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Abstract. We propose an approach for anytime continual learning (Any-
timeCL) for open vocabulary image classification. The AnytimeCL prob-
lem aims to break away from batch training and rigid models by requiring
that a system can predict any set of labels at any time and efficiently
update and improve when receiving one or more training samples at any
time. Despite the challenging goal, we achieve substantial improvements
over recent methods. We propose a dynamic weighting between predic-
tions of a partially fine-tuned model and a fixed open vocabulary model
that enables continual improvement when training samples are available
for a subset of a task’s labels. We also propose an attention-weighted
PCA compression of training features that reduces storage and compu-
tation with little impact to model accuracy. Our methods are validated
with experiments that test flexibility of learning and inference.

Keywords: Continual learning · Anytime learning · Open-vocabulary
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1 Introduction

Continual learning aims to improve a system’s capability as it incrementally
receives new data and labels, which gains increasing importance with the ex-
panding scale and applications of visual learning. Continual learning for clas-
sification is traditionally approached with discrete label spaces. Adding labels
or tasks over time changes the problem landscape, thereby increasing the dif-
ficulty of learning. The open vocabulary setting, however, frames classification
as comparing continuous feature and label embeddings. Any images and textual
labels can be embedded, so learning in this setting involves only improving on
the existing problem definition, which may be more amenable to continuous im-
provement. Although open vocabulary models can predict over arbitrary label
sets, even models like CLIP [38] that are trained on internet-scale data have
unsatisfactory performance on many tasks [48,49].

Our work aims to continually improve open vocabulary image classifiers as
new labeled data is received. We call this “anytime continual learning” be-
cause the goal is to improve efficiently any time new examples are received and
to maintain the ability to predict over arbitrary label sets at any time.
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Recent work by Zhu et al. [64] extends CLIP by training linear classifiers
and combining their predictions with those of label vectors from the original
text embedding. To enable efficient and distributed learning, linear classifiers
are trained for each partition of the feature space defined by online hierarchical
clustering. This approach requires storing all training examples, but a new ex-
ample is efficiently incorporated by training only on the data from the example’s
nearest cluster. In experiments on their own benchmark designed for open vo-
cabulary continual learning and existing benchmarks, Zhu et al. [64] outperform
other recent approaches.

Fig. 1: Our AnytimeCL algorithm can be
efficiently updated with each new exam-
ple and continuously improve. By dynam-
ically weighting predictions between a tun-
able model and a frozen open vocabulary
model, our method can predict over any
label set while gaining expertise. This fig-
ure shows our method outperforms previ-
ous SotA Zhu et al. [64] in every stage in
the data incremental setting. Our method
also outperforms in other settings like task-
incremental and class-incremental.

Our approach is to train online,
fine-tuning the last transformer block
while keeping the label embedding
fixed. When a new training sample
is received, we fill a class-balanced
batch with stored samples and update
the last transformer block in a single
step. Our experiments show this per-
forms better than retraining a classi-
fier layer, and each new sample can
be incorporated in milliseconds. Addi-
tionally, we introduce a modified loss,
enabling the prediction of “none of
the above” when the true label is ab-
sent from the candidate set, which im-
proves overall performance.

Whenever a new training exam-
ple arrives, our method updates an
estimate of the tuned and original
model’s accuracy for the given label.
The tuned and original model’s pre-
dictions are then weighted in propor-
tion to their expected accuracy for
each label. This weighting accounts
for the growing effectiveness of the
tuned model, and greatly outperforms
Zhu et al. [64]’s AIM weighting based
on whether an example’s label is likely
to have been seen in training.

The partial fine-tuning approach
requires storing either full images that need to be re-encoded during training, or
data-consumptive patch-level features at intermediate layers. We apply a per-
image weighted PCA, which provides a 30x reduction of data with little impact
on prediction accuracy. Such compression could be especially beneficial in a
large-scale federated learning setting.
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In experiments on the open vocabulary continual learning benchmark pro-
posed by Zhu et al. [64], our approach outperforms under all settings and stages,
including data-incremental, class-incremental, and task-incremental learning, and
zero shot prediction. Our ablations evaluate the effects of all key design pa-
rameters, including the partial fine-tuning, model prediction weighting, batch
sampling, and the regularization loss term. We also show that our method can
be applied to combine non-open vocabulary models like DINOv2 with CLIP to
improve further while maintaining open vocabulary ability.

