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Abstract. Adversarial attacks on point clouds play a vital role in assess-
ing and enhancing the adversarial robustness of 3D deep learning models.
While employing a variety of geometric constraints, existing adversarial
attack solutions often display unsatisfactory imperceptibility due to in-
adequate consideration of uniformity changes. In this paper, we propose
FLAT, a novel framework designed to generate imperceptible adversarial
point clouds by addressing the issue from a flux perspective. Specifically,
during adversarial attacks, we assess the extent of uniformity alterations
by calculating the flux of the local perturbation vector field. Upon iden-
tifying a high flux, which signals potential disruption in uniformity, the
directions of the perturbation vectors are adjusted to minimize these
alterations, thereby improving imperceptibility. Extensive experiments
validate the effectiveness of FLAT in generating imperceptible adversar-
ial point clouds, and its superiority to the state-of-the-art methods.
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1 Introduction

With advancements in deep learning techniques [20, 39] and the growing avail-
ability of affordable depth-sensing devices, deep neural network (DNN)-driven
3D point cloud perception has become a leading approach. Nevertheless, recent
studies have highlighted the vulnerability of DNN classifiers to adversarial at-
tacks [26,50]. Notably, subtle perturbations to the input point clouds can result in
incorrect model predictions, posing significant challenges for real-world deploy-
ment. Consequently, exploring adversarial attacks on point clouds is essential for
evaluating and improving the adversarial robustness of 3D deep learning models.

In achieving imperceptibility for adversarial attacks on 3D point clouds,
methods predominantly fall into two categories. The first category encompasses
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Fig. 1: Visualization of adversarial attacks on 3D point clouds: (a) the original point
cloud; (b) the adversarial point cloud generated by SI-Adv; (c) the adversarial point
cloud generated by FLAT. Notably, FLAT achieves greater imperceptibility by pre-
serving the uniformity of the point cloud, as compared to SI-Adv.

the incorporation of recognizable geometries, such as spheres or airplanes [50],
or the application of physical-intuitive deformations [42], both designed to be
hidden in the human psyche. The second, more widely-adopted category, em-
phasizes constraints to minimize perturbations. Traditional methods within this
paradigm employ metrics such as the l2-norm, Chamfer distance, and Hausdorff
distance. Recent advancements, however, have sought to harness the intrinsic
geometric properties of 3D point clouds, focusing on minimizing distortions by
constraining geometric regularity [46] or guiding perturbations along established
normal [25] or tangential directions [16]. While the distortion has been notably
reduced, traces of adversarial attacks remain perceptible.

This raises a question: why are adversarial point clouds still perceptible un-
der these geometric constraints? We observe that adversarial manipulation, even
under these constraints, significantly alters the uniformity of the perturbed sam-
ples relative to their original configuration, see the zoomed areas of divergence
and convergence in Fig. 1(b). Since the human eye can easily notice changes in
uniformity, mitigating these variations during adversarial attacks could enhance
their imperceptibility. However, preserving uniformity presents a challenge as it
is a regional attribute, characterized by the anisotropic perturbation of points [4],
rather than a property of individual points. This distinction is often overlooked
by traditional methods.

In this paper, we introduce a novel FLux-aware imperceptible adversarial
ATtacks (FLAT) on 3D point clouds. By attributing the issue of significant
alterations in uniformity to irregular flow of points, we propose to handle it
through a novel flux perspective. Specifically, we adapt the flux concept to per-
turbation vectors, creating a simplified flux measure to monitor the uniformity
changes, e.g., divergence within local regions, during attacks. When encountering
significant flux, we suppress it by fine-tuning the directions of the perturbation
vectors for preserving uniformity. This flux-aware refinement effectively results
in enhanced imperceptibility, as illustrated in Fig. 1(c). We validate the effec-
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tiveness of our FLAT in attacking common DNN classifiers for 3D point clouds
under various metrics. Extensive experimental results show that the adversar-
ial point clouds generated by FLAT are significantly more imperceptible than
those generated by state-of-the-art methods. Besides, we demonstrate that our
flux-based approach can be readily integrated with other attack techniques to
improve their imperceptibility.

Overall, our contribution is summarized as follows:

– We are the first to attribute the inadequate imperceptibility of adversarial
attacks on 3D point clouds to the large deviation of uniformity.

– We develop a novel adversarial attack framework that preserves point cloud
uniformity by suppressing the simplified flux of perturbation vectors.

– We show by experiments that our FLAT with preserving uniformity achieves
superior performance in terms of imperceptibility under various metrics.

