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1 Introduction

In this Supplementary Material, we provide detailed information and additional
results across the following sections:

1. Visual Comparison of Datasets in Sec. 3: A comparative analysis be-
tween our Radiometry Correction Dataset and Afifi’s MSEC Dataset [1],
highlighting the features of our dataset.

2. Training Implementation Details in Sec. 4: Here, we delve into the
specifics of the training implementation for our Unsupervised Exposure Cor-
rection (UEC) Method, outlining the techniques and parameters that facili-
tated the learning process.

3. Additional Experimental Results in Sec. 5: Further experimental out-
comes are presented in this section, which includes:
(a) Varying Exposure Manipulation. Our method can adjust exposure

within a certain range rather than a specific value. We present the visu-
alized results.

(b) Edge Detection Results: We compare the performance of our UEC
Model with the ECM [4] in terms of edge detection capabilities, show-
casing the effectiveness of our model in preserving low-level features.

(c) Visual Comparisons: An illustrative comparison of the results from
our UEC Model against the ECM (Exposure Correction Model) [4],
demonstrating the advancements our model brings over the current SOTA
supervised model.

(d) Edge Detection Results: We compare the performance of our UEC
Model with the ECM [4] in terms of edge detection capabilities, show-
casing the effectiveness of our model in preserving low-level features.

(e) Consumption Cost Analysis: An evaluation of the time and memory
consumption by our model at different resolutions.

⋆ Corresponding author.
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2 Network Details

Exposure Feature Encoder. In this section, we aim to implement the func-
tion e. Our goal is to extract exposure features from the input images and map
them into a latent space. Empirically, we find the image encoders for image en-
hancement, e.g. Neural Color Operators [8], can work well for our task since they
can encode the pixel-wise image information. Specifically, our encoder consists
of three layers: two convolutional layers and a global pooling layer. The initial
two convolutional layers are responsible for the extraction of 32-channel feature
maps. Subsequently, we employ three different pooling functions, each dedicated
to computing channel-wise maximum, average, and standard deviation, respec-
tively. This process results in the generation of three 32D vectors, which are then
concatenated to produce the final 96D representation.

Parameter Predictor. Having extracted the exposure features, we now quan-
tify the exposure disparity between two images. Given the implicit nature of
exposure difference, we opt to output the parameters for exposure correction
rather than the direct difference. This is accomplished by concatenating the ex-
posure features and applying two linear layers to produce a numerical value λ in
Eq. (1). This resulting scalar serves as the parameter for Exposure Corrector.

Exposure Corrector. UEC employs a color transformation approach for ex-
posure correction. The color transformation using deep learning can generally be
denoted as g(ϕ, pixel), where ϕ represents the hyper-parameters from features
of the input image, and pixel denotes the RGB value of a single pixel within
the image. We realized that the enhancement of exposure shares some similarity
with brightness enhancement, which is a linear transformation, so our specific
form of g(·, ·) is a combination of linear and non-linear transformation:

Iout(x, y) = λ · Iin(x, y) + (1− λ) · h(Iin(x, y)), (1)

where λ, predicted by Parameter Predictor, modulates the transformed between
the original input image Iin and its corresponding output Iout. The non-linear
transformation function h(·) is implemented using a Multi-Layer Perceptron
(MLP). This procedure is iterative, meaning the output from one cycle can
serve as the input for the subsequent iteration. We repeat this cycle three times
to enhance performance.

3 Dataset Comparision

Afifi et al. [1] constructed their dataset using a forward exposure adjustment
approach, which involves modifying only the exposure while retaining other pa-
rameters from a camera’s image signal processor (ISP). They designated the
results of all experts tuning as the ground truth. However, this approach leads
to a confusing scenario where the ground truth for a given input image varies.
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Such manual adjustments inherently include individual aesthetic preferences,
which pose challenges to the stability and generalizability of the results. In con-
trast, our methodology employs a reverse strategy, known as backward exposure
adjustment. This entails adjusting the exposure of the ground truth image to gen-
erate synthetic, poorly-exposed images. We hypothesize that individual stylistic
elements can be encapsulated by all other ISP parameters derived from Expert
C’s ground truth.

