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Abstract. Current exposure correction methods have three challenges,
labor-intensive paired data annotation, limited generalizability, and per-
formance degradation in low-level computer vision tasks. In this work,
we introduce an innovative Unsupervised Exposure Correction (UEC)
method that eliminates the need for manual annotations, offers improved
generalizability, and enhances performance in low-level downstream tasks.
Our model is trained using freely available paired data from an emu-
lated Image Signal Processing (ISP) pipeline. This approach does not
need expensive manual annotations, thereby minimizing individual style
biases from the annotation and consequently improving its generaliz-
ability. Furthermore, we present a large-scale Radiometry Correction
Dataset, specifically designed to emphasize exposure variations, to fa-
cilitate unsupervised learning. In addition, we develop a transformation
function that preserves image details and outperforms state-of-the-art
supervised methods [12], while utilizing only 0.01% of their parameters.
Our work further investigates the broader impact of exposure correc-
tion on downstream tasks, including edge detection, demonstrating its
effectiveness in mitigating the adverse effects of poor exposure on low-
level features. The source code and dataset are publicly available at
https://github.com/BeyondHeaven/uec_code.
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1 Introduction

Exposure, a pivotal factor in photography, significantly impacts image quality by
influencing visual clarity. In radiometry, the exposure is defined as scene irradi-
ance, the amount of light that reaches the image sensor. This can be controlled by
exposure value (EV), which combines essential factors such as aperture, shut-
ter speed, and ISO settings. Despite advancements in Image Signal Processor
(ISP), which facilitate automatic EV adjustments during image capture, chal-
lenges persist under non-ideal lighting conditions. As a result, post-processing
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(a) Input Multi-exposure Sequence

ExpertA ExpertB ExpertC ExpertD ExpertE

(b) Ground Truths with Stylistic Biases

(c) ECM [12](Sup.) (d) Ours(Unsup.)

Fig. 1: Visual Comparison: ECM [12] vs. Our UEC method.

of sRGB images remains crucial. The advent of deep learning has spurred ex-
tensive research in this field, with numerous studies proposing models for expo-
sure correction [1, 4, 14, 16, 19, 24, 25, 27, 32, 34, 42, 44], demonstrating significant
achievements. Nevertheless, these methods still face three challenges.

(1) A primary challenge arises from the dependence on the paired data, where
the ground truth is from proficient photographers. This process is inherently
complex and labor-intensive, as it involves detailed editing and refinement of
each image, demanding more manual work than just labeling as in classifica-
tion tasks. (2) Previous methods often suffer from limited generalizability. To
be specific, (a) as noted, the efficiency of manual adjustments is low, resulting
in small datasets available in academia. (b) the manual adjustments inevitably
introduce different stylistic biases. Personal preferences vary significantly be-
tween individuals, suggesting that such ground truths are intrinsically noisy. (3)
Previous methodologies have predominantly focused on generating aesthetically
pleasing images. However, they often yield images with notable degradations in
low-level features. Such degradations render these images less suitable for var-
ious downstream computer vision tasks, like edge detection and segmentation,
where preserving these features is important.

Inspired by Afifi et al.’s work of exposure dataset [2], we realize that acquiring
paired data does not necessarily require extensive manual intervention. They ap-
ply an emulated Image Signal Processing (ISP) pipeline on RAW data, thereby
creating multi-exposure sequences, as shown in Fig. 1a. The work [2] learns the
mapping from the inputs (Fig. 1a) to the ground truth (ExpertC in Fig. 1b),
which is a typical supervised learning. However, this approach introduces ambi-
guities due to inconsistencies in the ground truths, e.g. five experts in Fig. 1b.
Unlike existing supervised learning methods [2,12,14], in this work, we introduce
an innovative Unsupervised Exposure Correction (UEC) method. (1) To achieve
this, we creatively ask the images in the same multi-exposure sequence, which
can be generated freely, to mutually serve as a ground truth for learning expo-
sure adjustments across a diverse range. Specifically, we simply generate multi-
exposure sequences and EV labels via an emulated ISP pipeline. In this way,
we do not need the expensive manual annotations to generate ground truth. (2)
The existing methods have inconsistent ground truth which might have different
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standards on colors, leading to degraded performance. In contrast, in our UEC
method, the images in multi-exposure sequence do not have such “standards”
because they mutually work as the ground truth. (3) We employ a pixel-wise
exposure transformation in sRGB color space for preserving visual details as
shown in Fig. 1d which greatly outperforms the SOTA method in Fig. 1c. This
detail-preserving property is crucial for downstream computer vision tasks that
rely on low-level features, such as edge detection and segmentation. To further
facilitate the analysis without individual stylistic biases in exposure correction,
we contribute a new dataset, Radiometry Correction Dataset, that is large and
encompasses broad exposures. This dataset maintains a consistent style with
only radiometry variations.