In summary, our main contribution is an open vocabulary continual learn-
ing method that can quickly incorporate new training examples received in any
order and continually improve while maintaining open vocabulary performance.
Our experiments demonstrate that our system’s accuracy and efficiency stem
from multiple proposed innovations:

• Partial fine-tuning of features with a fixed label embedding;
• Online training with each batch composed of the new training sample and

class-balanced stored samples;
• Online learning of per-label accuracy for effective combination of original

and tuned model predictions;
• Loss modification to enable “none of the above” prediction, which also sta-

bilizes open vocabulary training;
• Intermediate layer feature compression that reduces storage of training sam-

ples and improves speed without much loss to accuracy.

2 Related work

The goal of continual learning (CL) is to continually improve the performance
when seeing more data, while online continual learning [1, 3, 8, 25, 35, 37] aims
to achieve a good trade-off between performance and learning efficiency. Our
problem setup and goals are distinguished by these important characteristics:

• Flexibly learn, receiving labeled examples in data-incremental (random or-
der), class incremental (grouped by category), or task incremental (grouped
by dataset);

• Efficiently update from a single example or a batch of examples;
• Retain training data, though potentially in compact, privacy-preserving forms;
• Cumulatively improve from new data without forgetting other classes or

tasks;
• Flexibly infer, predicting over label sets defined at inference time, without

rigid task boundaries.

Continual learning approaches can be broadly categorized into regulariza-
tion [20,24,60], replay/rehearsal methods [25,39,43,57], and parameter isolation
or expansion [2, 28, 36, 37, 41, 42, 58, 61]. Regularization techniques generally im-
pose constraints on the learning process to alleviate forgetting. Rehearsal meth-
ods involve storing and replaying past data samples during training [5,36,37,43].
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So far, when training data can be stored, simple replay methods tend to out-
perform others, whether limiting the number of stored examples [37] or train-
ing computation [36]. Parameter isolation methods maintain learning stability
by fixing subsets of parameters [28, 42] or extending model with new parame-
ters [41, 58, 61]. Recently, several works [17–19, 46, 52–54] adopt prompt tuning
for continual learning, which can also fall into the parameter expansion category.
These methods can be used for stage-wise incremental continual learning, but
none demonstrates the efficacy on online incremental learning that is our fo-
cus. Prompt tuning provides an alternative to weight-based fine-tuning with less
forgetting. We consider weight-tuning approaches here, but preliminary exper-
iments indicate the same strategy is applicable to prompt tuning, with similar
accuracy but slower training.

We now focus on those most relevant and influential to our work; see Wang
et al. [51] for a comprehensive survey of continual learning.

2.1 CL for open-vocabulary classification

WiSE-FT [55] fine-tunes CLIP encoders on target tasks and averages fine-tuned
weights with original weights for robustness to distribution shifts. PAINT [16]
shares a similar idea as WiSE-FT but the weight mixing coefficient is found via a
held-out set. With such approaches, generality degrades with each increment of
continual learning. CLS-ER [4] exponentially averages model weights in different
paces for its plastic and stable model to balance learning and forgetting. Closer
to our work, ZSCL [63] fine-tunes CLIP encoders using a weight ensemble idea,
similar to WiSE-FT, and applies a distillation loss with a large unsupervised
dataset to reduce forgetting. Unlike these, we partially fine-tune CLIP with fixed
label embeddings and use a dynamically weighted combination of the predictions
from the tuned and original models, which enables improvement on target tasks
without sacrificing the generality of the original model.

Another class of methods [14,45] use attribute-based recognition [13,23], con-
tinually learning attributes and attribute-class relations as a way to generalize
from seen to unseen categories. We use CLIP, which provides zero-shot abil-
ity by training to match image-text pairs on a large training corpus, instead of
the attribute-based approach. In reported results [14, 38, 45] and our own tests,
CLIP has much higher zero-shot accuracy (e.g. for the SUN and aPY datasets)
than the continual attribute-based methods achieve even after training, support-
ing the idea of building on vision-language models for open vocabulary image
classification.

2.2 CL with constrained computation

Prabhu et al. [36] evaluate a wide variety of continual learning techniques under
a setting of retaining data but limiting compute. Compared to all other tech-
niques, they find that simple replay strategies, such as fine-tuning with uniformly
random or class-balanced batches, are most effective in this setting. They also
provide some evidence that partial-fine tuning of a well-initialized network may
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be an efficient and effective approach. In this direction, we find that fine-tuning
only the last transformer block of CLIP by performing one mini-batch update
per incoming sample works surprisingly well.