2 Related Work

Adversarial Attacks on Point Clouds. Adversarial attacks, designed to
craft samples that mislead target models, were initially developed for 2D image
classification [38] and subsequently adapted for 3D point clouds. These 3D point
cloud attacks fall into three categories: addition-based attacks [50]; deletion-
based attacks [47, 52, 54, 57]; and perturbation-based attacks [18, 50, 56]. Our
study concentrates on the perturbation-based category.

Early perturbation-based attacks [26, 50] adapted C&W [5] and FGSM [11]
from 2D to 3D. Zhao et al . [56] introduced isometric transformations for manip-
ulating point clouds, and Kim et al . [18] focused on minimal point perturbations.
Generative methods by Lee et al . [21] and Zhou et al . [58] explored latent space
noise and GANs. Tang et al . [42] altered the 2-manifold surface. Despite high
success rates, improving attack imperceptibility remains challenging.
Imperceptibility of Adversarial Attacks. To ensure the imperceptibility of
attacks, common constraints include managing the l2-norm, Chamfer and Haus-
dorff distance [26,50,58]. GeoA3 [46] focuses on preserving geometric regularity.
Directional perturbations guided by normal vectors [25,41] and tangential plane
perturbations [16] have also been explored. Tang et al . [40] adapted constraints
to follow these directions. Our framework emphasizes the often-overlooked role of
uniformity deviations, introducing flux metrics to measure and regulate changes
in uniformity. Unlike GeoA3 [46], which aims for uniform distribution, we ensure
consistency in uniformity before and after perturbations.
Uniformity of 3D Point Clouds. Uniform distribution in 3D point clouds
is essential for accurate geometry capture, high-quality mesh generation in sur-
face reconstruction [2, 15], and effective noise removal in point cloud denoising
while preserving structural integrity [13, 27]. It also improves segmentation and
classification accuracy [19], and is crucial for applications like architectural mod-
eling [44] and autonomous navigation [24]. This paper enhances the impercepti-
bility of adversarial point clouds by preserving uniformity during attacks.
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Deep Point Cloud Classification. Deep learning techniques [10] for point
cloud classification have significantly advanced [3, 7, 12, 36]. Initial approaches
adapted 2D methodologies using 3D voxel grids [22,28]. The emergence of Point-
Net enabled direct point cloud processing [30], followed by innovations like hi-
erarchical structures [31], point-specific convolutions [23, 43, 48, 51], and graph-
based CNNs [6, 33, 34, 45, 55]. For more comprehensive reviews, refer to survey
papers [12,17]. Our research aims to attack these classifiers imperceptibly.

3 Problem Formulation

Typical Adversarial Attacks. Given a point cloud P ∈ Rn×3 and its label
y ∈ {1, ...,K}, where K is the category number, perturbation-based adversarial
attack aims to mislead a 3D deep classification model F by feeding an adversarial
point cloud Padv instead of P via applying an intentionally designed perturba-
tion, such that the model F makes an error prediction,

P adv
i = Pi + σPi

·
−→
dPi

, (1)

where σPi
is the perturbation size for the i-th point in P, i.e., Pi, and

−→
dPi

is the
unit perturbation direction. Formally, the perturbation σPi ·

−→
dPi can be obtained

by solving the below general-form equation, e.g., via gradient descent,
minLmis(F ,Padv, y) + λ1D(P,Padv), (2)

where Lmis(·, ·, ·) is the loss to promote misclassification, e.g., the negation of
cross-entropy loss, Padv is the adversarial point clouds consists of {P adv

i }i=1:n,
D(·, ·) is the constraints on distortion to facilitate imperceptibility, and λ1 is a
weighting parameter. Here, all referenced attacks are untargeted unless specified
otherwise.

To achieve imperceptibility, adversarial attack solutions typically apply geo-
metric constraints such as l2-norm, Chamfer distance, Hausdorff distance, and
curvature [46] to limit perturbations. However, these methods neglect an essen-
tial aspect: uniformity, a characteristic whose alterations are readily detected by
the human eye.
Uniformity-Preserving Adversarial Attacks. To mitigate changes in uni-
formity, we formulate a novel type of Uniformity-Preserving Adversarial Attacks,
building upon Eq. (2) with an additional constraint,

Uniformity(Ω(P adv
i )) = Uniformity(Ω(Pi)), (3)

where Ω(Pi) denotes the local region centered at Pi, represented discretely by a
set of points, and Uniformity(·) is the operator employed to compute uniformity.

