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Abstract. Large vision-language models (VLMs) have recently achieved
remarkable progress, exhibiting impressive multimodal perception and
reasoning abilities. However, effectively evaluating these large VLMs re-
mains a major challenge, hindering future development in this domain.
Traditional benchmarks like VQAv2 or COCO Caption provide quantita-
tive performance measurements but lack fine-grained ability assessment
and robust evaluation metrics. Meanwhile, subjective benchmarks, such as
OwlEval, offer comprehensive evaluations of a model’s abilities by incor-
porating human labor, which is not scalable and may display significant
bias. In response to these challenges, we propose MMBench, a bilingual
benchmark for assessing the multi-modal capabilities of VLMs. MMBench
methodically develops a comprehensive evaluation pipeline, primarily com-
prised of the following key features: 1. MMBench is meticulously curated
with well-designed quality control schemes, surpassing existing similar
benchmarks in terms of the number and variety of evaluation questions
and abilities; 2. MMBench introduces a rigorous CircularEval strategy
and incorporates large language models to convert free-form predictions
into pre-defined choices, which helps to yield accurate evaluation results
for models with limited instruction-following capabilities. 3. MMBench
incorporates multiple-choice questions in both English and Chinese ver-
sions, enabling an apples-to-apples comparison of VLMs’ performance
under a bilingual context. To summarize, MMBench is a systematically
designed objective benchmark for a robust and holistic evaluation
of vision-language models. We hope MMBench will assist the research
community in better evaluating their models and facilitate future progress
in this area. MMBench has been supported in VLMEvalKit1.

1 Introduction

Recently, notable progress has been achieved within the realm of large language
models (LLMs). For instance, the latest LLMs, such as OpenAI’s ChatGPT
1 https://github.com/open-compass/VLMEvalKit

https://mmbench.opencompass.org.cn/home
https://github.com/open-compass/VLMEvalKit
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Fig. 1: Results of eight representative large vision-language models (VLMs)
across the 20 ability dimensions defined in MMBench-test.
and GPT-4 [26], have demonstrated remarkable reasoning capabilities that are
comparable to, and in some cases, even surpass human capabilities. Drawing
inspiration from these promising advancements in LLMs, large vision-language
models (LVLMs) have also experienced a revolutionary transformation. Notable
works, such as GPT-4v [26], Gemini-Pro-V [31] and LLaVA [22], have demon-
strated enhanced capabilities in image content recognition and reasoning within
the domain of vision-language models, exhibiting superior performance compared
to earlier works. Nevertheless, a large proportion of the early studies [14,22,41]
tend to emphasize showcasing qualitative examples rather than undertaking
comprehensive and quantitative experiments to thoroughly assess their model
performance. The lack of quantitative assessment poses a considerable challenge
for comparing various models. Recent studies have primarily explored two ap-
proaches to conduct quantitative evaluations. The first approach involves utilizing
existing public datasets [7,15] for objective evaluation, while the second approach
employs human annotators [35,36] to perform subjective evaluations. However,
it is worth noting that both approaches exhibit some inherent limitations.

A multitude of public datasets, such as VQAv2 [15], COCO Caption [7],
GQA [18], and OK-VQA [24], have long served as valuable resources for the
quantitative evaluation of VLMs. These datasets offer objective metrics, includ-
ing accuracy, BLEU, CIDEr, etc. However, when employed to evaluate more
advanced LVLMs, these benchmarks encounter the following challenges. 1. False
Negative Issues: Most existing evaluation metrics require an exact match
between the prediction and the reference target, leading to potential limitations.
For instance, in the VQA task, even if the prediction is “bicycle” while the
reference answer is “bike”, the existing metric would assign a negative score to
the prediction, resulting in a considerable number of false-negative samples. 2.
Lacking Finegrained Analysis: Current public datasets predominantly focus
on evaluating a model’s performance on specific tasks, offering limited insights
into the fine-grained capabilities of these models. Thus, they provide insufficient
feedback regarding potential directions for future improvements.

Given the aforementioned challenges, recent studies, such as OwlEval [36]
and LVLM-eHub [35] propose human-involved subjective evaluation strategies,
aiming to address existing methods’ limitations by incorporating human judgment
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and perception in the evaluation process. OwlEval artificially constructs 82 open-
ended questions based on images from public datasets and employs human
annotators to assess the quality of VLM predictions. Similarly, inspired by
FastChat [39], LVLM-eHub develops an online platform where two models are
prompted to answer the same question related to an image. A participant then
compares the answers provided by two models. Subjective evaluation strategies
offer numerous benefits. These include accurate matching, where humans
can precisely correlate a prediction with the target, even when expressed in
different words, and comprehensive assessment, where humans are inclined
to juxtapose two predictions considering multiple facets. The ultimate score
is computed as the mean score across diverse abilities, facilitating a holistic
evaluation of the model’s capabilities.

While subjective evaluation allows for a more comprehensive assessment, it
also introduces new challenges. Firstly, human evaluations are inherently biased.
Consequently, it becomes challenging to reproduce the results presented in a
work with a different group of annotators. Also, existing subjective evaluation
strategies face scalability issues. Employing annotators for model evaluation after
each experiment is an expensive endeavor. Moreover, small evaluation datasets
can result in statistical instability. To ensure a robust evaluation, collecting more
data is necessary, which in turn demands a significant amount of human labor.