2.3 Biologically inspired CL

The complimentary learning systems theory [32] (CLS theory) posits that hu-
mans achieve continual learning through the interplay of sparse retrieval-based
and dense consolidated memory systems. This has inspired many works in contin-
ual learning, e.g. [4,34,64]. The most closely related is Zhu et al. [64], as detailed
in the introduction. Many works are also inspired by the idea of wake/sleep
phases of learning, where faster updates are required during the wake stage.
Recent studies of mammalian memory and learning indicate that consolidation
occurs in similar ways via replay during wakefulness and sleep [7, 44, 50]. Our
online learning method mixes use of individual examples and consolidated net-
works for continuous improvement for continuous improvement, reflecting the
idea of wakeful consolidation through replay.

2.4 Memory compression

Other work has compressed training data [9], or distilled training data into a
network [59], or learned prompts [17–19,46,52–54] instead of maintaining original
examples. AQM [9] uses an online VQ-VAE [30] to compress training samples to
reduce storage for continual learning. We instead compress intermediate features
to improve both storage and computation of partial fine-tuning.

3 Method
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Fig. 2: Overview. On receiving a new training sample, the batch is completed with
stored samples, the prediction is made using a label embedding, the tuned decoder and
confidence weights (αo, αt) are updated in one step, and the new sample is stored.
To save space and time, stored examples are encoded and compressed. In testing, the
probability of each candidate label is determined by predictions from both decoders
and their class-wise confidence weights. Our method enables constant-time updates
from new samples while continually improving and maintaining open vocabulary per-
formance. Green blocks are updated during training; blue blocks are not updated.
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Our system receives training examples (x, y, Y) one by one to update its
models, in order to continually improve in prediction of y given (x, Y), where x
is an input image, y is its target label, and Y is its set of candidate labels.

Fig. 2 offers a system overview aimed at enhancing open vocabulary image
classifiers by integrating a tuned model for learning target tasks with a frozen
original model. The tuned model uses the same encoder as the original but
incorporates a trainable decoder. For an image x, both the tuned model and
the original model produce the probabilities for all candidate labels, denoted as
Pt(y|x) and Po(y|x). The final probability for the image is weighted through our
Online Class-wise Weighting (OCW, Sec. 3.2):

P (y|x) = αo(y)Pt(y|x) + αt(y)Po(y|x), (1)

where αo(y) and αt(y) are the relative expected accuracies for the original and
tuned models for label y. During training, new samples are encoded to intermedi-
ate features (feature vectors for patches plus a CLS token), optionally compressed
(Sec. 3.3), and stored, for reuse in future steps.

3.1 Models

Original model. In our experiments, the original model is the publicly available
CLIP [38] ViT model that has been trained contrastively on image-text pairs.
In our experiments, the shared encoder is all but the last transformer block, and
the original decoder is the last block. The CLIP model produces a probability
for label y for image x given a set of candidate text labels Y based on the dot
product of image embedding ex (CLS token) and text embedding ey:

Po(y|x) =
exp(100 · cos(ex, ey))∑

yk∈Y exp(100 · cos(ex, eyk
))
. (2)

Tuned model. With each new sample, our goal is to efficiently update the tuned
model to improve accuracy in received labels while maintaining general features
that are effective for future learning. We tune only the last image transformer
block while keeping the label embedding fixed, which helps the features to stay
correlated with the text modality and reduces overfitting to received labels. Note
that more blocks can be tuned, which could enable better performance but with
increased computation. The tuned decoder is initialized with the weights of the
original decoder.

Given a new sample, we form a batch of that sample and a class-balanced
sampling of stored training samples. Specifically, we first determine the class
count for selection: for a batch size of B and all seen labels Yt, we uniformly
select min(B − 1, |Yt|) classes from Yt, where | · | indicates the length of a set.
Then we uniformly sample an equal number of instances from each chosen class
to form the batch. This class-balanced sampling ensures continual retention and
improvement of prediction of training labels. Then, the tuned model is updated
with one iteration based on a cross-entropy loss.
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Additionally, we develop a regularization loss that helps with performance.
The idea is that, if the true label is not in the label candidates, a low score
should be predicted for every candidate label. We implement this with an “other”
option within the candidate set, but since “other” does not have an appearance,
we model it with just a learnable bias term. The combined loss for training the
tuned model is therefore:

L(x, y,Y) = Lce(x, y,Y ∪ other) + βLce(x, other, (Y ∪ other) \ y), (3)

where β is a hyperparameter balancing the two loss terms, set to 0.1 based on
validation experiments.

3.2 Online Class-wise Weighting

We estimate the probability of each candidate label by weighted voting of the
tuned and original models (Eq. 1). We would like to assign more weight to the
model that is more likely to be correct for a given label. There are two big prob-
lems: 1) training samples would provide a highly biased estimate of correctness
for the tuned model; 2) maintaining a held out set or performing cross-validation
would either reduce available training samples or be impractically slow. Our so-
lution is to use each training sample, before update, to update our estimate of the
likelihood of correctness for its label based on the tuned and original predictions.