By preserving the uniformity of local regions, this type of adversarial attack
achieves better imperceptibility compared to conventional methods.

4 Method

In this section, we start by introducing the concept and mathematical definition
of flux, as well as its association with point cloud uniformity. Following that, we
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Fig. 2: Workflow of FLAT. Given an input point cloud, the model iteratively generates
perturbation vectors for each local region. These vectors are then refined by measuring
the simplified flux and applying suppression, thus ensuring the preservation of local
shape uniformity.

delve into how flux can be utilized to maintain point cloud uniformity. Finally, we
demonstrate the application of these principles in implementing the flux-aware
imperceptible attacks.

4.1 Preliminary

Definition of Flux. Flux is commonly used to describe the magnitude of a
vector field’s flow through a surface [1]. Given a 3D vector field F and a simple,
directed surface Ω, the flux of F through Ω is defined as the integral of the
component of the field vector

−→
f at each point on the surface in the direction of

the surface’s normal vector,

ΦF(Ω) =

∫∫
Ω

−→
f · −→n dS, (4)

where dS represents the integration over infinitesimal segments of the surface
Ω, and −→n signifies the outward-pointing unit normal vector at each point on Ω.
Flux and Point Cloud Uniformity. For a closed surface, by analogizing the
movement of points within the region to the flow of a field, the flux values can
reflect a trend towards divergence and convergence within that region. Hence,
employing the flux concept holds promise for managing uniformity alterations
in point clouds during adversarial attacks.

4.2 Flux-based Uniformity Preserving

For perturbation vectors V = {σPi ·
−→
dPi}i=1:n calculated for an attack, our

objective is to modify V in a way that, upon application, preserves the uniformity
of the point clouds P.

Given a subset of perturbation vectors within Ω(Pi), i.e., Vi = {σQ ·
−→
dQ|Q ∈

Ω(Pi)}, we employ the concept of flux to develop a metric that indicates unifor-
mity changes in this subset. While a direct method would involve interpolating
these vectors into a continuous field and integrating within Ω(Pi), as described
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in Eq. (4), the irregularity and sparsity of the vectors make managing this inter-
polation and integration challenging. Therefore, we opt for a simplified approach
that concentrates simply on the discrete vectors.
Simplified Flux for Perturbation Vector Field. In the region Ω(Pi), we
assume the field intensity to be constant along the perturbation vector

−→
dQ, i.e.,

σQ, originating from point Q, see the right part of Fig. 2. In this configuration,
each perturbation vector intersects a point on the boundary surface. Therefore,
the simplified flux can be viewed as the integration of vectors at these specific
intersection points,

ΦVi
(Ω(Pi)) =

∑
Q∈Ω(Pi)

σQ ·
−→
dQ · −→nQ,

=
∑

Q∈Ω(Pi)

AQ

√
1 +BQ cos2(θQ),

(5)

where

AQ =
σQ · |

−→
dQ|

r

√
r2 − |

−−→
PiQ|2,

BQ =
|
−−→
PiQ|2

r2 − |
−−→
PiQ|2

,

−→nQ is the unit outward normal vector at the intersection point on the boundary of
Ω(Pi), where

−→
dQ meets, starting from point Q. The angle θQ is defined between

−→
dQ and

−−→
PiQ, with r representing the radius of the local shape.

Flux Suppression by Rotating Perturbation Vectors. To preserve the
uniformity of point clouds during attacks, we suppress the simplified flux of the
perturbation vector field. Specifically, we utilize gradient descent to adjust Θ,

Θ
′
= Θ− α

∂ΦVi

∂Θ
,

with Θ = {θQ|Q ∈ Ω(Pi)},
∂ΦVi

∂θQ
= −AQBQ sin(θQ) cos(θQ)√

1 +BQ cos2(θQ)
,

(6)

where α denotes the step size for angle adjustment.
By suppressing flux in regions with significant values, point divergence is

avoided. Essentially, by preventing divergence locally, convergence effects in other
regions are also precluded. As a result, the uniformity of the point cloud is
preserved after perturbation.