Our contributions can be summarized as follows: (1) By modeling radiometry,
we introduce an innovative unsupervised learning methodology that fundamen-
tally addresses the problem of expensive annotations. To our knowledge, this is
the first unsupervised learning solution for exposure correction, which achieves
competitive performance as SOTA supervised models [12] with only 0.01% of
their parameters, and minimizes individual stylistic biases. (2) We propose a
pixel-wise exposure transformation that can well preserve the details of images
and flexibly accept different resolutions of input images. By this way, the en-
hanced images can improve the performance of many downstream tasks, e.g.
edge detection. (3) We contribute a new dataset focusing on radiometry for bet-
ter generalizability. Input images of this dataset are synthesized from ground
truth data, ensuring a uniform style across the dataset.

2 Related Work

Exposure correction has evolved from traditional techniques to modern deep
learning methods. Traditional methods, like histogram equalization [17], and
Retinex-based algorithms [22, 33], laid the groundwork. Recent deep learning
studies, including Ren et al. [34], Zhang et al. [44], Guo et al. [14], and Loh et
al. [29], focus on low-light enhancement. However, these methods exposed a gap
in addressing both underexposed and overexposed images. Afifi et al. [2] intro-
duced a dataset featuring varying exposure attributes, enabling comprehensive
methodologies.

Exposure correction methods fall into two categories: image-to-image trans-
lation and color transformation. Image-to-image translation aims to create dense
translations between input and output pairs, leveraging deep learning as seen in
works by Eyiokur et al. [12], Afifi et al. [2], and others [4,8,19]. Color transforma-
tion methods, on the other hand, predict mapping curve parameters to enhance
images, employing techniques like quadratic transforms [7,26,37,41], local affine
transforms [13], curve-based transforms [5, 14, 20, 23, 31], filters [11, 30], lookup
tables [38, 43], and MLP models [15, 28, 39]. These techniques define specific
functions or models for the enhancement process, offering diverse tools for im-
age exposure challenges.
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3 Method

Traditionally, exposure correction learns a mapping from one input image I1
with one (usually weaker) exposure to another image I2 with a different (usually
stronger and better) exposure. To learn this mapping, conventionally, people
manually generate the well-exposed image I2 as the ground-truth of the existing
I1, which is quite expensive and is hard to scale up.

To address this, we creatively propose a way to exploit the information from
the freely generated multi-exposure sequence from RAW data. In the same se-
quence, the images with different exposures can mutually work as the ground-
truth to learn the mapping for exposure adjustment. In Sec. 3.1, we formulate
our Unsupervised Exposure Correction (UEC). Then, the neural architectures in
Sec. 3.2 and loss functions in Sec. 3.3 are introduced to achieve UEC. Following
that, Sec. 3.4 outlines the testing methodology. Moreover, we propose our Ra-
diometry Correction Dataset where the paired images are freely generated from
RAW data in Sec. 4.

3.1 Unsupervised Exposure Correction Modeling

The emulated ISP enables us to generate extensive multi-exposure sequences.
To make full use of the large data, we introduce a task with self-supervision. A
reference image guides exposure adjustments, serving as the calibration target,
while a transformation curve shifts the exposure level. This method involves
varying the exposure over a wide range, rather than directly aligning it to an
optimal value, thereby categorizing it as a specific form of style transfer.

We initiate the process by employing a style encoder to extract the exposure
feature from the image, denoted as E = e(I). Diverging from conventional style
transfer methods, which typically rely on a one-hot vector as a prior [9] or lever-
age features refined through triplet loss [21], we have developed an alternative
optimization approach that better accommodates exposure dynamics. We dis-
covered a sequential relationship within varying exposure images, allowing us to
order them by their exposures. Consequently, to quantify the difference between
any two images, we can employ a single scalar.

