we report:

– page 1: the impact of our framework on event streams distinctiveness
– pages 2-5: the composition of the datasets split used in our experiments,

as well as the pre-processing pipeline necessary to obtain data suitable for
our purposes from both DSEC [7] and M3ED [5]

– pages 6-7: detailed description of the LiDAR-stereo fusion strategies inher-
ited from classical deep stereo literature [6, 13,16]

– page 8: additional ablation studies
– pages 9-12: more qualitative results on the M3ED dataset [5]
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Fig. I: Distinctiveness before/after VSH/BTH (a), correlation scores (b).

1 Impact on Distinctiveness

In this section, we discuss the reasons behind the effectiveness of our halluci-
nation strategies from a probabilistic perspective. In the stereo matching tasks,
ambiguities arise when the patches to match are not distinctive – i.e., multiple
patches along the horizontal epipolar line are identical. For a single patch P and
its neighbors Qi, we can define its distinctiveness [10] DS(P ) as mini |P −Qi|.
Such distinctiveness is 0 if at least one Qi is identical to P – see Fig. I (a). This
is very likely to occur for patches for which no event at all is triggered by the
camera, as for the ≈ 30% of the patches on the M3ED dataset.

As VSH puts a random P ′ on both left and right frames, it will be suffi-
cient for P ′ to have DS(P ′) > 0 to ease the matching of those empty patches.
A specific P ′ is generated with probability p(P ′) = 1

V N2×B
, being V the pos-

sible per-pixel values (e.g., 28 for uint8), with patch size N × N and B stack
channels. Accordingly, the probability p(DS(P ′) = 0) equals the probability of
having another patch on the horizontal scanline identical to P ′, i.e., W × p(P ′)
if we assume patches to be independent (in the worst case scenario), being W
the image width. On M3ED, p(DS(P ′) = 0) = 1280 × p(P ), that is ≈ 5e−41

and ≈ e−257 for Histogram and Voxel Grid respectively. This means VSH has
probability ≈ 1 to ease matching for empty patches if a LiDAR hint is available
for them. We confirm this expected behavior in Fig. I (b), showing the correla-
tion curve computed by the stereo network on an empty patch, peaked on the
LiDAR value after VSH. Similar derivation can be done for BTH.
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Fig. II: DSEC [7] processing scheme (1).

2 Evaluation Datasets and Pre-processing

In this section, we provide further details concerning the datasets used in our
work and the pre-processing we carried out. In particular, we describe the DSEC
[7] search split we used for the hyperparameters search concerning our proposals
VSH and BTH, the M3ED [5] evaluation split we selected, and how we managed
to process both datasets to extract raw LiDAR and, on M3ED dataset [5], for
obtaining misaligned LiDAR measurements with respect to the timestamp at
which we estimate disparity maps – and thus, at which we have ground-truth
depth for evaluation.

2.1 DSEC [7] Dataset

We start with DSEC [7], which we use for i) tuning the hyper-parameters in our
solutions, and ii) training the models involved in our experiments.

Search split. We select three sequences from the training set:
zurich_city_00_b, interlaken_00_c and zurich_city_09_c.

Processing Scheme. We managed to extract raw LiDAR disparity maps
directly from the rosbag files provided by the authors. Our extraction pipeline
is detailed in Figs. II and III. Differently from M3ED [5], this dataset does
not provide any ground-truth pose. Consequently, as the first step detailed in
Fig. II, we deployed a LiDAR inertial odometry framework – FASTER-LIO
[2] – to obtain point clouds without rolling shutter effects (de-skewed), their
corresponding poses and timestamps.

Assuming a shared clock between ground-truth and raw timestamps, we aim
to synchronize each ground-truth disparity map at time td with the nearest de-
skewed LiDAR scan Md. As shown in Fig. III, we can achieve this goal using a
mapping function that links raw with ground-truth data using timestamps. Next,
we can use the estimated poses to align Md to its correlated ground-truth frame,
using linear interpolation. Unfortunately, we empirically noticed that this step
is insufficient to guarantee an acceptable alignment. To further refine this align-
ment, we deployed point-to-plane ICP algorithm [14] with L1 robust kernel [1]
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Fig. III: DSEC [7] processing scheme (2).

between Md and the ground-truth point cloud (PCD) obtained by reprojection
of the ground-truth disparity map to 3D. To ensure the best alignment possible,
we repeated the process described in Fig. III also using the previous and the
next LiDAR scans Md−1,Md+1 and skipping the pose interpolation sub-step.
As a result, for each ground-truth frame we have six possible candidates – i.e.,
{(Md−1, I), (Md−1,Pd−1), (Md, I), (Md,Pd), (Md+1, I), (Md+1,Pd+1)}, where I
(identity rigid transformation) and Pd−1,Pd,Pd+1 (interpolated rigid transfor-
mation respectively for ground-truth frame d − 1, d, d + 1) represent the initial
state for ICP algorithm. We select the one that best reduces the mean repro-
jection error (MAE). As the last step, raw point clouds are roto-translated into
the left rectified event camera point of view and then projected into the recti-
fied image plane to obtain depth maps, that are converted into disparity maps.
Finally, we measure the MAE between each raw LiDAR depth map and its cor-
responding ground-truth depth map and discard those with an error exceeding
0.5 meters from training/search/testing splits.