4.3 Flux-aware Imperceptible Adversarial Attacks

Given a point cloud P, we utilize farthest point sampling (FPS) to select m
center points. Subsequently, local regions are constructed around these points,
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each with a radius of r. Following this, we generate initial perturbation for each
point in the point cloud, refine their directions to maintain uniformity from a
flux perspective, and then determine their magnitudes, see Fig. 2.
Generating Initial Perturbations. We employ IFGM [8] to generate initial
perturbations with a consistent magnitude. It is noteworthy that alternative
methods could also be employed to similar effect.
Refining Perturbation Directions with Flux. Within each local region,
we calculate the simplified flux. If the region exhibits a substantial flux value,
exceeding a threshold t, we adjust the directions of the perturbation vectors
within it as described in Sec. 4.2 to preserve uniformity.
Determining Perturbation Magnitudes. With the refined perturbation
directions established, we proceed to determine perturbation magnitudes follow-
ing [25]. By iteratively executing the above three steps, FLAT creates highly im-
perceptible adversarial point clouds. Note that we initially considered optimizing
both perturbation direction and magnitude simultaneously for flux suppression.
However, this approach tended to favor reducing perturbation magnitude. Thus,
we opt for separate optimization.

5 Experimental Results

5.1 Experimental Setup

Implementation. The FLAT framework is implemented in PyTorch [29]. We
start by sampling m = 20 key points using the farthest point sampling (FPS)
method. Around these points, we define local regions with a radius of r = 0.1
for simplified flux computation. We focus on regions demonstrating significant
flux, particularly those whose flux values surpass the threshold t, determined
as the median flux among all regions. To suppress deviations in uniformity, we
adjust the perturbation directions using a step size of α = 0.02, over a total of 8
cycles. All experiments are executed on a workstation equipped with dual 2.40
GHz CPUs, 128 GB of RAM, and four NVIDIA RTX 3090 GPUs.
Datasets. We adopt two public datasets for evaluation: ModelNet40 [49] and
ShapeNet Part [53]. For ModelNet40, we designate 9,843 point clouds for training
and 2,468 for testing. For ShapeNet Part, we allocate 14,007 point clouds for
training and 2,874 for testing. Particularly, we uniformly sample 1,024 points
from the surface of each object and rescale them into a unit cube following [30].
Victim Classifiers. We use four well-established deep point cloud classifiers
as victim models, including PointNet [30], PointNet++ [31], DGCNN [45], and
PointConv [48]. We train these models according to their original papers.
Baseline Attack Methods. We assess the effectiveness of our approach by
comparing it with six state-of-the-art techniques: the gradient-based IFGM [8]
and PGD [8], the direction-based SI-Adv [16] and ITA [25], and the optimization-
based methods GeoA3 [46] and 3d-Adv [50]. This diverse set of attacks provides
a robust baseline to validate the effectiveness of our approach.
Evaluation Setting and Metrics. To ensure fair comparisons, we configure
each attack method to attain its maximum attack success rate (ASR), which is
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Table 1: Comparison of perturbation sizes needed by various methods to achieve their
highest ASR in untargeted attacks.

Model Attack
ModelNet40 ShapeNet Part

ASR CD HD l2 GR Curv EMD ASR CD HD l2 GR Curv EMD
(%) (10−4) (10−2) (10−2) (10−2) (%) (10−4) (10−2) (10−2) (10−2)

P
oi

nt
N

et

PGD 100 7.155 5.025 0.981 0.302 1.624 2.315 100 13.172 17.068 1.569 0.521 3.679 3.358
IFGM 100 4.039 5.565 0.789 0.314 0.775 0.864 100 3.328 10.269 0.785 0.408 0.619 0.556
GeoA3 100 4.646 0.497 1.307 0.121 0.396 2.319 100 7.531 1.444 2.655 0.146 0.465 4.104
3d-Adv 100 6.115 4.372 0.863 0.250 1.215 1.410 100 15.659 5.495 1.787 0.279 4.006 3.693
SI-Adv 100 2.768 2.595 0.731 0.220 0.271 0.725 100 3.435 3.692 0.881 0.233 0.441 0.825
ITA 100 2.747 0.414 0.534 0.122 0.555 1.214 100 5.872 1.917 1.002 0.181 1.016 2.035
Ours 100 1.539 0.371 0.426 0.114 0.249 0.460 100 1.905 1.327 0.545 0.120 0.301 0.284