Let ct(y) and co(y) be the estimated accuracy of the tuned and original model
for label y. We apply an exponential moving average (EMA) updating method
to estimate them online, ensuring the estimations are reliable when evaluated at
any time, concurring with our anytime continual learning goals. Assuming the
EMA decay is set to η (=0.99 in our experiments), the estimated accuracy of
the tuned model at the current step is:

ct(y) = ηĉt(y) + (1− η)1[yt(x) = y]. (4)

Here, ĉt(y) is the estimated accuracy of label y in the previous step; yt(x) denotes
the predicted label of the tuned model for x. Since the exponential moving
average depends on past values, we compute ct(y) as the average accuracy for
the first ⌊ 1

1−η ⌋ samples. co(y) is updated in the same way.
After getting ct(y) and co(y), the weights of the two models are:

αt(y) =
ct(y)

ct(y) + co(y) + ϵ
, αo(y) = 1− αt(y). (5)

Here, ϵ is a very small number (1e-8) to prevent division by zero. For labels not
seen by the tuned model, we set αt(y) = 0, so αo(y) = 1.

3.3 Storage efficiency and privacy

Partial tuning of our model requires either storing each image or storing the
features (or tokens) that feed into the tuned portion of the model. Storing images
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has disadvantages of lack of privacy and inefficiency in space and computation,
due to need to re-encode in training. Storing features alleviates some of these
problems, but still uses much memory or storage. Therefore, we investigate how
to compress the training features, aiming to increase storage and computational
efficiency while maintaining training effectiveness. The compressed features also
provide more privacy than storing original images, though we do not investigate
how well the images can be recovered from compressed features.

Well-trained networks learn data-efficient representations that are difficult
to compress. Indeed, if we try to compress feature vectors with VQ-VAE [30]
or PCA (principal component analysis) trained on a dataset, we are not able to
achieve any meaningful compression without great loss in training performance.
The features within each image, however, contain many redundancies. We, there-
fore, compute PCA vectors on the features in each image and store those vectors
along with the coefficients of each feature vector. Further, not all tokens are
equally important for prediction. Hence, we train a per-image attention-weighted
PCA, weighted by attention between each token and the CLS token. Finally, we
can compress further by storing min/max floating point values for each vector
and for the coefficients and quantizing them to 8-bit or 16-bit unsigned integers.
See the supplemental material for details. By storing only five PCA vectors and
their coefficients this way, we can reduce the storage of fifty 768-dim tokens
(7 × 7 patch tokens + CLS token) from 153K bytes to 5K bytes with less than
1% difference in prediction accuracy.

4 Experiments

Using the setup from [64], we sequentially receive training samples for a target
task in a data-incremental (random ordering) or class-incremental (class-
sorted ordering). Or, in a task-incremental setting, we receive all examples
for each task sequentially. Within each set, we incorporate new examples one
by one in an online fashion. After receiving each set, the model is evaluated
on the entire task (including classes not yet seen in training) for data- or class-
incremental, or on all tasks (including tasks not yet seen in training) for task-
incremental.

Our main experiments use the same setup as Zhu et al. [64], which are de-
signed to test flexible learning and flexible inference. A target task contains
a subset of seen labels while a novel task contains none of these labels. Tar-
get tasks are CIFAR100 [22], SUN397 [56], FGVCAircraft [27], EuroSAT [15],
OxfordIIITPets [33], StanfordCars [21], Food101 [6], and Flowers102 [29]. Novel
tasks are ImageNet [40], UCF101 [47], and DTD [10]. Training examples are re-
ceived for target tasks, but not for novel tasks. Under this setup, we have 226,080
training samples and 1,034 classes in total.

• Task Incremental Learning updates one model with each of the eight
target tasks sequentially.

• Class Incremental Learning updates a per-task model with examples
from a subset (one-fifth) of classes for a stage.
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• Data Incremental Learning updates a per-task model with a random
subset of the data in eight stages: 2%, 4%, 8%, 16%, 32%, 64%, 100%.

After each stage, accuracy is averaged across all tasks (including tasks/classes
not yet seen).