In light of the challenges faced by conventional objective and subjective bench-
marks, we propose MMBench, a systematically designed objective benchmark
to robustly evaluate different abilities of LVLMs. MMBench contains over 3000
multiple-choice questions covering 20 ability dimensions, such as object localiza-
tion and social reasoning, for evaluating VLMs. Each ability dimension encom-
passes over 125 questions, with the quantity of questions per ability maintained
at a roughly equal level. The distribution facilitates a balanced and thorough as-
sessment. Since some existing VLMs have limited instruction-following capability
and cannot directly output choice labels (A, B, C, etc.) for multi-choice questions,
the evaluation based on exact matching may not yield accurate and reasonable
conclusions. To reduce the number of false-negative samples during answer match-
ing, we employ LLMs to match a model’s prediction to candidate choices and
then output the label for the matched choice. We conduct a comparison between
LLM-based choice matching and human evaluations, and discovered that GPT-4
can accurately match human assessments in 91.5% of cases, demonstrating its
good alignment and robustness as a choice extractor. To make the evaluation more
robust, we propose a novel evaluation strategy, named CircularEval (details in
Sec. 4.3). We comprehensively evaluate 21 well-known vision-language models
(across different model architectures and scales) on MMBench and report their
performance on different ability dimensions. The performance ranking offers a
direct comparison between various models and provides valuable feedback for
future optimization. In summary, our main contributions are three-fold:

• Systematically-constructed Dataset: To thoroughly evaluate the capacity
of a VLM, we carefully curated a dataset comprising a total of 3,217 meticulously
selected questions, covering a diverse spectrum of 20 fine-grained skills.
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• Robust Evaluation: We introduce a novel circular evaluation strategy (Cir-
cularEval) to improve the robustness of our evaluation process. After that,
GPT-4 is employed to match the model’s prediction with given choices, which
can successfully extract choices even from predictions of a VLM with poor
instruction-following capability.

• Analysis and Observations: We perform a comprehensive evaluation of a
series of well-known vision-language models using MMBench, and the evaluation
results can provide insights to the research community for future improvement.

2 Related Work

2.1 Multimodal Datasets

Large-scale VLMs have shown promising potential in multimodal tasks such as
complex scene understanding and visual question answering. Though qualitative
results so far are encouraging, quantitative evaluation is of great necessity to
systematically evaluate and compare the abilities of different VLMs. Recent works
have evaluated their models on numerous existing public multi-modality datasets.
COCO Caption [7], Nocaps [2], and Flickr30k [38] provide human-generated
image captions and the corresponding task is to describe the image content in the
form of text. Visual question answering datasets, such as GQA [18], OK-VQA [24],
VQAv2 [15], and Vizwiz [16], contain question-answer pairs related to the given im-
age, used to measure the model’s ability on visual perception and reasoning. Some
datasets provide more challenging question-answering scenarios by incorporating
additional tasks. For example, TextVQA [30] proposes questions about text shown
in the image, thus involving the OCR task in question-answering. ScienceQA [23]
focuses on scientific topics, requiring the model to integrate commonsense into
reasoning. Youcook2 [40] replaces images with video clips, introducing additional
temporal information. However, the aforementioned datasets are designed on
specific domains, and can only evaluate the model’s performance on one or several
tasks. Besides, different data formats and evaluation metrics across datasets make
it more difficult to comprehensively assess a model’s capability. Ye et al. [36]
constructed OwlEval, an evaluation set encompassing a variety of visual-related
tasks, albeit of a limited size. Fu et al. [13] introduced MME, which assesses a
VLM’s capabilities from various perspectives at a small scale. Diverging from
prior works, in this paper, we present a novel multimodal benchmark, MMBench.
We also devise a suite of evaluation standards aimed at ensuring the stability
and accuracy of the evaluation results.

2.2 Multimodal Models

Building upon the success of Large Language Models (LLMs) such as GPTs [5,
28,29], LLaMA [33], and Vicuna [39], recent advancements have been made in
multimodal models. Flamingo [3], an early attempt at integrating LLMs into
vision-language pretraining, has made significant strides. To condition effectively
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on visual features, it incorporates several gated cross-attention dense blocks
within pretrained language encoder layers. OpenFlamingo [3] offers an open-
source version of this model. BLIP-2 [20] introduces a Querying Transformer
(Q-former) to bridge the modality gap between the frozen image encoder and the
large language encoder. Subsequently, InstructBLIP [9] extends BLIP-2 [20] with
vision-language instruction tuning, achieving superior performance. MiniGPT-
4 [41] attributes the prowess of GPT-4 [26] to advanced LLMs and proposes
the use of a single projection layer to align the visual representation with the
language model. LLaVA [22] also utilizes GPT-4 to generate instruction-following
data for vision-language tuning. The learning paradigm and the multimodal
instruction tuning corpus proposed by LLaVA are widely adopted by subsequent
works [1,6,8,21]. During the instruction tuning, Low-Rank Adaptation (LoRA [17])
has been adopted by recent works [8,10,36] on language models to achieve better
performance on multimodal understanding. In the realm of proprietary models,
the APIs of multiple powerful VLMs have also been made publicly available to
prosper downstream applications, including GPT-4v [26], Gemini-Pro-V [31], and
Qwen-VL-Max [4]. After conducting a thorough evaluation of these models on
the proposed MMBench, we offer insights for future multimodal research.