2.2 M3ED [5] Dataset.

In this second dataset, we evaluate the generalization performance by any of
the models involved in our evaluation, as well as we measure the robustness of
LiDAR-event stereo frameworks when processing misaligned LiDAR data.

Evaluation Split. We select both some outdoor (car_forest_tree_tunnel
and car_urban_day_penno_small_loop, with the former featuring a fully-static
set of frames) and indoor (falcon_indoor_flight_1, falcon_indoor_flight_2 and
falcon_indoor_flight_3 ) sequences.

Processing Scheme. Figs. IV to VI sketch the main stage of our pre-
processing pipeline. For each M3ED sequence, the authors provide data file and
depth_gt file. The former provides raw LiDAR measurements, left and right
distorted, unrectified stereo events, calibration parameters for each sensor, and
other data not meaningful for our scope. The latter store ground-truth depth
maps aligned to the left event camera and ground-truth poses for LiDAR (i.e.,
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Fig. IV: M3ED [5] processing scheme (1). Extraction of stereo histories and rec-
tification maps from the data file.

Fig.V: M3ED [5] processing scheme (2). After rectification, ground-truth depth
maps are converted to disparity maps.

Ln_T_L0 ) and left event camera (i.e., Cn_T_C0 ). This eases the LiDAR to
ground-truth alignment with respect to DSEC dataset. All sensors, ground-truth
depths, and poses are time-synchronized using a global clock. For more details,
please refer to the original paper [5].

We extract the stereo event histories directly from the data file, as displayed
in Fig. IV. Undistortion and rectification are managed at run-time using a for-
ward mapping, stored in a single rectify_map file for each event camera. To
create those mappings, we fed intrinsic, extrinsic, and distortion coefficients to
the OpenCV functions. Furthermore, since OpenCV returns backward mapping
functions, we used an iterative strategy to obtain left and right forward map-
pings. We maintain intermediate and final products of this step in memory, as
they will be required by subsequent steps.

After the previous step, we process raw ground-truth depth maps from the
depth_gt file (Fig. V). We rectify depth maps using the same left-forward map-
ping obtained in the previous step. For each depth map, we assume td = tz –
i.e., the timestamp td at which we want to estimate disparity is the same as the
timestamp tz at which the depth map is captured. Finally, depth maps are con-
verted into disparity maps using stereo camera parameters obtained previously
from stereo calibration.

The final step consists of processing raw LiDAR scans from the data file
(Fig. VI). For each LiDAR scan, we linearly interpolate the pose at which the
scan starts and the pose at which the scan ends as we need them to obtain a point
cloud without rolling shutter effects (de-skewed). We aim to acquire both in-sync
LiDAR disparity maps (i.e., td = tz, ∆to = 0) and out-of-sync (or misaligned)
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Fig.VI: M3ED [5] processing scheme (3). We used interpolated poses to correct
raw LiDAR point clouds affected by rolling shutter effects. Then point clouds are roto-
translated, projected into image plane, rectified and converted into disparity maps.

LiDAR disparity maps – i.e., t′z = td −∆to, ∆to > 0, where ∆to is the temporal
misalignment chosen arbitrarily (e.g ., 3, 13, 32, 61 and 100 ms) – these latter are
used for experiments in Section 5.6. Given Md as the closest de-skewed LiDAR
scan to td (mapping step in Fig. VI) and the temporal misalignment ∆to, the
former goal is achieved by roto-translating Md as if it had been captured at
t′z = td − ∆to. After that, we linearly interpolate the pose at time t′z using
the two temporally nearest LiDAR poses (i.e., Ln_T_L0 ). Next, point clouds
are roto-translated into the left event camera point of view, and then projected
into the image plane to obtain depth maps. Finally, depth maps are rectified
and converted into disparity maps. Before the evaluation, we calculate the MAE
between each raw LiDAR depth map and its corresponding ground-truth depth
map and discard them if the error exceeds 0.1 meters, as well as discard the first
and last 50 frames where raw LiDAR data fully overlaps with ground-truth.
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Fig.VII: SE-CFF architecture.