P
oi

nt
N

et
+

+

PGD 100 5.182 0.636 0.753 0.125 1.508 2.146 100 10.090 3.257 1.342 0.215 3.969 3.328
IFGM 100 3.558 1.162 0.640 0.146 1.149 1.454 100 4.532 3.608 0.548 0.220 1.824 1.584
GeoA3 100 6.579 0.461 1.615 0.114 0.762 2.919 100 7.701 0.847 2.875 0.105 1.375 4.176
3d-Adv 100 8.915 3.564 1.535 0.141 1.288 2.784 100 9.564 3.778 2.014 0.197 3.021 3.590
SI-Adv 100 9.399 2.377 1.422 0.185 1.061 2.684 100 9.266 3.233 1.535 0.203 1.146 2.811
ITA 100 6.792 0.708 0.998 0.121 3.533 2.272 100 5.202 0.802 0.999 0.110 3.423 2.152
Ours 100 1.156 0.325 0.337 0.110 0.373 0.491 100 3.067 0.729 0.349 0.102 1.701 1.295

D
G

C
N

N

PGD 100 19.968 5.098 1.933 0.267 4.924 4.785 100 63.556 27.557 5.224 0.511 7.275 9.233
IFGM 100 15.791 12.391 1.622 0.363 2.849 3.777 100 19.623 26.040 2.069 0.504 4.954 4.387
GeoA3 100 7.566 0.546 1.585 0.119 0.741 3.083 100 27.612 3.748 5.798 0.199 1.695 7.502
3d-Adv 100 10.345 3.807 3.589 0.227 5.997 6.685 100 21.553 8.531 2.258 0.282 5.119 4.628
SI-Adv 100 7.146 1.691 1.087 0.143 0.666 2.495 100 11.685 3.019 1.772 0.160 2.054 3.646
ITA 100 3.249 0.524 0.552 0.114 0.971 1.359 100 27.633 4.597 2.492 0.244 3.847 4.696
Ours 100 2.576 0.420 0.540 0.100 0.556 1.027 100 9.003 4.693 1.653 0.135 0.112 3.465

P
oi

nt
C

on
v

PGD 100 14.551 2.216 1.442 0.184 3.491 3.862 100 42.202 9.949 3.784 0.252 6.866 7.277
IFGM 100 7.959 2.608 1.015 0.184 1.741 2.427 100 16.139 8.776 1.812 0.231 3.526 3.807
GeoA3 100 6.809 0.644 2.169 0.119 1.119 3.556 100 9.383 1.222 4.224 0.120 1.190 5.391
3d-Adv 100 11.213 1.763 1.179 0.163 3.279 2.807 100 21.034 3.687 2.277 0.193 4.912 4.548
SI-Adv 100 6.060 1.784 0.977 0.144 0.576 2.081 100 11.281 3.500 1.741 0.165 1.949 3.514
ITA 100 5.539 0.480 0.833 0.111 1.904 1.971 100 9.082 1.452 1.375 0.146 3.645 2.925
Ours 100 2.139 0.344 0.478 0.107 0.301 0.975 100 5.034 1.194 0.817 0.117 1.288 1.186

the percentage of adversarial point clouds that successfully fool the victim model.
In this maximal adversarialness condition [37, 42], we assess the imperceptibil-
ity of attacks. Specifically, we employ six widely recognized metrics: Chamfer
distance (CD) [9], Hausdorff distance (HD) [35], l2-norm (l2), curvature (Curv),
geometric regularity (GR) [46], and earth mover’s distance (EMD) [32]. Unless
explicitly mentioned, all discussions regarding attack results are assumed to be
about untargeted attacks.

5.2 Performance Comparison and Analysis

Performance of Untargeted Attacks. We evaluate the ASR and imper-
ceptibility of various adversarial attack methods in an untargeted setting on the
ModelNet40 and ShapeNet Part datasets, with results detailed in Tab. 1. It is
observed that all these adversarial attack methods can achieve 100% ASR. How-
ever, methods like PGD, which impose larger perturbations in a single iteration,
result in greater distortion and thus underperform across most metrics due to
their lack of subtlety. In contrast, direction-based methods such as SI-Adv and
ITA demonstrate lower distortion, showcasing their efficacy in maintaining at-
tack stealth. Particularly, by modulating the flux of perturbation vector fields
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Fig. 3: Visualizations of original and adversarial point clouds generated to fool Point-
Net on ModelNet40 by various adversarial attack methods.

during attacks, our FLAT outperforms these state-of-the-art methods in the
majority of metrics, confirming its effectiveness and superiority.
Visualization of Adversarial Point Clouds. To vividly showcase the en-
hanced imperceptibility afforded by our approach, we present visualizations of
adversarial examples crafted using diverse attack methodologies for seven dis-
tinct classes from ModelNet40, designed to deceive PointNet, as depicted in
Fig. 3. The adversarial point clouds generated by PGD and IFGM reveal pro-
nounced outliers due to their relatively lax deformation constraints. In contrast,
GeoA3, which incorporates geometric constraints such as curvature, tends to
produce samples with fewer outliers. SI-Adv and ITA, which utilize geometric
characteristics for perturbation along tangential and normal vectors respectively,
also result in fewer discernible outliers. Particularly, by restricting the flux of the
perturbation vector field during the attack process, FLAT generates adversarial
point clouds with surfaces that are noticeably more uniform and nearly devoid
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Table 2: Comparison of perturbation sizes needed by various methods to achieve their
highest ASR in targeted attacks against PointNet and DGCNN on ModelNet40.