∆E = d(E1, E2) = d(e(I1), e(I2)). (1)

Then, we can perform the style transformation from ∆E:

I ′1 = f(∆E, I1). (2)

Having established the transformation function, , we now focus on developing
optimization strategies. We identify two principles to guide the optimization
process.
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Restoration Supervision for Pretext Task. Consider a scenario where we
sample two images, I1 and I2, from the same sequence I, leading to the equation
I ′1 = I2. We call this “Restoration Supervision”, which can train f(·) under the
restoration guidance of I2, as illustrated in Fig. 2a.

However, it is important to note that both I1 and I2 originate from the same
sequence I. For the real task, we need to handle image pairs from different scenes.
Since our method learn from data which varies solely in exposure, the trained
f(·) can only modify exposures. Moreover, we calculate the exposure difference in
a latent space, not in pixel space, which omits low-level features. This approach
enables the difference function d(·, ·) to adapt images from different scenes to
a certain degree. Therefore, when we select reference images from a different
sequence, the alterations remain confined to exposure adjustment, even though
the ∆E computed may not precisely indicating the optimal exposure variation.

Monopoly Principle for Real Task. In order to compute this value ac-
curately, we proceed to train the network with images from different scenes.
However, comparing exposures in images from different scenes poses a challenge.
Instead of directly contrasting the input and output images, we compare two out-
puts from the same input, ensuring scene consistency and enabling pixel-to-pixel
optimization. Notably, if an over-exposed image is selected as a reference, the
resulting image will be brighter; conversely, choosing an under-exposed image as
a reference will lead to a darker result. Therefore, by selecting reference images
with varying EVs, we can create a bright-dark image pair. We call this “Monopoly
Principle” to indicate that the output’s brightness should be monopoly with the
exposure of reference image.

We select two reference images, J1 and J2, from a sequence J , distinct from
I, where we sample input images I1. We assume the EV of J1 exceeds that of
J2, which means every pixel value of J1 should be equal or over that of J2. This
condition can be expressed as:

∀(x, y), J1(x, y) ≥ J2(x, y) with EV(J1) > EV(J2). (3)

Employing J1 and J2 as reference images, we apply d(·, ·) and f(·) to the same
image I1, resulting in two transformed images, I ′J1 and I ′J2, respectively. In this
case, I ′J1 is expected to exhibit a brighter appearance compared to I ′J2. This can
be described as

I ′J1 = f(d(e(I1), e(J1)), I1), I ′J2 = f(d(e(I1), e(J2)), I1). (4)

Combine Eq. (3) and Eq. (4), we can get

∀(x, y), I ′J1(x, y) ≥ I ′J2(x, y) with EV(J1) > EV(J2). (5)

As demonstrated in Fig. 2b, this learning criterion enables the network to
align exposures across diverse scenes, thereby enhancing the applicability of our
method in real-world situations.
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(a) Pretext Task training. Notations are de-
fined in Eq. (1) and Eq. (2)

(b) Real Task training. Notations are defined
in Eq. (4)

Fig. 2: Schematic diagrams of traing UEC.

Summarization. We design a transformation to adjust exposures, which can
be optimized by two principles. Firstly, we select images from a single multi-
exposure sequence, establishing a baseline for exposure manipulation. Secondly,
we aim to adapt to varied scenes. This involves selecting two reference images
from different exposures, but differing from the sequence where we sample the
input image. By preserving the relative brightness in the outputs, we facilitate
exposure style transformations across different scenes. We concurrently train the
network towards using two specific loss functions for each goal.

3.2 Unsupervised Exposure Correction Architecture

We have introduced three crucial functions: (1) e(·) for the extraction of exposure-
related features, (2) d(·, ·) for the computation of exposure difference between
two images in a latent space, and (3) f(·) for the exposure correction of im-
ages given the exposure difference. Our UEC network is structured around these
functions, as illustrated in the overview shown in Fig. 3a. Specifically, our UEC
framework incorporates three distinct neural networks: (1) Exposure Feature
Encoder, detailed in Fig. 3b; (2) Parameter Predictor based on the difference,
detailed in Fig. 3c; and (3) Exposure Corrector, detailed in Fig. 3d.