3 The construction of MMBench
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Fig. 2: Ability dimensions in MM-
Bench. Currently, MMBench incorporates
three levels of ability dimensions, encom-
passing 20 distinct leaf abilities.

Three characteristics differentiate MM-
Bench from existing benchmarks for
multi-modality understanding: i) MM-
Bench adopts images / problems from
various sources to evaluate diversified
abilities in a hierarchical taxonomy;
ii) MMBench performs rigorous qual-
ity control to ensure the correctness
and validity of testing samples; iii)
MMBench is a bilingual multi-modal
benchmark and enables an apple-to-
apple comparison of VLM performance
under English and Chinese contexts.
Below we will delve into more details
of the construction of MMBench.

3.1 The Hierachical Ability Taxonomy of MMBench

Human possess remarkable perception and reasoning capabilities. These abilities
have been crucial in human evolution and serve as a foundation for complex
cognitive processes. Perception refers to gathering information from sensory
inputs, while reasoning involves drawing conclusions based on this information.
Together, they form the basis of most tasks in the real world, including recognizing
objects, solving problems, and making decisions [12, 25]. In pursuit of genuine
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English Version (Original)
QUESTION. Think about the magnetic force between the 
magnets in each pair. Which of the following statements is true?
A. The magnitude of the magnetic force is smaller in Pair 2.
B. The magnitude of the magnetic force is smaller in Pair 1.
C. The magnitude of the magnetic force is the same in both 
pairs.

Chinese Version (Translated)
QUESTION. 考虑每对磁铁之间的磁力。
以下哪个陈述是正确的？
A. 第二对磁铁之间的磁力大小较小。
B. 第一对磁铁之间的磁力大小较小。
C. 两对磁铁之间的磁力大小相同。

Multi-Modal Questions

Filter TEXT-ONLY Filter WRONG

Text-Only Inference 
with SOTA LLMs

Multi-Modal Inference 
with SOTA VLMs

GPT-4 Qwen-Max

Gemini-Pro

GPT-4v LLaVA-v1.5

Gemini-Pro-Vision …

Human Verification

If the majority is Correct If all VLMs are Wrong

(a) (b)

Fig. 3: The construction of MMBench. (a). The quality control strategies adopted
in MMBench; (b) An illustration of questions in MMBench-CN.

general artificial intelligence (AGI), vision-language models (VLMs) are also
expected to exhibit strong perception and reasoning abilities. Therefore, we adopt
Perception and Reasoning as level-1 (L-1) abilities in our taxonomy. After
that, we incorporate more fine-grained ability dimensions into the taxonomy,
and categorize them into six L-2 and twenty L-3 ability dimensions. We display
the ability taxonomy in Fig. 2 and you can find detailed definitions of each
fine-grained ability in the Appendix.

3.2 Data Collection and Quality Control

Question Collection. In MMBench, we collect vision-language QAs in the
format of multiple-choice problems for each L-3 ability. A problem Pi corresponds
to a quadruple (Qi, Ci, Ii, Ai). Qi denotes the question, Ci represents a set with n
(2 ≤ n ≤ 4) choices c1, c2, ..., cn, Ii corresponds to the image associated with the
question, and Ai is the correct answer. The data — including images, choices, and
questions — are manually collected from multiple sources by a group of volunteers.
For each L-3 ability, we first set an example by compiling 10 ∼ 20 multiple-
choice questions. Then we enlist the volunteers, all of whom are undergraduate
or graduate students from various disciplines, to expand the problem set. The
expansion is based on the ability definition and potential data sources, which
include both public datasets and the Internet. According to the statistics, more
than 80% of questions in MMBench are collected from the Internet. For the
remaining 20% samples, the images are gathered from the validation set of public
datasets (if they exist) while the questions are self-constructed, which is not
supposed to be used for training. In the Appendix, we list data sources used in
collection and provide visualization of samples corresponding to each L-3 ability.
Quality Control. Raw data collected from volunteers may include wrong or
unqualified samples. During investigation, we find that there exist two major
patterns for such samples: i) the answer to the question can be inferred with
text-only inputs, which makes it inappropriate for evaluating the multimodal
understanding capability of VLMs; ii) the sample is simply wrong, either with
a flawed question, choices, or an incorrect answer. We design two strategies
to filter those low-quality samples, which is visualized in Fig. 3(a). We adopt
‘majority voting’ to detect text-only samples: data samples are inferred with
state-of-the-art LLMs (GPT-4 [26], Gemini-Pro [31], etc.). If more than half of
the LLMs can answer the question correctly with text-only inputs, the question
will be manually verified and then removed if it is unqualified. To detect wrong
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Fig. 4: The choice distribution of ground-truth answers and predictions of
sample VLMs (all CircularEval records). Since there exist questions with only
2/3 choices in MMBench, the choice distribution of ground-truth is not exactly even.