Additionally, we provide a union data incremental scenario where we mix
all target tasks together and union all target labels, mainly for hyperparameter
selection and ablation experiments. Flexible inference is evaluated after the
task-incremental learning for prediction over novel tasks and sets of candidate
labels Y: zero-shot, union of all target tasks/labels and zero-shot tasks/labels,
and a mix of some target and zero-shot tasks/labels. See [64] for details. The
union and mixed settings are most challenging because they require effective
combined use of both the original and tuned models, without any task identifiers
or indication whether an example’s label is in the tuned model’s domain.
Implementation details. We employ the ViT-B/32 model from CLIP as our
network backbone. We use AdamW [26] as the optimizer with a weight decay of
0.05, and we adhere to CLIP’s standard preprocessing without additional data
augmentations. For offline training, following [11], we set the learning rate at
6e-4 and the batch size at 2048, employing a cosine annealing scheduler for the
learning rate with a minimum rate of 1e-6. For online training, we use a batch
size of 32 and a learning rate of 9.375e = 32×6e−4

2048 , based on adjustments from
the offline training hyperparameters. More method and training details are in
the supplemental.

4.1 Main result

In this evaluation, we compare our method with the previous SotA Zhu et al. [64]
(CLIP+LinProbe (AIM-Emb)) under the task-, class-, data-incremental scenar-
ios, as well as flexible inference. From all plots in Fig. 3, our AnytimeCL method
consistently outperforms CLIP+LinProbe (AIM). For task incremental, the im-
provement is mainly due to the partial finetuning with fixed label embeddings.
To provide a more direct comparison with Zhu et al. [64], we train our approach
only after receiving all data of a task (e.g ., 100% CIFAR100) and term this as
AnytimeCL (Offline), which also shows steady improvements over Zhu et al. [64].
For early stages in class incremental and data incremental, the performance im-
provement mainly comes from the advantage of our online class-wise weighting
method over AIM, which only considers whether the testing sample is likely to
be from a known class.

4.2 Comparison under MTIL task incremental learning [63]

We compare the performance of AnytimeCL with Zhu et al. [64] and ZSCL [63]
under the task incremental learning setting as introduced in ZSCL. Results are
summarized in Tab. 1, using the Transfer, Last, and Average metrics from [63]
for comparison. Improvements over CLIP are denoted in green under the ∆
columns, while declines are marked in red. Our method consistently achieves



10 Zhen Zhu , Yiming Gong , and Derek Hoiem

(b) Class Incremental

(c) Data Incremental (d) Flexible Inference

(a) Task Incremental

Fig. 3: Performance comparison of CLIP, CLIP + Linear (AIM), and AnytimeCL
variants in task incremental (a); class incremental (b); data incremental (c); and flexible
inference (d) settings. In (a), the online approach is represented by a solid line, while
offline methods are depicted with dashed lines, assessed when the online algorithms
receive 25%, 50%, 75%, and 100% data of a task, labeling tasks at the 25% point.

zero loss in Transfer in both experiments, indicating an absence of forgetting.
On this benchmark, our method performs comparably to LinProbe (AIM) and
outperforms other methods. This experimental setup does not fully capture our
method’s key advantages of online training, ability for data and class incremental
learning, and open vocabulary prediction. Also, in this setting, a simple weighting
method is effective — to use the tuned model’s prediction for tasks with all
candidate labels in the training set, or the original model’s prediction otherwise.

4.3 Training features compression

We test our per-image attention-weighted PCA compresssion for training fea-
tures (Table 2). We compare the data size, average full time to process one
32-sample batch (including data loading, uncompressing, and forward/backward
training passes), and final accuracy after completing fine-tuning. This test is on
CIFAR100. Compared to processing the full image or full features, using our com-
pressed features saves 30x the storage while achieving nearly the same accuracy.
We were not able to achieve good accuracy when compressing with VQ-VAE,
even when using large vocabularies, nor when using PCA vectors computed over
the entire dataset. Computing PCA vectors per instance (over the 50 tokens)
and weighting the tokens by their CLS-attention each improve the tuned accu-
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Method Transfer ∆ Avg. ∆ Last ∆
CLIP 69.4 0.0 65.3 0.0 65.3 0.0
LwF [24] 56.9 -12.5 64.7 -0.6 74.6 +9.3
iCaRL [39] 50.4 -19.0 65.7 +0.4 80.1 +14.8
WiSE-FT [55] 52.3 -17.1 60.7 -4.6 77.7 +12.4
ZSCL [63] 68.1 -1.3 75.4 +10.1 83.6 +18.3
TreeProbe (AIM) (50k) [64] 69.3 -0.1 75.9 +10.6 85.5 +20.2
LinProbe (AIM) [64] 69.3 -0.1 77.1 +11.8 86.0 +20.7
AnytimeCL 69.4 0 77.0 +11.7 85.8 +20.5
AnytimeCL (Offline) 69.4 0 77.0 +11.7 86.2 +20.9

Table 1: Comparison of different methods on MTIL in Order I from ZSCL [63]. CLIP
is our tested zero-shot performance. All other results are taken Zhu et al. [64] and
ZSCL [63]’s papers. “Transfer” evaluates the model’s performance on zero-shot tasks;
“Last” is the averaged accuracy on all target tasks after finishing the final task while
“Avg.” computes the average task performance on all training stages.

racy. Quantizing the PCA vectors and coefficients further saves space at a small
loss to accuracy. Using the compressed features also gives a nearly 2x speedup
vs. using the full features (because the compressed features fit entirely in mem-
ory) and 6x vs. using the full image, though all times are fast. We provide more
method details in the supplemental along with a comparison of using different
per-instance PCA compression methods under the union data incremental sce-
nario, to show how these compression methods influence the result at various
timesteps.