Attack
PointNet DGCNN

ASR CD HD l2 GR Curv EMD ASR CD HD l2 GR Curv EMD
(%) (10−4) (10−2) (10−2) (10−2) (%) (10−4) (10−2) (10−2) (10−2)

PGD 100 24.428 2.042 2.630 0.180 1.787 5.548 100 65.040 16.099 9.644 0.416 2.528 14.893
IFGM 100 3.832 1.002 0.676 0.140 0.905 1.534 100 8.912 3.633 1.142 0.199 0.694 2.976
GeoA3 100 6.501 0.620 4.029 0.100 0.314 4.213 100 63.106 10.464 6.272 0.318 1.769 9.234
3d-Adv 100 3.248 1.594 0.614 0.165 0.282 1.440 100 7.266 3.066 0.902 0.172 0.466 2.939
SI-Adv 100 4.185 1.795 1.054 0.144 0.301 1.594 100 13.974 12.761 2.141 0.184 1.309 3.511
ITA 100 38.081 1.889 1.969 0.186 2.011 4.055 100 48.321 1.623 1.542 0.193 2.351 3.553
Ours 100 2.344 1.044 0.594 0.091 0.212 0.793 100 6.198 0.617 1.533 0.109 0.357 2.668

Table 3: Comparison of uniformity changes measured by SDM [14] during attacks on
four classifiers across ModelNet40 and ShapeNet Part.

Attack ModelNet40 ShapeNet Part
PointNet PointNet++ DGCNN PointConv PointNet PointNet++ DGCNN PointConv

IFGM 0.1493 0.1766 0.5049 0.2980 0.1201 0.2849 1.6553 0.2029
GeoA3 0.1956 0.2723 0.2799 0.3079 0.3823 0.3540 2.0009 0.4162
SI-Adv 0.1211 0.4115 0.3599 0.3548 0.1072 0.3488 1.1416 0.3776
ITA 0.1207 0.1756 0.1649 0.2698 0.2995 0.1778 0.4937 0.2465
Ours 0.0972 0.0785 0.1550 0.1420 0.0580 0.1480 0.2886 0.0953

of outliers, thereby affirming the effectiveness and superiority of our method in
terms of imperceptibility.
Performance of Targeted Attacks. To further corroborate the superior-
ity of our approach, we extend our evaluation to the targeted attack setting.
Specifically, we randomly select 25 instances from each of the 10 categories in
the ModelNet40 test set. For each instance, we craft adversarial examples tar-
geting the remaining nine classes, resulting in a total of 2250 targeted attack
point clouds, following the methodology of [50]. The results of these targeted
attacks on PointNet and DGCNN are summarized in Tab. 2. It is observed that
targeted attacks necessitate larger perturbations compared to the untargeted
attacks presented in Tab. 1. Although ITA performed well in the untargeted
setting, its relatively fixed perturbation pattern led to larger CD values in the
targeted scenario. Our method remains consistent, outperforming other tech-
niques across the majority of metrics, which further validates its effectiveness
and superiority.

5.3 Ablation Studies and Other Analysis

Importance of Flux in Uniformity Preserving. To underscore the essen-
tial role of flux in preserving the uniformity of point clouds during adversarial
attacks, we compare the uniformity changes induced by our method with those
brought by state-of-the-art methods. Specifically, we employ the symmetric den-
sity metric (SDM) introduced in [14] to measure differences in nearest neighbor
counts and average distances between original and adversarial point clouds. The
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Fig. 4: Visualization of local regions of adversarial point clouds generated by FLAT
with and without applying flux-based uniformity preservation in attacking PointNet.

Table 4: Comparison of our FLAT solution with a modified version, namely FLAT-
SDM, that utilizes a uniformity-preserving constraint instead of flux adjustment.