samples, we also implement an automatic filtering mechanism. We select several
state-of-the-art VLMs (including both open-source and proprietary ones), to
answer all questions in MMBench . If all VLMs fail to answer the question
correctly, we consider this question potentially problematic. Such questions will
be manually checked and excluded if they are actually wrong. The quality control
paradigm helps us to construct high-quality datasets and can also be used to
clean other existing benchmarks.
MMBench-CN. We further convert the curated MMBench into a Chinese
version. During the process, all content in questions and choices are translated to
Chinese based on GPT-4, except for proper nouns, symbols, and code. All those
translations are verified by humans to ensure the validity. MMBench-CN enables
an apple-to-apple comparison of VLM performance under English and Chinese
contexts. An example in MMBench-CN is illustrated in Fig. 3(b).

3.3 MMBench Statistics

Data Statistics. In the present study, we have gathered a total of 3,217 data
samples spanning across 20 distinct L-3 abilities. We depict the problem counts
of all the 3 levels of abilities in Fig. 2. To ensure a balanced and comprehensive
evaluation for each ability, we try to maintain an even distribution among
problems associated with different abilities during data collection, with at least
125 samples for each L-3 category.
Data Splits. We follow the standard practice in previous works [24] to split
MMBench into dev and test subsets at a ratio of 4:6. For the dev subset, we
make all data samples publicly available along with the ground truth answers for
all questions. For the test subset, only the data samples are released, while the
ground truth answers remain confidential. To obtain the test subset evaluation
results, one needs to submit the predictions to MMBench evaluation server.

4 Evaluation Strategy

In MMBench, we propose a new strategy that yields robust evaluation results
with affordable costs. To deal with the free-form outputs of VLMs, we propose
utilizing state-of-the-art LLMs as a helper for choice extraction. We conduct
extensive experiments to study the LLM-involved evaluation procedure. The
results well support the effectiveness of GPT-4 as a choice extractor. We further
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adopt a new evaluation strategy named CircularEval, which feeds a question
to a VLM multiple times (with shuffled choices) and checks if a VLM succeeds
in all attempts. With CircularEval, we deliver a rigorous evaluation and more
effectively display the performance gap between VLMs.

4.1 LLM-involved Choice Extraction

In our initial attempts to evaluate on MMBench questions, we observed that
the instruction-following capabilities of VLMs can vary significantly. Though
problems are presented as clear multiple-choice questions with well-formatted
options, many VLMs still output the answers in free-form text2, especially for
VLMs that have not been trained with multiple-choice questions or proprietary
VLMs for general purposes (GPT-4v, Qwen-VL-Max, etc.). Extracting choices
from free-form predictions is straight-forward for human beings, but might be
difficult with rule-based matching. To this end, we design a universal evaluation
strategy for all VLMs with different instruction-following capabilities:
Step 1. Matching Prediction. Initially, we attempt to extract choices from
VLM predictions using heuristic matching. We aim to extract the choice label
(e.g., A, B, C, D) from the VLM’s output. If successful, we use this as the
prediction. If not, we attempt to extract the choice label using an LLM.
Step 2. Matching LLM’s output. If step 1 fails, we try to extract the
choice with LLMs (gpt-4-0125 by default). We first provide ChatGPT with
the question, choices, and model prediction. Then, we request it to align the
prediction with one of the given choices, and subsequently produce the label of the
corresponding option. If the LLM finds that the model prediction is significantly
different from all choices, we ask it to return a pseudo choice ‘Z’. In experiments,
we find that for almost all cases we encountered, the LLM can output a valid
choice according to the instruction.

For each sample, we compare the model’s label prediction (after GPT’s
similarity readout) with the actual ground truth label. If the prediction matches
the label, the test sample is considered correct.

4.2 LLM as the Choice Extractor: A Feasibility Analysis

Instruction following (IF) capabilities of VLMs vary a lot. We conduct
pilot experiments to study the effectiveness of LLMs as the choice extractor. As
a first step, we perform single-pass inference on all MMBench questions with
VLMs in our evaluation core set (defined in Sec. 5.2). While there exist VLMs
that perfectly follow the multiple-choice format and achieve high success rates
(> 99%) in heuristic matching, all proprietary models and a significant proportion
of open-source VLMs failed to generate well-formatted outputs. In Table 1, we
list the success rates of different VLMs in heuristic matching3. Among all VLMs,
2 For example, the model output can be the meaning of choice “A” rather than “A” .
3 VLMs that achieve > 99% matching rates are not listed, including LLaVA series,

Yi-VL series, mPLUG-Owl2, OpenFlamingo v2, and CogVLM-Chat.
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Table 1: Statistics of IF capabilities of VLMs.
We report the heuristic matching success rate of VLMs,
and the accuracy before and after LLM-based choice
extraction. In ‘X+Y’, X denotes the matching-based
accuracy, Y indicates the gain of using LLM as the
choice extractor.