Compression KB/example ms/batch FT Accuracy
Full image 150.5 43.9 77.8
Full features 153.6 25.6 77.8
VQ 0.2 4.5 64.8
Dataset-wide PCA (200 components) 40.2 7.6 76.4
Per-instance PCA (5 components) 19.4 7.7 74.6
+ CLS-weight (5 components) 19.4 8.9 77.9
+ int-quantization (5 components) 5.3 13.9 77.5

Table 2: Comparison of different compression methods in terms of memory usage,
processing speed, and test accuracy on CIFAR100. See supplementary material for
details on how to get ms/batch and FT Accuracy. We use the same seed for all methods.

4.4 Ablations

In the following, we ablate several important factors that contribute to our
method. Additional ablations and results are provided in the supplemental.
Weighting Strategies. Weighting is vital for our dual decoder approach. We
compare several ways to compute the weights: 1) CLIP: namely αt(y) = 0 for
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(a) Ablation on weighting methods under class incremental (c) Ablation on weighting methods under flexible inference

(e) Ablation on sampling methods under union data incremental (f) Ablation on the “other” logit under union data incremental(d) Ablation on tuned parts under flexible inference

(b) Ablation on weighting methods under data incremental

Fig. 4: Ablation results. Best viewed in color and zoomed-in.

any images; 2) Tuned model only: αt(y) = 1 for any images; 3) AIM [64]; 4)
OCW (0/1): a variant of OCW where we round αt(y) to 0 or 1 to use either
the original or tuned model; 5) Our proposed OCW. We partially finetune the
decoder with fixed label embeddings and combine the tuned model with the orig-
inal model using different weighting strategies. The results are shown in Fig. 4
(a), (b) and (c), under data-, class-incremental and flexible inference. OCW per-
forms the best of all methods in every setting and stage. Notably, OCW enables
improvements even in the early stages when limited data is available for a class
or task and better handles tasks that mix novel and target labels.
Tuned parts. Our proposed method tunes the last transformer block while
keeping the label encoder fixed. In Fig. 4 (d), we compare this approach to al-
ternatives of tuning only the label encoder, both the block and the label encoder,
or neither of them, under the flexible inference test. When only using the tuned
model for comparison (αt = 1), fine tuning only the last transformer best retains
predictive ability for novel labels. Further analysis under the task incremental
scenario is provided in the supplemental material.
Sampling methods. We compare different methods for sampling from the
stored samples. FIFO cycles through samples in order of first appearance, “uni-
form” randomly draws samples for each batch, class-balanced (which we use in
all other experiments) samples classes, and frequency weighted sampling (FWS)
samples based on how many times a given sample has been batched in training.
Class-balanced and uniform are similar in practice, and perform best (Fig. 4 (e)).
This result is consistent with Prabhu et al. [36]’s finding that simple sampling
methods outperform complex ones under a computational budget. See supple-
mental for more details.
The “other” logit regularization. The ablation experiments depicted in Fig. 4
(f) assess the impact of “other” logit regularization in the union data incremental
scenario. The results demonstrate consistent enhancements when this regular-
ization is applied, compared to its absence.
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4.5 Scalability

(b) Different tuned models under flexible inference (c) Impact of the node size on combining tree clustering(a) Different tuned models under task incremental

Fig. 5: (a) & (b): The “CLIP” method refers to the original model. For Tuned model:
DINOv2, we use the ViT-B/14 checkpoint; (c): Infinite node size indicates only one
tuned model regardless of the number of samples received.