Firstly, a decoder comprises two convolutional layers followed by a global
pooling layer, producing a 96D feature representation through the combination
of maximum, average, and standard deviation across channels. These statistical
metrics links to global attributes of images, e.g., contrast, histogram distribution.
Secondly, Parameter Predictor evaluates the exposure difference between image
pairs, and then computes the parameter λ for exposure correction. Thirdly, the
exposure correction is modeled as an interpolation of direct scaling and a non-
linear adjustment through a network:

Iout(x, y) = λ× Iin(x, y) + (1− λ)× h(Iin(x, y)), (6)

where λ modulates the transformed between the original input image Iin and
its corresponding output Iout. h(·) is the non-linear transformation function im-



Unsupervised Exposure Correction 7

(a) Overview (b) Feature Encoder (c) Param. Predictor (d) Exp. Corrector

Fig. 3: The architecture of our UEC method.

plemented by 1 × 1 convolution layers. This iterative process is repeated three
times to enhance the correction effectiveness. For more details, please refer to
supplementary material.

3.3 Loss Function

We jointly train the Exposure Feature Encoder, Parameter Predictor, and Ex-
posure Corrector in an end-to-end fashion. We employ three types of losses and
compute their weighted sum as the final loss.

Restoration Loss. Based on the Restoration Supervision discussed in Sec. 3.1,
when we sample the input and reference from the same multi-exposure sequence,
the synthesized exposure-adjusted image should be identical to the reference
image. This is illustrated with I1 and I2 in Fig. 2a. We utilize the L2 loss for
the restoration:

Lrestoration =
1

CHW

∥∥Iout − Iref∥∥
2
. (7)

Here, C, H, and W denote the image’s channels, height, and width, respectively.
Iout is the neural network output, and Iref the reference image.

Monopoly Loss. Based on the Monopoly Principle discussed in Sec. 3.1, when
we sample the two references from the same multi-exposure sequence, which is
different from the input’s sampling source, the relative brightness relation should
also be transferred to the output image pair. This is shown with I ′J1 and I ′J2 in
Fig. 2b. We utilize the ReLU function for the monopoly loss:
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Lmonopoly =
1

CHW
ReLU

(
Iout2 − Iout1) with EV(Iref1) > EV(Iref2). (8)

In this equation, Iout1 and Iout2 represent the neural network outputs corre-
sponding to the references Iref1 and Iref2, respectively. It is important to note
that the EV of Iref1 is greater than that of Iref2. The ReLU function ensures
that the loss calculation emphasizes the positive differences, aligning with the
expected brightness relation between the two outputs.

Semantic-preserving Loss. For the preservation of semantics, we use total
variation loss [3], a proven regularization technique to maintain spatial coher-
ence and semantic integrity. This approach smooths transitions between adjacent
pixels:

Lsemantic =
1

CHW

∥∥∇Iout∥∥
2
. (9)

Here, ∇(·) denotes the gradient operator, computing the image’s spatial deriva-
tive.

Summarization. The final loss function is expressed as:

L = α1 · Lrestoration + α2 · Lmonopoly + α3 · Lsemantic, (10)

where α1, α2, and α3 are the balancing weights. Since our framework (Exposure
Feature Encoder, Parameter Predictor, Exposure Corrector) works in an end-
to-end way, the total loss function, Eq. (10), is added on the end of exposure
corrector to update the weights of all the modules during training.

3.4 Testing Details

We have outlined the training procedure for our UEC model, which employs
reference images of diverse quality to address the full spectrum of exposure
adjustments. For the testing phase, it is crucial to identify the optimal value for
the final calibration. The testing inference largely replicates the training process
as depicted in Fig. 3a, with the primary distinction being the use of a single
reference image for all testing inputs. Specifically, we hard code the exposure
features derived from this image across all test cases.

The efficiency of this method is underscored by its minimal data require-
ments. Mastering exposure adjustments is complex, but identifying an image’s
optimal exposure level is considerably more straightforward. Our approach em-
phasizes radiometry to ensure consistency, which differs from colorimetry, thereby
minimizing the data needed to such an extent that a single ground truth image
is sufficient. After training, the UEC model is adept at generating a sequence of
images with varying exposures for any given input. The goal during testing is
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-1.5EV -1.0EV 0EV +1.0EV +1.5EV GT

(a) Afifi et al’s MSEC Dataset [2]
-2EV -1EV 0EV +1EV +2EV +3EV GT

(b) Our Radiometry Correction Dataset

Fig. 4: Visualization of Datasets: (a) Afifi et al’s [2] vs. (b) Ours.

to select the most suitable image from this sequence. To enhance efficiency, our
method bypasses the need to generate and then choose from multiple exposures,
instead directly yielding the image with the best exposure.