Model Name Match Rate DEV Acc Model Name Match Rate DEV Acc

MiniGPT4-7B 85.7 47.9 +8.8 MiniGPT4-13B 84.8 52.1 +8.7
InstructBLIP-7B 93.6 57.1 +4.3 InstuctBLIP-13B 93.7 58.4 +5.6
IDEFICS-9B-Instruct 96.6 58.4 +1.5 Qwen-VL-Chat 93.8 73.3 +3.6
MiniCPM-V 95.2 70.9 +4.5 VisualGLM-6B 64.8 39.9 +23.2

GPT-4v 91.8 81.5 +3.6 GeminiProVision 97.5 81.8 +0.8
Qwen-VL-Plus 77.4 64.5 +15.0 Qwen-VL-Max 96.0 82.0 +3.2

Perfectly Aligned w. Human Mis-Aligned w. Human

Closed-Source LLMs Open-Source LLMs

Fig. 5: Alignment rates be-
tween human and different
LLMs. ‘chatgpt’ is ‘gpt-3.5-
turbo’. Open-source LLMs are
‘chat’ variants.

The original VL problem: 
Q: How many apples are there in the image? 
A. 4;  B. 3;  C. 2;  D. 1 GT: A

4 Passes in Circular Evaluation (choices with circular shift):
1. Q: How many apples are there in the image? Choices: A. 4;  B. 3;  C. 2;  D. 1.  VLM prediction: A. GT: A ✔
2. Q: How many apples are there in the image? Choices: A. 3;  B. 2;  C. 1;  D. 4.  VLM prediction: D. GT: D ✔
3. Q: How many apples are there in the image? Choices: A. 2;  B. 1;  C. 4;  D. 3.  VLM prediction: B. GT: C ✖
4. Q: How many apples are there in the image? Choices: A. 1;  B. 4;  C. 3;  D. 2.  VLM prediction: B. GT: B ✔

VLM failed at pass 3. Thus wrong.

Circular Evaluation

Fig. 6: CircularEval strategy. In CircularEval, a problem is tested multiple times
with circular shifted choices and the VLM needs to succeed in all testing passes. In this
example, the VLM failed in pass 3 and thus considered failed the problem.

VisualGLM achieves the lowest matching success rate, which is merely 65%. For
those VLMs, incorporating LLMs as the choice extractor leads to significant
change in the final accuracy. Another noteworthy thing is that the IF capability
and the overall multimodal understanding capability is not necessarily correlated.
For example, OpenFlamingo v2 [3] demonstrates top IF capability among all
VLMs, while also achieving one of the worst performances on MMBench (Table 3).

Quality and stability of LLM Choice Extractors. For VLM predictions
that cannot be parsed by heuristic matching, we adopt GPT-4 as the choice
extractor. To validate its efficacy, we first build a subset of the inference records.
Each item in the set is a pair of questions and VLM predictions, which cannot
be parsed by step-1 matching. We sample 10% of those hard examples (∼ 420
samples), and ask volunteers to perform manual choice extraction on these data
samples. Such annotations enable us to validate the choice extraction of LLMs,
by measuring their alignment rates with humans.

Fig. 5 reports the alignment rates (extracted choices are exactly the same)
between LLMs and humans. We find that a great number of LLMs can complete
the task well and achieve decent alignment rate with human. Among proprietary
LLMs, GPT-4 achieves the highest level of alignment rate, which is 91.5%, while
GPT-3.5-Turbo and Qwen-Max achieve around 85%. Open-source LLMs achieve
more diversified performance on the choice matching task. InternLM2-7B [32]
achieves an 87% alignment rate and significantly outperforms other open-source
LLMs and GPT-3.5-Turbo. In the following experiments, we adopt gpt-4-0125
as the choice extractor due to its superior alignment capability. Meanwhile, we
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also note that the slight difference in top-performing LLMs’ alignment rates has
little effect on the quantitative performance of VLMs.

4.3 CircularEval Strategy

In MMBench, the problems are presented as multiple-choice questions. Such
formulation poses an evaluation challenge: random guessing will lead to ∼25% Top-
1 accuracy for 4-choice questions, potentially reducing the discernible performance
differences among VLMs. Besides, we noticed that VLMs may prefer to predict a
certain choice among all given choices (Fig. 4), which further amplifies the bias in
evaluation. To this end, we introduce a more robust evaluation strategy termed
Circular Evaluation (or CircularEval). Under this setting, each question is
fed to a VLM N times (N is the number of choices). Each time, circular shifting
is applied to the choices and the answer to generate a new prompt for VLMs
(example in Fig. 6). A VLM is considered successful in solving a question only if
it correctly predicts the answer in all circular passes. In practice, once a VLM
fails on a circular passes, there is no need to infer the remaining passes, which
makes the actual cost of CircularEval less than N× under practical scenarios.
CircularEval can achieve a good trade-off between robustness and cost.