Attack ASR CD HD l2 GR Curv EMD SDM [14] Iteration
(%) (10−4) (10−2) (10−2) (10−2)

FLAT-SDM 100 2.502 1.713 0.608 0.214 0.452 0.565 0.084 15
Ours 100 1.539 0.371 0.426 0.114 0.249 0.460 0.097 8

results presented in Tab. 3 demonstrate that our method is more effective in
preserving uniformity.

To better illustrate the effectiveness of our method in preserving uniformity,
we present visualizations of local regions post-attack both with and without flux
suppression. As depicted in Fig. 4, the center point is highlighted in red, while
the surrounding points within its local region are marked in yellow. The adver-
sarial samples generated with flux consideration exhibit only minimal deviations,
closely resembling the original point cloud structure. Conversely, those produced
without considering flux demonstrate noticeable deformations, emphasizing the
crucial role of flux awareness in preserving point cloud uniformity.
Flux-based vs. SDM-based Uniformity Preserving. To further demon-
strate the importance of our flux-based solution, we compare it with a vari-
ant of FLAT, named FLAT-SDM, that incorporates an SDM constraint [14] in
the initial perturbation generation phase to create initial directions with better
awareness of uniformity preservation, yet does not utilize flux for perturbation
direction adjustment. The results in Tab. 4 indicate that directly applying con-
straints can indeed enhance uniformity. Nevertheless, the strong nature of the
constraint complicates the execution of successful attacks. As a result, it requires
15 iterations, as opposed to the original 8, with these additional iterations lead-
ing to a deterioration in other imperceptibility metrics.
Generalization of Flux-based Uniformity Preserving. To evaluate the
generalizability of our flux-based uniformity preservation approach, we incorpo-
rate it into four established iterative adversarial attack methods: PGD, IFGM [8],
SI-Adv [16], and ITA [25]. As demonstrated in Tab. 5, these methods, when aug-
mented with our flux-aware technique, exhibit marked improvements across most
performance metrics under identical parameter settings. To illustrate the impact
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Table 5: Comparison of perturbation sizes required by different methods, both with
and without flux-based uniformity preservation, to achieve their highest ASR in untar-
geted attacks against PointNet and DGCNN on ModelNet40.

Attack
PointNet DGCNN

ASR CD HD l2 GR Curv EMD ASR CD HD l2 GR Curv EMD
(%) (10−4) (10−2) (10−2) (10−2) (%) (10−4) (10−2) (10−2) (10−2)

PGD 100 7.155 5.025 0.981 0.302 1.624 2.315 100 19.968 5.098 1.933 0.267 4.924 4.785
PGD+flux 100 6.259 3.721 0.894 0.265 1.529 2.220 100 18.100 3.285 1.799 0.221 4.678 4.549

IFGM 100 4.039 5.565 0.789 0.314 0.775 0.864 100 15.791 12.391 1.622 0.363 2.849 3.777
IFGM+flux 100 2.944 4.036 0.662 0.276 0.648 0.712 100 12.270 9.869 1.167 0.244 1.982 2.287

SI-Adv 100 2.768 2.595 0.731 0.220 0.271 0.725 100 7.146 1.691 1.087 0.143 0.666 2.495
SI-Adv+flux 100 2.165 1.914 0.580 0.187 0.202 0.609 100 7.055 1.676 1.037 0.126 0.658 2.309

ITA 100 2.747 0.414 0.534 0.122 0.555 1.214 100 3.249 0.524 0.552 0.114 0.971 1.359
ITA+flux 100 2.253 0.579 0.506 0.119 0.534 1.022 100 2.845 0.422 0.431 0.103 0.871 1.207

Fig. 5: Visualization of adversarial point clouds generated by various attack methods
in attacking PointNet, with and without integrating flux-based uniformity preservation.

of flux-based uniformity preservation more vividly, we visualize the adversarial
point clouds generated with and without this module in Fig. 5. It is evident that
the integration of flux-based uniformity preservation significantly enhances the
imperceptibility of the attack, exemplified by a substantial reduction in outliers.
Consequently, we affirm the broad applicability of our flux-based uniformity
preservation strategy.
Impact of Initial Perturbation Directions. We assess the influence of
initial perturbation directions on the effectiveness of adversarial attacks by con-
sidering three alternatives: (1) gradient descent direction as implemented in
IFGM [8]; (2) tangent plane direction as utilized in SI-Adv [16]; (3) normal
vector direction as adopted in ITA [25]. The comparative analysis, depicted in
Fig. 6, reveals only slight variations in the resulting distortions across these
initial directions, underscoring our method’s robustness. Notably, the gradient
descent direction, as derived from IFGM, yield the best results; hence, we select
it in our solution.
Impact of Local Region Number and Size. We evaluate the impact of
local region number and size on the performance of our flux-based uniformity
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Fig. 6: Comparison of FLAT
perturbation sizes with vari-
ous initial directions.