The distinctions between our dataset and the MSEC Dataset are illustrated
in Fig. 1. A key observation in the MSEC Dataset is the apparent discrepancy
between the input images and their corresponding ground truths, particularly in
terms of colorimetry. For example, the input images feature a sky with a purplish
hue, whereas the ground truth images depict the sky in a pure blue color, which
we attribute to the photographer’s unique stylistic choices. In contrast, within
our Radiometry Correction Dataset, the variations observed across different im-
ages—whether between input images or between input images and their ground
truths—are exclusively attributed to changes in exposure levels.

-1.5EV -1.0EV 0EV +1.0EV +1.5EV GT

(a) Afifi et al’s MSEC Dataset

-2EV -1EV 0EV +1EV +2EV +3EV GT

(b) Our Radiometry Correction Dataset

Fig. 1: Comparative Analysis of Datasets: (a) Afifi et al’s MSEC Dataset vs. (b) Our
Radiometry Correction Dataset.

4 Implementation Details

In our experimental setup, we adopt a batch size of 1, allowing for fine-grained
updates during the optimization process. We employ the Adam optimizer with
a learning rate of 0.0001 and set the β1 value to 0.9 and β2 to 0.999. To ensure
uniformity in the input dimensions, all images are resized to 448×448 pixels.

Our learning rate schedule is characterized by a step-wise decay strategy. Ini-
tially, the learning rate is set at 0.0001 for the first 100 iterations. Subsequently,
we apply a slower decay rate for the following 100 iterations, eventually reaching
its minimum value at 6,574,200 iterations.

During the testing phase, all images are consistently resized to dimensions
of 256×256 pixels. To fulfill the reference image requirement of our method, we
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select the first image from the dataset, specifically the ground truth image found
in the first row of Fig. 1, to serve as the reference image.

5 Experiment Results

5.1 Results of Varying Exposure Manipulation.

Figure 2 demonstrates the visualized results of exposure manipulation on the
MSEC dataset [1].

5.2 Comparison of Results on MSEC Dataset

We conducted experiments using Afifi et al.’s MSEC Dataset [1]. Detailed data
can be found in Tab. 1. Notably, this dataset encompasses five distinct ground
truth images, each corresponding to a specific input. These ground truth images
are individually labeled by the author as Expert A, Expert B, Expert C, Expert
D, and Expert E. Consequently, we present results separately for each of these
five experts and also compute their ensemble average outcomes.

In Fig. 3 4 and 5, we present various test images, our results, ground truth
images, and the outcomes of ECM [4]. Although we may not exhibit a distinct
advantage in terms of PSNR calculations for 256×256 resolution images, it is
evident that our images boast superior detail quality, a more natural aesthetic,
and fewer color casts.

Method Expert A Expert B Expert C Expert D Expert E Avg.
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

WVM [5] 14.488 0.665 15.803 0.699 15.117 0.678 15.863 0.693 16.469 0.704 15.548 0.688
HDRCNN w/PS [3] 15.812 0.667 16.970 0.699 16.428 0.681 17.301 0.687 18.650 0.702 17.032 0.687
DPED (iPhone) [7] 15.134 0.609 16.505 0.636 15.907 0.622 16.571 0.627 17.251 0.649 16.274 0.629
DPED (BlackBerry) [7] 16.910 0.642 18.649 0.713 17.606 0.653 18.070 0.679 18.217 0.668 17.890 0.671
DPE(HDR) [2] 15.690 0.614 16.548 0.626 16.305 0.626 16.147 0.615 16.341 0.633 16.206 0.623
DPE(S-FiveK) [2] 16.933 0.678 17.701 0.668 17.741 0.696 17.572 0.674 17.601 0.670 17.510 0.677
Zero-DCE [6] 11.643 0.536 12.555 0.539 12.058 0.544 12.964 0.548 13.769 0.580 12.597 0.549
Afifi et al. w/o Ladv [1] 19.158 0.746 20.096 0.734 20.205 0.769 18.975 0.719 18.983 0.727 19.483 0.739
Afifi et al. w/ Ladv [1] 19.114 0.743 19.960 0.723 20.080 0.763 18.868 0.709 18.864 0.719 19.377 0.731
ECM [4] 20.443 0.860 21.773 0.887 22.332 0.897 19.984 0.870 19.840 0.875 20.874 0.877
Ours 18.445 0.794 19.667 0.832 18.955 0.810 18.509 0.805 18.204 0.820 18.756 0.812