5 Evaluation Results

5.1 Experimental Setup

For the main results, we evaluate various models belonging to three major
categories on MMBench: (a) Text-Only GPT-4 [26]; (b) Open-Source VLMs
including model variants of OpenFlamingo [3], MiniGPT4 [41], InstructBLIP [9],
LLaVA [21], IDEFICS [19], CogVLM [34], Qwen-VL [4], Yi-VL [1], mPLUG-
Owl [37], InternLM-XComposer [10], and MiniCPM-V [27]; (c) Proprietary VLMs
including Qwen-VL-[Plus/Max] [4], Gemini-Pro-V [31], and GPT-4v [26]. For a
fair comparison, we adopt the zero-shot setting to infer MMBench questions with
all VLMs, based on the same prompt. For all VLMs, open-ended generation is
adopted to obtain the prediction, and ‘gpt-4-0125’ is used as the choice extractor.
In the Appendix, we provide detailed information regarding the architecture and
the parameter size for all Open-Source VLMs evaluated in this paper, as well as
additional results for more VLMs under various settings.

5.2 Main Results

CircularEval vs. VanillaEval. We first compare our CircularEval (infer a
question over multiple passes, consistency as a must) with VanillaEval (infer
a question only once). In Table 2, we present the results with two evaluation
strategies on MMBench-dev. For most VLMs, switching from VanillaEval to
CircularEval leads to a significant drop in model accuracy. In general, compar-
isons under CircularEval can reveal a more significant performance gap between
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Table 2: CircularEval vs. VanillaEval. We report the CircularEval Top-1 accuracy
and accuracy drop (compared to VanillaEval) of all VLMs on MMBench-dev.

VLM Circular Acc Change VLM Circular Acc Change VLM Circular Acc Change
MiniGPT4-7B 32.7% -24.1% MiniGPT4-13B 37.5% -23.2% Yi-VL-6B 65.6% -9.8%
InstructBLIP-7B 37.4% -24.0% InstructBLIP-13B 40.9% -23.0% Yi-VL-34B 68.2% -9.5%
LLaVA-v1.5-7B 62.5% -11.2% LLaVA-v1.5-13B 67.2% -8.6% MiniCPM-V 64.8% -10.6%
IDEFICS-9B-Instruct 37.2% -22.6% LLaVA-InternLM2-20B 72.8% -7.0% Qwen-VL-Plus 62.9% -16.6%
VisualGLM-6B 36.1% -27.0% CogVLM-Chat-17B 62.4% -15.6% Qwen-VL-Max 76.4% -8.7%
Qwen-VL-Chat 59.5% -17.4% mPLUG-Owl2 63.5% -8.7% Gemini-Pro-V 70.9% -11.7%
OpenFlamingo v2 2.6% -34.1% InternLM-XComposer2 79.1% -4.7% GPT-4v 74.3% -10.8%

different VLMs. LLaVA-v1.5-13B outperforms its 7B counterpart by 2.1% Top-1
accuracy under VanillaEval, while a much larger performance gap (4.7% Top-1)
is observed under CircularEval. As a special case, the performance of Open-
Flamingo v2 drops from 36.7% to only 2.6% when we move from VanillaEval
to CircularEval. CircularEval is such a challenging setting that it even makes
state-of-the-art proprietary VLMs (GPT-4v, Qwen-VL-Max, etc.) suffer from
∼10% Top-1 accuracy drops. In the following experiments, we adopt the more
rigorous and well-defined CircularEval as our default evaluation paradigm.

We exhaustively evaluate all VLMs on all existing leaf abilities of MMBench.
In Table 3, we report the models’ overall performance and the performance in six
L-2 abilities on the test split, namely Coarse Perception (CP), Fine-grained
Perception (single-instance, FP-S; cross-instance, FP-C), Attribute Reasoning
(AR), Logic Reasoning (LR), and Relation Reasoning (RR).4 The results offer
valuable insights into the individual strengths and limitations of each VLM in
multi-modal understanding.
Performance on MMBench-test. We first conduct a sanity check by inferring
MMBench questions with GPT-4, using text-only inputs. After conducting the
rigorous quality control paradigm in Sec. 3.2, GPT-4 demonstrates a random-
level overall accuracy. Among open-source VLMs, InternLM-XComposer2 [10]
achieves the best performance and surpass other open-source or proprietary
models by a large margin, w.r.t. the overall score, demonstrating its superior
ability in multimodal understanding. After that, models adopting the architecture
of LLaVA [22] (LLaVA series and Yi-VL series) also showcase strong overall
performance, which is just inferior to the state-of-the-art closed-source GPT-4v
and Qwen-VL-Max. With a small parameter size (≤ 3B), MiniCPM-V achieves
over 60% Top-1 accuracy, highlighting the potential of small-scale VLMs. Models
including MiniGPT, IDEFICS, VisualGLM, and InstructBLIP demonstrate
significantly inferior performance compared to other VLMs, while OpenFlamingo
v2 shows random-level performance due to the lack of instruction tuning.
LLM plays a vital role. From the evaluation results, we find that the large
language model (LLM) adopted plays a vital role in the VLM performance. For
instance, all LLaVA series VLMs (v1.5-7B, v1.5-13B, InternLM2-20B) adopt
the same vision backbone and are trained with the same multimodal corpus,
while switching the LLM from Vicuna-v1.5 [39] to the more powerful InternLM2-
20B [32] leads to steady improvement across all L-2 capabilities (especially
significant for reasoning tasks). The scaling also holds for variants with different

4 Please refer to appendix for more fine-grained results and MMBench-dev split results.
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Table 3: CircularEval results on MMBench test set (L-2 abilities). Abbrevia-
tions adopted: Logical Reasoning (LR), Attribute Reasoning (AR), Relation Reasoning
(RR), Fine-grained Perception, X-Instance (FP-C), Fine-grained Perception, Single In-
stance (FP-S), Coarse Perception (CP). Open-source models tagged with * incorporate
in-house data in model training.