DINOv2 as the Tuned Model. Using self-supervised DINOv2 [31] as our
tuned model showcases our method’s adaptability beyond the original CLIP
model [64]. Our approach allows for tuning the feature embedding space while
keeping label embeddings fixed, enabling the incorporation of diverse encoders
through an additional linear layer for dimension matching. This layer is trained
in joint with the tuned decoder. As illustrated in Fig. 5 (a), replacing the tuned
model with DINOv2 results in consistent performance improvements at every
stage, with a notably steeper improvement curve in later stages. Furthermore,
Fig. 5 (b) demonstrates that this modification preserves Zero-shot performance
while significantly boosting Union+Zero-shot and Mix+Zero-shot outcomes, at-
tributed to DINOv2’s enhanced performance on target tasks.
Tree clustering models. Zhu et al. [64] propose tree-based clustering as a way
to limit the training time needed to incorporate new examples. Our method can
already incorporate an example much faster in a way that does not depend on
the number of training samples, but the clustering idea is still intriguing as a
path to scalability in storage, memory, and model capacity. In Fig. 5 (b), we
evaluate different node capacities and find that moderate-sized partitions may
slightly increase performance. In these experiments, each node stores a copy of
the last CLIP transformer block and updates it based on data that it receives.

5 Discussion

Our AnytimeCL approach shows promise of breaking free of staged train and
deploy processes, with many benefits to applications that constantly or sporad-
ically receive new data and have customizable or evolving label spaces.

The anytime has three main parts: (1) being able to do a task even when
training data do not fully cover the label space for that task; (2) being able to
incorporate a new training example quickly; and (3) not losing the benefit of
older training data. Our key to the first part is using complimentary models.
For that we are motivated by CLS theory [32] and more specifically adopt the

https://github.com/facebookresearch/dinov2
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framework of Zhu et al. [64], improving it with our prediction weighting method
and by partially fine-tuning the encoder. Our key to the second part is that we
do not need to incorporate one million examples quickly, just one. This reframes
the computationally budgeted CL problem of Prabhu et al. [36], who aim to
incorporate a new large batch of examples in time that allows visiting only a
portion of the existing data. For some settings, our goal is more practical, as it
enables an opportunistic approach that interleaves pure online learning during
busy times and offline learning when time allows. While humans are often held
up as excellent continual learners, they also learn one thing fast but many things
slowly over time and make use of restful wake and sleep to continue learning.
The effectiveness of our online learning is also due, in part, to leveraging a strong
vision-language model, just recently possible. The key to the third goal is simple
— do not throw out the data. If one cares about privacy and storage, then finding
ways of compressing and preserving privacy, like our PCA-based approach, may
be better than trying to retain the benefits of a large dataset without one.

Potential directions for future work:

• Beyond classification: Our partial fine-tuning approach is applicable to other
tasks, such as semantic segmentation, visual question answering, and object
detection. Our weighting method is applicable to open vocabulary detection
and segmentation.

• Multi-model inference: Extending our approach to multiple models, including
task-specific models, would further extend flexible learning and model re-use
opportunities.

• Scalability: We expect that tree-based data clustering and training one model
per cluster, as in [64], provides a good mechanism for scalability. Larger scale
experiments, involving dozens of datasets and many millions of examples, are
needed to fully test this.

• Federated learning: Combining tree-based clustering and feature compres-
sion, we can encode training examples in the client or central server and
transmit to a node that stores and updates the tunable block and its data.
This enables fully distributed training on inexpensive nodes.

6 Conclusion

We propose an effective approach for anytime continual learning of open vocab-
ulary image classification. The main innovation is dynamic class-senstive weight-
ing for combining predictions of open-vocabulary and example-based tuned mod-
els, and we also find that partial fine-tuning with sufficiently small learning rates
enables a surprisingly effective online learner. We offer a per-image attention-
weighted PCA approach to compress features, with benefits to storage, compu-
tation, and privacy. Our experiments show that our approach is very promising,
and further exploration is merited to more fully understand its effective scope
and limitations.
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S-1 Summary of contents

The supplemental file contains:

• Additional method details (Sec. S-2), including compression method
details; the implementation details of the frequency weighted sampler.

• Additional ablation results (Sec. S-3), regarding the online learning
batch size selection; the EMA decay (η) for accuracy estimation in OCW;
loss balancing parameter β in Eq. 3; the number of saved components for per-
instance PCA compression; different per-instance PCA compression methods
in the union data incremental scenario.

• Additional results to the main draft (Sec. S-4), including DINOv2 [31]
vs. CLIP [38] tuned model on class, data, and union data incremental;
weighting method ablation on task incremental; tuned parts ablation on
task incremental; detailed results of our method on the ZSCL [63] MTIL
task incremental benchmark.