3 LiDAR-Stereo Matching Fusion Architectures

We report additional details about the deep architectures used in our experi-
ments, starting from the baseline network, SE-CFF [12], and then showing the
fusion strategies ported from classical deep stereo literature [6, 13,15]

Baseline Model: SE-CFF. Fig. VII provides an overview of the SE-CFF
[12] architecture assumed as the baseline in our work: i) rectified event streams
are organized into MDES representations and then processed by a concentration
network, producing single-channel stacks; ii) these are processed by two features
extractor with shared weights, producing outputs respectively at 1

3 ,
1
6 ,

1
12 of the

original resolution; iii) these are used to build a multi-scale cost-volume com-
puting the correlation between left and right features along the epipolar line; iv)
a multi-scale, 2D network made with deformable convolutions is used to refine
the cost volumes; v) an initial disparity map is obtained through a soft-argmax
operator; vi) a multi-scale refinement network produces a set of refined disparity
maps. We deploy eight variants of this architecture, one for each stacked rep-
resentation considered in our experiments – i.e., stage i) is replaced with the
different representations.

Guided Stereo [13]. The first among the strategies inherited from classical
deep stereo literature is depicted in Fig. VIII. Specifically, LiDAR data are used
to modulate any of the multi-scale cost volumes F , according to a Gaussian
function

G =

(
1− vij + vij · k · e−

(d−gij)
2

2c2

)
· F (1)

with k, c being the height and width of the Gaussian. Following [13], LiDAR
points are downsampled through nearest-neighbor interpolation to act at the
different resolutions.

Concat [16]. An alternative strategy consists of providing the raw LiDAR
data as an input to the stereo model. Fig. IX gives an overview of this lat-
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Fig.VIII: Guided Stereo Matching [13] Framework.

Fig. IX: Concat [6] architecture.

ter approach. LiDAR data are projected on left and right camera frames and
processed by two feature extractors with shared-weights and made of Sparsity-
Invariant Convolutions. These features are concatenated to those extracted from
images – or stacked events, in our case – before the cost volumes are computed.

Guided+Concat [6]. This strategy is inspired by CCVNorm architecture
[6] and re-adapted to be deployed with SE-CFF. Specifically, CCVNorm deploys
LiDAR data both as the input to the model, as well as to modulate the cost-
volume at different stages during inference. Fig. X shows how we tailor this
strategy to SE-CFF, basically by combining the two previous strategies.
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Fig.X: Guided+Concat [15] architecture.

Table I: Ablation on VSH (top) and BTH (bottom). We report 1PE for stereo
backbones with different stacked representations on the DSEC search split.

Event Representations
Configuration Histogram MDES Voxel Grid TORE T. Surface ERGO-12 Tencode

[11] [12] [16] [3] [9] [17] [8]
Baseline 13.33 12.07 12.75 12.23 11.69 11.58 11.15

(A) VSH 12.29 10.33 11.71 10.49 10.20 10.07 9.84
(B) (A)+Occlusion handling [4] 12.28 10.33 11.72 10.50 10.19 10.06 9.83
(C) (B)+Splatting [4] 12.00 10.33 11.70 10.51 10.14 10.04 9.82

Event Representations
Configuration Histogram MDES Voxel Grid TORE T. Surface ERGO-12 Tencode

[11] [12] [16] [3] [9] [17] [8]
Baseline 13.33 12.07 12.75 12.23 11.69 11.58 11.15

(A) BTH 10.99 10.53 10.52 10.34 10.13 10.09 9.78
(B) (A)+Occ. disc. [4] 10.99 10.52 10.53 10.33 10.12 10.08 9.77
(C) (B)+Splatting 11.00 10.54 10.53 10.34 10.13 10.08 9.77

4 Ablation Study – Additional Experiments

We complement the ablation studies already shown in the main paper. Specif-
ically, Tab. I shows the results achieved by VSH and BTH on the search split,
respectively on top and bottom.

Starting from VSH, we show how handling occlusions according to [4] (B)
allows for slightly improving the results, with further improvements achieved
by applying sub-pixel splitting [4] (C). When it comes to BTH, we observed
empirically that discharging occlusions yields the best results (B). We also im-
plemented a revised version of pixel splatting applied to the event streams (C),
yet without noticeable improvements.
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Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] VSH BTH

1PE: 85.12% 1PE: 84.50 % 1PE: 14.95 % 1PE: 11.09 %
Fig.XI: Qualitative results – baseline stereo backbone. Results on
car_forest_tree_tunnel, with MDES [12] representation.

Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] Concat [6] Guided+Concat [15] BTH

1PE: 85.12% 1PE: 85.10 % 1PE: 48.00 % 1PE: 44.52 % 1PE: 11.31 %
Fig.XII: Qualitative results – re-trained stereo backbone. Results on
car_forest_tree_tunnel, with MDES [12] representation.

5 Qualitative Results

In conclusion, we present some qualitative results to support the efficacy of our
proposal. We display eight (i.e., Figs. XI to XVIII) different figures from the
M3ED [5] dataset, using raw LiDAR measurements as guidance for all fusion
frameworks.

Figs. XI and XII show an example from the car_forest_tree_tunnel se-
quence, respectively spotlighting fusion strategies applied without re-retraining
the stereo backbone (the former) or when the network is trained from scratch to
perform fusion (the latter), processing MDES [12] representations in both cases.
In the former case, Guided [13] is nearly ineffective, whereas both VSH and BTH
largely improve the results. In the latter case, Concat [6] and Guided+Concat
[15] can reduce the error by about 40%, yet far behind the improvement yielded
by BTH (more than 70% error rate reduction).
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Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] VSH BTH

1PE: 48.09% 1PE: 46.59 % 1PE: 11.78 % 1PE: 12.20 %
Fig.XIII: Qualitative results – baseline stereo backbone. Results on
spot_indoor_obstacles, with Voxel Grid [16] representation.

Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] Concat [6] Guided+Concat [15] BTH

1PE: 43.74% 1PE: 40.13 % 1PE: 24.94 % 1PE: 18.21 % 1PE: 11.56 %
Fig.XIV: Qualitative results – re-trained stereo backbone. Results on
spot_indoor_obstacles, with ERGO-12 [17] representation.

Figs. XIII and XIV show an example from an indoor sequence – i.e.,
spot_indoor_obstacles – again when not re-training or training the stereo back-
bone from scratch. In the former case, we report results by processing Voxel Grid
representations [16], which confirm the trend observed in the previous example.
Indeed, our proposal confirms again the best solution for exploiting raw LiDAR
measurements and improve the accuracy of event-based stereo networks.

Figs. XV and XVI showcase another example from outdoor, with a person
being framed by the event cameras – i.e., spot_outdoor_day_skatepark_1. In
this case, we report results obtained by processing TORE [3] representations
when re-training the stereo backbones, confirming again how our proposal con-
sistently yields the largest drop of the error rate independently of the chosen
representation.

To conclude, we evaluate the effectiveness of different fusion strategies against
partially filled raw LiDAR depth maps both in indoor (i.e., falcon_indoor_-
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Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] VSH BTH

1PE: 63.98% 1PE: 63.07 % 1PE: 36.33 % 1PE: 29.27 %
Fig.XV: Qualitative results – baseline stereo backbone. Results on
spot_outdoor_day_skatepark_1, with MDES [12] representation.

Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] Concat [6] Guided+Concat [15] BTH

1PE: 60.89% 1PE: 58.28 % 1PE: 58.22 % 1PE: 55.54 % 1PE: 22.22 %
Fig.XVI: Qualitative results – re-trained stereo backbone. Results on
spot_outdoor_day_skatepark_1, with TORE [3] representation.

flight_1 ) and outdoor (i.e., falcon_outdoor_day_penno_parking_1 ) scenarios.
The former case (Fig. XVII) highlights the behaviour of not-retrained stereo
backbones at recovering fine details such as the tip of the cone and the upper
part of the left-most foreground object. Compared to other methodologies, BTH
manages to preserve more thin details. Furthermore, the latter case (Fig. XVIII)
stress the performance of retrained stereo backbones in case of large uniform
areas – i.e., the road. Guided [13] is almost ineffective, while using both Concat
[6] and Guided+Concat [15] leads to 20% error reduction. However, when dealing
with large homogeneous regions where LiDAR coverage is limited, BTH clearly
dominates alternative methods, achieving a remarkable 80% reduction in error.
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Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] VSH BTH

1PE: 50.15% 1PE: 49.21 % 1PE: 27.86 % 1PE: 28.02 %
Fig.XVII: Qualitative results – baseline stereo backbone. Results on fal-
con_indoor_flight_1, with Voxel Grid [16] representation.

Event left Event right Raw LiDAR Ground-truth

Baseline Guided [13] Concat [6] Guided+Concat [15] BTH

1PE: 94.85% 1PE: 90.37 % 1PE: 74.83 % 1PE: 74.94 % 1PE: 14.02 %
Fig.XVIII: Qualitative results – re-trained stereo backbone. Results on fal-
con_outdoor_day_penno_parking_1, with MDES [12] representation.
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