Model Overall CP FP-S FP-C AR LR RR
Large Language Models

GPT-4-Turbo (0125) [26] 2.9% 0.6% 1.2% 4.1% 3.7% 4.9% 7.4%
OpenSource VLMs

OpenFlamingo v2 [3] 2.3% 1.1% 3.5% 1.5% 5.3% 0.0% 2.7%
MiniGPT4-7B [41] 30.5% 37.0% 31.8% 17.2% 49.8% 9.2% 25.6%
IDEFICS-9B-Instruct [19] 35.2% 48.3% 31.3% 29.6% 47.8% 11.4% 25.2%
VisualGLM-6B [11] 35.4% 40.2% 38.5% 26.2% 47.8% 19.6% 29.5%
InstructBLIP-7B [9] 38.3% 46.7% 39.0% 31.8% 55.5% 8.7% 31.0%
MiniGPT4-13B [41] 38.8% 44.6% 42.9% 23.2% 64.9% 8.2% 32.9%
InstructBLIP-13B [9] 39.8% 47.2% 42.9% 21.0% 60.4% 12.5% 38.8%
Qwen-VL-Chat* [4] 60.9% 68.5% 67.7% 50.2% 78.0% 37.0% 45.7%
MiniCPM-V [27] 61.4% 65.6% 69.4% 51.3% 70.6% 35.3% 59.7%
LLaVA-v1.5-7B [21] 63.4% 70.0% 68.0% 57.7% 77.6% 33.2% 56.2%
mPLUG-Owl2 [37] 63.5% 68.1% 69.1% 55.8% 78.4% 37.0% 57.0%
CogVLM-Chat-17B [34] 63.6% 72.8% 66.6% 55.4% 71.4% 33.7% 62.0%
Yi-VL-6B* [1] 65.5% 72.8% 72.9% 56.2% 75.5% 41.3% 55.4%
LLaVA-v1.5-13B [21] 66.9% 73.1% 72.4% 60.3% 75.5% 35.9% 65.5%
Yi-VL-34B* [1] 68.4% 72.0% 78.0% 54.7% 81.2% 38.6% 68.2%
LLaVA-InternLM2-20B [8] 72.3% 78.3% 76.6% 68.2% 78.4% 46.2% 69.4%
InternLM-XComposer2* [10] 78.1% 80.4% 83.5% 73.0% 83.7% 63.6% 74.4%

Proprietary VLMs
Qwen-VL-Plus [4] 64.6% 66.5% 79.1% 50.2% 73.9% 42.9% 57.8%
Gemini-Pro-V [31] 70.2% 70.0% 78.9% 65.9% 82.9% 46.2% 65.9%
GPT-4v [26] 74.3% 77.6% 73.8% 71.5% 85.3% 63.6% 68.6%
Qwen-VL-Max [4] 75.4% 74.8% 87.2% 67.0% 85.3% 54.9% 70.5%

sizes from the same LLM family. By adopting the 13B variant of Vicuna rather
than the 7B variant, VLMs in the MiniGPT, InstructBLIP, and LLaVA v1.5
series outperform their 7B counterparts by 8.3%, 1.5%, and 3.5% overall Top-1
accuracies on the MMBench-test split, respectively.
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Fig. 7: The performance on the test split
of MMBench and MMBench-CN. Models
are sorted with the ascending order of average
performance. ILM stands for InternLM.

Performance on MMBench-
CN. Fig. 7 compares the perfor-
mance of different VLMs on MM-
Bench and MMBench-CN. Most
VLMs display a lower performance
on MMBench-CN compared to
the results on MMBench, except
OpenFlamingo v2, VisualGLM,
and Qwen-VL-Plus. The difference
may be attributed to the unbal-
anced English and Chinese cor-
pora used in the pretraining and
instruction-tuning of VLMs and
their corresponding LLMs. We no-
tice that most top-performing VLMs on MMBench also display outstanding
performance under the bilingual context. The largest EN-CN performance gap
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Table 4: ‘Upper-bound’
Acc Estimation for Propri-
etary VLMs.

Model MMBench-test Upper Bound

GPT-4v 74.3 76.2
Gemini-Pro-V 70.2 72.6
Qwen-VL-Max 75.4 75.5

Q. Who is the person 
in this image?
A. Leonardo Dicaprio
B. Steve Jobs
C. Jackie Chan 
D. Elon Musk
Answer: A
GPT-4v: I’m sorry, I 
can’t provide the 
identity of real people 
in images.

Q. Based on the interaction 
between the individuals in the 
image, what is the most likely social 
relation or event being depicted?
A. A formal diplomatic negotiation.
B. A casual meeting between 
friends.
C. An organized sporting event.
D. A military conflict.
Answer: D
Gemini-Pro-V reject to answer.