Fig. 7: Comparison of flux values and perturbation
sizes for FLAT across varying numbers of local regions
and different radii.

Table 6: Comparison of perturbation size and running time for FLAT in attacking
PointNet using both formal and simplified flux methods.

Flux ASR CD HD l2 GR Curv EMD Time
(%) (10−4) (10−2) (10−2) (10−2) (s)

Formal flux 100 1.73 1.03 0.41 0.20 0.27 0.34 150.07
Ours 100 1.54 0.37 0.43 0.11 0.25 0.46 2.02

preservation. As illustrated in Fig. 7(a), augmenting the number of local regions
corresponds to reduced l2 and EMD metrics, indicating enhanced flux suppres-
sion. This trend stabilizes upon reaching 20 regions. As for the simplified flux
values, we do not observe any significant variation. Furthermore, we analyze the
influence of the radius in Fig. 7(b). It reveals an initial reduction in l2 and EMD
metrics with radius expansion, suggesting a wider influence on point suppression.
This trend, however, inverts at a radius exceeding 0.1, where metrics begin to
climb again. Notably, flux magnitude continuously grows with the inclusion of
more points. Hence, we adopt 20 local regions with radius of 0.1 in our solution.
Formal Flux Based on Continuous Field. To assess the performance im-
pact of our simplified flux approximation, we employ a linear radial basis function
to interpolate a continuous field within each local region. This interpolation is
based on the Euclidean distances between virtual points within the region and
the fixed discretized points. As reported in Tab. 6, the results from attacking
PointNet indicate that our simplified version performs comparably to the formal
flux based on a continuous field. Moreover, our method incurs significantly lower
computational costs than the formal flux. These findings collectively validate the
efficiency and effectiveness of our simplified flux.
Analysis on Undefendability and Transferability. To evaluate the re-
silience of our method against different defense mechanisms, we compare it with
other adversarial attack techniques targeting PointNet, under two defense strate-
gies: statistical outlier removal (SOR) and DUP-Net [59]. The results, depicted
in Fig. 8(a,b), show that all attack methods, FLAT included, experience reduced
ASR when countered with these defenses, with DUP-Net causing a more signif-
icant decrease. While methods like IFGM and PGD achieve higher ASRs, they
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Table 7: The average time required by different methods to generate an adversarial
example to attack PointNet on ModelNet40.

Attack PGD IFGM GeoA3 3d-Adv SI-Adv ITA Ours
Time (s) 0.440 0.322 66.093 26.815 1.059 44.529 2.020

Fig. 8: Visualization of (a-b) the undefendability of different methods under the SOR
and DUP-Net defense [59], and (c-d) the transferability of different methods from
PointNet to DGCNN and from PointNet to PointConv.

do so at the cost of greater distortion. Conversely, our approach results in lower
distortion while still achieving comparatively high ASR, showcasing its superior
ability to withstand defenses.

Additionally, we assess the transferability of FLAT and other methods by
launching attacks on one classifier and testing the generated adversarial point
clouds on other classifiers. The outcomes, showcased in Fig. 8(c,d), highlight a
notable decline in ASR after transfer, with all methods dropping below 50%.
Our method not only shows a competitive ASR but also the least amount of
distortion, validating its capability to strike a balance between successful attacks
and maintaining imperceptibility.
Analysis on Time Complexity. To assess the time efficiency of our method,
we report the average minimal time required by different methods to success-
fully generate an adversarial example to attack PointNet on ModelNet40, as
shown in Tab. 7. The results demonstrate that our method’s time complexity is
competitive compared to existing approaches.

6 Conclusion

In this paper, we have proposed FLAT, a novel flux-aware attack framework for
generating imperceptible adversarial point clouds. The rationale involves model-
ing adversarial perturbations as a vector field and subsequently suppressing their
flux within localized regions to preserve point cloud uniformity. Extensive ex-
periments validate that FLAT generates adversarial point clouds with enhanced
imperceptibility. We hope our work can inspire further research into enhancing
the imperceptibility of 3D adversarial attacks. In the future, we plan to delve
deeper into field-based factors to continue advancing the imperceptibility.
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