4 Our Radiometry Correction Dataset

In Sec. 1, we have explored the benefits of disentanglement in radiometry adjust-
ment for enhancing the generalizability of exposure correction. For this purpose,
a specialized dataset is essential. Hence, we developed Radiometry Correction
Dataset using MIT-Adobe FiveK Dataset [5], which includes 5,000 RAW pho-
tographs and their expertly modified sRGB images. These adjustments were
performed by five specialists who worked directly with the RAW images. Draw-
ing from their expertise, we adopted a reverse engineering approach to generate
ill-exposed images. This process entails adjusting the exposure of the reference
images to generate synthetic versions that are either underexposed or overex-
posed, while while freezing other post-processing ISP procedures to keep the
individual style constant. Following the established convention, we selected the
versions edited by ExpertC as our reference images. Based on this, we adjusted
the exposures relative to the original images, spanning -2EV, -1EV, 0EV, +1EV,
+2EV, and +3EV. Considering that input images are often underexposed, this
range ensures a balanced exposure spectrum in relation to the reference images.

Fig. 4 provides a comparison between Afifi’s MSEC Dataset [2] and our Ra-
diometry Correction Dataset. Evidently, in this example, the ground exhibits
a blue hue as ExpertC’s individual style. For additional comparisons, please
consult the supplementary material.

5 Experiments

5.1 Experiment Settings

Datasets. The prevailing benchmark primarily utilizes the MSEC Dataset from
the study by Afifi et al. [2]. To mitigate bias stemming from individual styles on
colorimetry, we introduce our Radiometry Correction Dataset. Both datasets are
employed for training and testing various methods. To assess the models’ gener-
alizability, we conduct training on the Exposure Dataset and perform testing on
LOL dataset [6], which is specifically designed for low-light image enhancement.
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+1.5EV +1.0EV 0EV -1.0EV -1.5EV

(a) Input Multi-exposure Sequence

ExpertA ExpertB ExpertC ExpertD ExpertE

(b) Ground Truths with Stylistic Biases

(c) ECM [12](Sup.) (d) Ours(Unsup.)

Fig. 5: Visual Comparison: ECM [12] vs. Our UEC method.

Implementation Details. The weights in Eq. (10) are empirically set α1 =
α2 = 1 and α3 = 0.1. We use only one well-exposed reference image during
testing. We select the second image from left to right in Fig. 9 as our reference
in our evaluations. More details are described in our supplementary material.

Evaluation Metrics. In Sec. 1, we highlighted the importance of evaluating
exposure correction in terms of both overall aesthetics and low-level features.
To assess overall aesthetics, we compare the output to the ground truth images
using metrics such as PSNR and SSIM [35]. For low-level feature evaluation, we
analyze the output through edge detection and make comparisons using PSNR
and F1 scores, applying a threshold based on median pixel values.

5.2 Exposure Correction Results

Results on MSEC Dataset. We compare our results with the ground truth, as
presented in Tab. 1a. Even though our Unsupervised Exposure Correction (UEC)
model has not been trained on manually calibrated data and our adjustments are
confined to radiometry, the proficiency of our UEC model remains competitive
when compared to supervised SOTA models like ECM [12] and Afifi et al. [2].

In Fig. 6, we present a comparison of test images using various methods, in-
cluding our approach, ground truth images, and results from supervised models.
Our method demonstrates competitive performance in radiometry correction,
matching the SOTA supervised techniques. Furthermore, in Fig. 1 and Fig. 5, we
compare our UEC method with ECM [12]. In Fig. 1, it is important to note that
the ground truth colorimetry, as determined by five experts, exhibits variabil-
ity, indicating that learning from human-adjusted images may introduce biases
reflective of their individual styles. In Fig. 5, the ECM’s results [12] (Fig. 5c)
manifest a color cast in the background, where the background turns green. Our
method addresses this issue by applying radiometry correction. Furthermore, to
highlight the superior detail resolution achieved by our UEC method, we have
magnified a segment of the image located in the upper left corner. Further com-
parisons are elaborated in the supplementary material.