Table 1: Comparison of Results on MSEC Dataset.

5.3 Results on Edge Detection

We investigate the broader application of exposure correction on downstream
tasks, such as edge detection, emphasizing its potential to mitigate the adverse
effects of non-ideal exposure on low-level image features. The results are shown
on Fig. 6.
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5.4 Time and Memory Consumpation

The main text has already detailed the experiments concerning time and mem-
ory consumption. Additionally, we conducted supplementary experiments where
we evaluated our model’s performance at various resolutions. Recognizing the
limitations of ECM [4], which is confined to handling only 256-pixel resolution,
we exclusively examined our algorithm’s capabilities across different resolutions.
The results are presented in Tab. 2.

Resolution Width Height Time (GPU) Time (CPU)

4K 4096 2160 23.32ms N/A
2K 2560 1440 9.40ms N/A

1080P 1920 1080 5.49ms 476.08ms
720P 1280 720 2.72ms 212.08ms
480P 720 480 1.44ms 81.11ms

Table 2: Comparison on different resolutions for our method

References

1. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning Multi-Scale Photo
Exposure Correction. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition pp. 9153–9163 (2021)

2. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: Unpaired
learning for image enhancement from photographs with gans. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 6306–6314 (2018)

3. Dayley, L.D., Dayley, B.: Photoshop CS5 Bible. John Wiley & Sons (2010)
4. Eyiokur, F.I., Yaman, D., Ekenel, H.K., Waibel, A.: Exposure Correction Model to

Enhance Image Quality. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops 2022-June, 675–685 (2022)

5. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for
simultaneous reflectance and illumination estimation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 2782–2790 (2016)

6. Guo, C., Li, C., Guo, J., Loy, C., Hou, J., Kwong, S., Cong, R.: Zero-reference
deep curve estimation for low-light image enhancement. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
1780–1789 (2020)

7. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: Dslr-quality
photos on mobile devices with deep convolutional networks. In: Proceedings of the
IEEE international conference on computer vision. pp. 3277–3285 (2017)

8. Wang, Y., Li, X., Xu, K., He, D., Zhang, Q., Li, F., Ding, E.: Neural color operators
for sequential image retouching. In: European Conference on Computer Vision. pp.
38–55. Springer (2022)



6 Ruodai et al.

(a) Exposure control example 1.

(b) Exposure control example 2.

Fig. 2: Examples of exposure control. The first column of each row represents the
input, while the subsequent columns display the results derived from this input.
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+1.5EV +1.0EV 0EV -1.0EV -1.5EV

Input images

ECM [4]

Ours

Expert A Expert B Expert C Expert D Expert E

GT

Fig. 3: Visual Comparison: ECM [4] vs. Our UEC method.
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+1.5EV +1.0EV 0EV -1.0EV -1.5EV

Input images

ECM [4]
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Expert A Expert B Expert C Expert D Expert E
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Fig. 4: Visual Comparison: ECM [4] vs. Our UEC method.
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Fig. 5: Visual Comparison: ECM [4] vs. Our UEC method.
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Input ECM [4] Ours GT Input ECM [4] Ours GT

Fig. 6: Illustration of the edge detection outputs.
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