Fig. 8: Content Moderation Cases of Proprietary
VLMs.

for models that achieve 70+% Top-1 accuracy on MMBench is a mere 2%, For
InternLM-XComposer2, the accuracy only drops by less than 1% when evaluated
on MMBench-CN. The advantage can be attributed to utilizing LLMs with bet-
ter bilingual capabilities or tuning the VLM with more balanced cross-language
multimodal corpora.

5.3 Fine-grained Analysis

Content Moderation of Proprietary VLMs. Taking an in-depth look at
predictions of proprietary VLMs, we notice that all of them apply explicit content
moderation. GPT-4v, Gemini-Pro-V, and Qwen-VL-Max reject answering in 1.8%,
1.6%, and 0.1% of cases across all CircularEval passes in MMBench, respectively.
74% of questions rejected by GPT-4v are related to celebrity recognition (Fig. 8),
while no obvious rejection pattern is observed for Gemini. Such moderation has
a negative impact on the evaluated accuracy. To estimate an upper-bound
performance, we assume that VLMs can perfectly answer all rejected questions
and re-calculate the accuracy. Table 4 shows that the content moderation policy
affects the MMBench-test accuracy by up to 2.4%, which is not significant.
Proprietary vs. Open-Source: What is the gap? Compared to the varied
performance of open-source VLMs, most proprietary models demonstrate com-
petitive performance on MMBench. This raises a question we care about: are
proprietary models generally more powerful, or do each kind of model display
unique strengths and weaknesses across different types of ability? To answer
this question, we perform a fine-grained comparison of three proprietary VLMs
and LLaVA-InternLM2-20B, the top-performing model trained on open-source
datasets only, and visualize the result in Fig. 9. We observe that proprietary
models significantly outperform the open-source ones under two major scenar-
ios: i) Structuralized image-text understanding, which requires VLMs to
understand complex codes, tables, diagrams, or layouts. ii) Tasks requiring
external knowledge to solve, which correspond to abilities including celebrity
recognition, physical property reasoning, natural relation reasoning, etc. Mean-
while, proprietary VLMs do not display advantages on tasks corresponding to
other perception or reasoning capabilities.
Hard cases in MMBench. For most VLMs, the fine-grained accuracies vary
a lot across different ability categories. To provide insights for future VLM
optimization, we find the maximum accuracy (Amax) across all evaluated VLMs
on each L-3 capability. Samples belonging to L-3 capabilities with the lowest
Amax are visualized in Fig. 10. Generally, we find that all existing VLMs have the
following limitations: 1. Poor at recognizing the low-level features on visual inputs,
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CP FP-S FP-C AR LR RR

 LLaVA-InternLM2-20B

Fig. 9: Proprietary VLMs vs. Open-Source ones at a fine-grained level.

Q. The graph shows the meals 
purchased in a restaurant in one 
day. What is the least popular 
meal?
A. Salad
B. Burger
C. Chicken
D. Pasta
Answer: C

(b). Structralized Image-Text Understanding

Amax=61.5% 

Q. Which image is the 
second brightest? 
A. upper-left
B. upper-right 
C. lower-left
D. lower-right
Answer: C

Amax=61.3% 

(a). Image Quality

(d). Physical Relation Reasoning

Q. From the perspective of the 
driver of the blue truck, in what 
position is the person riding a bike 
relative to the blue truck?
A. Left front
B. Right front
C. Right rear
D. Left rear
Answer: A

Amax=64.0% 

Q. What is the positional relationship between the two 
shapes in the picture?
A. The two shapes are positioned apart or separated 
from each other.
B. The two shapes are tangentially positioned or 
externally tangent to each other.
C. The two shapes intersect with each other.
D. One shape is contained within the other or there is 
an inner shape enclosed by an outer shape.
Answer: C

(c). Spatial Relationship
Amax=68.0% 

Fig. 10: Hard examples that belong to the 4 L-3 abilities with lowest Amax. All
VLMs have made the wrong prediction for the visualized examples under CircularEval.

i.e., they cannot accurately recognize and compare the brightness, sharpness,
contrast ratio, or artifacts of images. 2. Difficulty in understanding structuralized
visual inputs like tables, diagrams, or layouts, even for relatively simple cases like
Fig. 10(b); 3. Perform badly on recognizing or reasoning about the inter-object
spatial relationships, either in 2D or 3D space.

6 Conclusion

We introduce MMBench, a multi-modality benchmark that performs objective
evaluation for VLMs with over 3,000 multiple-choice questions covering 20 ability
dimensions. To produce robust and reliable evaluation results, we introduce a new
evaluation strategy named CircularEval. The strategy is much stricter than the
vanilla 1-pass evaluation and can yield reliable evaluation results at an affordable
cost. Considering the limited instruction following ability of some VLMs, to yield
more accurate evaluation results, we additionally adopt LLMs to extract choices
from the model’s predictions. We comprehensively evaluate over 20 mainstream
VLMs on MMBench, covering different architectures and parameter sizes. The
evaluation results provide valuable insights for future improvements.
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