Results on Generalizability. To assess the models’ generalizability, we uti-
lized pretrained models and evaluated their performance on LOL dataset [40].
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Method PSNR SSIM

HDRCNN w/PS [10] 17.032 0.687
DPED (iPhone) [18] 16.274 0.629
DPED (BlackBerry) [18] 17.890 0.671
DPE(HDR) [8] 16.206 0.623
DPE(S-FiveK) [8] 17.510 0.677
Zero-DCE [14] 12.597 0.549
Afifi et al. [2] 19.483 0.739
ECM [12] 20.874 0.877
Ours 18.756 0.812

(a) Testing Result

Method PSNR SSIM

Afifi et al.(E) [2] 14.268 0.638
ECM(E) [12] 15.439 0.650
ECM(R) [12] 17.537 0.725
Ours(E) 18.571 0.728

(b) generalizability Results. “E” denotes pre-
training on MSEC Dataset [2]; “R” signifies
pretraining on our Radiometry Correction
Dataset. We use LOL dataset [40] for eval-
uation.

Table 1: Quantitative comparison of performance and generalizability.

Input DPED
Afifi et
al. [2]

ECM
[12] Ours GT Input DPED

Afifi et
al. [2]

ECM
[12] Ours GT

Fig. 6: Results on MSEC Dataset [2]. We take images from [12] and compare with our
model.

LOL dataset comprises 485 pairs of training images, with each pair featuring one
low-light image and one corresponding normal-light image. For our assessment,
we exclusively employed the training image pairs from LOL dataset to serve as
our evaluation set.

For evaluation, we selected one ground truth image from MSEC Dataset to
serve as our reference image. As illustrated in Tab. 1b, while the performance
of supervised models significantly decreases, our results demonstrate stability
and outperform ECM [12]. It is noteworthy that ECM [12], when trained on our
Radiometry Correction Dataset, displayed superior generalizability compared to
its performance on MSEC Dataset. The visualization in Fig. 7 reveals that our
approach ensures better color consistency without stylistic biases. These results
underscores the robustness of radiometry correction.

Results on Radiometry Correction Dataset. To solely assess radiomet-
ric performance, we trained and evaluated exposure correction methods using
our Radiometry Correction Dataset. We benchmarked our UEC method against
the SOTA supervised model, ECM [12]. Both methods demonstrated similar
performance in terms of PSNR; however, our UEC method significantly outper-
formed in terms of SSIM. The results are detailed in Tab. 2a. To ensure an fair



12 Ruodai et al.

Input ECM [12]
(Sup.)

Ours
(Unsup.) GT Input ECM [12]

(Sup.)
Ours

(Unsup.) GT

Fig. 7: Generalizability performance by ECM [12] and our UEC. We pretrain models
on MSEC Dataset [2] and assess their performance on LOL Dataset [40].

ECM [12] Ours
EV PSNR SSIM PSNR SSIM

-2 20.122 0.718 19.475 0.812
-1 20.301 0.735 20.144 0.847
0 20.546 0.751 20.968 0.884

+1 20.667 0.758 21.614 0.907
+2 20.588 0.758 21.187 0.897
+3 20.445 0.743 19.901 0.862

Avg. 20.445 0.744 20.548 0.868

(a) Results on Radiometry Correction
Dataset

ECM [12] Ours
EV PSNR F1-Score PSNR F1-Score

-2 15.510 0.912 20.059 0.959
-1 15.983 0.918 21.616 0.966
0 16.449 0.923 23.746 0.974

+1 16.730 0.925 25.550 0.978
+2 16.758 0.926 24.090 0.975
+3 16.443 0.925 20.929 0.964

Avg. 16.312 0.922 22.665 0.969

(b) Edge detection results on Radiometry
Correction Dataset.

Table 2: Quantitative comparison of performance and generalizability.

comparison, we utilized the official implementations and adhered to the default
hyperparameter configurations.

Results of Varying Exposure Manipulation. Compared to traditional su-
pervised methods that learn the mapping from a poorly exposed image to a
well-exposed one, our method can adjust the exposure within a certain range.
To demonstrate the effectiveness of our method at varying exposure levels, we
generate images with different exposures by controlling the exposure of the refer-
ence image. The results are shown in Tab. 3. Our method performs better on the
MSEC dataset compared to our dataset. This discrepancy might be attributed
to the wider range of exposure values in our dataset, which varies from -2EV
to +3EV, presenting a greater challenge. In contrast, the MSEC dataset has a
narrower exposure range of -1.5EV to +1.5EV. In our dataset, underexposure
and overexposure lead to a loss of texture, making it difficult to achieve satisfac-
tory results solely by adjusting brightness. Additionally, in our dataset, darker
images yield better results, possibly because they are closer to completely black,
making conversion easier. However, overexposed images are not entirely white.
The large exposure range from underexposure to overexposure further increases
the challenge. We provide the visualized results in our supplementary material.
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EV -1.5 -1.0 0 +1.0 +1.5

PSNR 27.764 27.733 27.823 27.959 28.097

(a) Exposure control on MSEC dataset.

EV -2 -1 0 +1 +2 +3

PSNR 22.577 20.528 18.336 17.820 15.752 15.138

(b) Exposure control on Our dataset.

Table 3: Performance of exposure control on both datasets.

Input ECM [12]
(Sup.)

Ours
(Unsup.) GT Input ECM [12]

(Sup.)
Ours

(Unsup.) GT

Fig. 8: Edge detection performance by ECM [12] and our UEC.

Results on Edge Detection. Exposure correction not only enhances image
aesthetics but also supports downstream tasks in computer vision. Since many
algorithms rely on images with standard exposure, variations in real-world expo-
sure can challenge their effectiveness. By improving visibility and detail clarity,
exposure correction enhances image features crucial for accurate object recog-
nition. However, it is important to maintain feature integrity to avoid compro-
mising details with artifacts. To assess its effect on crucial features, we focused
on edge detection—a task highly sensitive to exposure changes—using the LDC
network [36] as a benchmark to compare performance across different exposures.

Using Radiometry Correction Dataset, we compared ECM’s [12] method
against our UEC approach. The findings, detailed in Tab. 2b and illustrated
in Fig. 8, highlight ECM’s underperformance, even below that of unmodified in-
puts. This shortfall is attributed to ECM’s tendency to lose fine details, negating
the benefits of exposure correction. Conversely, our UEC method outperforms,
demonstrated by higher PSNR values indicating superior image quality. Notably,
our unsupervised approach excels in adapting to varied exposures for diverse
computer vision tasks, requiring only the preservation of RAW files during data
collection.

Impact of Reference Images on UEC Results. Fig. 9 demonstrates the
impact of utilizing different reference images on the outcomes of our UEC model.
Notably, the results show minor variations within a certain range, while main-
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Input Ref.
Image1 Result1

Ref.
Image2 Result2 Input Ref.

Image1 Result1
Ref.

Image2 Result2

Fig. 9: Impact of Reference Images on UEC Results.

Method Parameters Model Size Time(GPU) Time(CPU)

ECM. [12] 182,443,267 695 MB 7.08ms 149.39ms
ours 19,388 0.079 MB 1.46ms 6.38ms

Table 4: Comparison at a resolution of 256×256 between our UEC model and
ECM [12].

taining their overall performance. This observation emphasizes the UEC model’s
robust generalizability, its proficiency in extracting exposure features from di-
verse images, and its competence in achieving exposure alignment across a range
of scenes.

5.3 Time and Memory Consumption

Our approach achieves comparable performance to ECM [12] with only 0.01%
of their parameters. It supports real-time operation at 4K resolution, processing
high-definition images directly and avoiding low-level feature loss from down-
sampling. As shown in Tab. 4, our method is 4.85 times faster on GPU and
23.41 times faster on CPU compared to ECM [12]. Additional results can be
found in the supplementary material.

6 Conclusion

In this study, we introduce an unsupervised methodology for correcting exposure,
overcoming three primary limitations observed in prior methods: the dependence
on labor-intensive paired datasets, constrained generalizability, and the deterio-
ration of low-level features. To address these issues, our approach unfolds in three
stages. Initially, we establish an unsupervised learning framework grounded in
the inherent principles of exposure, thereby obviating the requirement for ground
truth data. Subsequently, we eschew the traditional reliance on ground truth,
which often incorporates subjective stylistic biases, and instead, draw insights
from a diverse array of images differing solely in their radiometric properties.
Finally, we employ color transformation techniques to maintain the intrinsic
pixel relationships, effectively preserving low-level features and enhancing the
robustness of our method.
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