S-2 Additional method details

S-2.1 Compression method detail

In this section, we complement more details of methods and implementation of
Tab. 2 in the main paper.
Full Image. CLIP reshapes the input image to 224 × 224 and then creates
32×32 non-overlapping image patches, resulting in 7×7 patch tokens P ∈ R49×D

for the transformer, where D (=768 in our case) represents the feature vector
dimension. Additionally, a CLS token C ∈ R1×D is attached to the start of
the token sequence. The CLS token after being processed through the whole
transformer is normally followed by a classification layer in ViT [12] or directly
used for calculating cosine similarity with label embeddings in CLIP [38] (See
Eq. 2). For fair comparison with other methods in Tab. 2, we partially fine-tune
the last layer of the transformer block without tuning the label embeddings.
Processing a batch includes image loading, processing, a complete forward pass,
and a backward pass restricted to the final transformer block.
Full Features. We pre-compute the intermediate features f = [C;P] ∈ R50×D

before the final layer on all data and then store them to disk. For fine-tuning, we
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load stored features back from disk to RAM and feed them directly into the final
transformer block, which is the only block tuned. Processing a batch includes
loading intermediate features, forward and backward pass of the final block.
VQ. For Vector Quantization, we pre-train a codebook on intermediate features
before the final layer using MSE loss between the quantized features and the
original features. We adopt Zheng et al. [62]’s method to enhance VQ perfor-
mance by promoting the use of more codebook vectors. Then, we process all
images in the dataset to obtain the corresponding codebook indices. We store
the codebook and indices of all samples to disk. Similar to Full Features, when
fine-tuning, data processing involves loading a codebook and integer indices of
intermediate features into RAM for feature reconstruction. To process a sin-
gle batch, we need loading the codebook and indices, feature reconstruction by
retrieving codewords from the codebook according to the indices, forward and
backward pass of the final layer.
PCA. To compress f , we first center f by subtracting the mean values of each
token: f̂ = f−µ, where µ represent the mean values of all tokens. We follow scikit-
learn to perform SVD: f̂ = UΣVT . The reduced form of f̂ can be approximated
by f̂ ≈ UnΣnV

T
n , where n is the number of principal components/singular values

chosen. UnΣn is the PCA coefficient matrix and VT
n is the PCA component

matrix. Ideally, we want to find a small n so that the accuracy after fine-tuning
is reasonably good. We store UnΣn, Vn and µ to the disk for reconstructing f
during training: UnΣnV

T
n + µ.

Dataset-wide PCA. Since f is of shape 50×D and in our case D = 768 > 50,
it makes a higher compression rate to compress along the vector dimension. For
dataset-wide PCA, we concatenate the intermediate features from all samples
together along the dimension of the 50 tokens and then apply PCA on the whole
concatenated feature. Due to hardware limitation of RAM capacity, processing
all data in a single pass is not feasible. Therefore, we divide all data into chunks
of 5,000 samples each. PCA is performed on each chunk and we store feature
means, PCA coefficients, and components to disk. Processing a single batch
involves loading these data from disk to RAM, reconstructing features via PCA,
and processing them through the final layer (both forward and backward pass).
Per-instance PCA. For this method, PCA is applied on the 50 tokens of each
sample. We store the feature means, PCA coefficients, and components to disk.
Procedures required to process a batch are similar as dataset-wide PCA.
CLS-weight. We use the CLS token C for classification purposes. The idea is
that some of the patch tokens P are quite similar to this CLS token and could be
very important for the classification task. To take advantage of this, we adjust
the importance (or weight) of these patch tokens based on how similar they are
to the CLS token. By doing so, we can potentially compress the information more
effectively without losing important details necessary for accurate classification.
Specifically, these similarities are obtained through:

S = Softmax(Matmul(LayerNorm(C),LayerNorm(PT ))). (S1)
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Here, we use the layer normalization from the last transformer block. Then, the
patch tokens are re-weighted by: S ·P. Following this reweighting, per-instance
PCA is applied to the adjusted intermediate features: fweighted = [C;S ·P].
Int-quantization. To further reduce memory usage, we convert principal com-
ponents from 32-bit floats to 8-bit integers, potentially reducing memory by
approximately fourfold. Suppose a principal component is V , we map it to uint8
(0–255) after performing min-max normalization:

V̂ = Int(255 ∗ ( V − Vmin

Vmax − Vmin
)), (S2)

where Vmin and Vmax are the minimum and maximum values of vector V ; Int(·)
means converting the values of a vector to integers. After the quantization pro-
cess, we store the min, max values, and the uint8 vector. Reconstruction involves
mapping the vector back to float numbers. A similar process can be applied to
principal coefficients, although the decrease in storage is less significant.
Implementation details for obtaining the numbers in Tab. 2. We run the
same test 100 times for each method without other ongoing programs, and then
compute the mean as the result of the time needed to process a single batch. We
perform partial fine-tuning on the final block of the transformer network. We
opt for a batch size of 32, a learning rate of 5e-6, a weight decay of 0.05, and
conduct fine-tuning over 10 epochs.

S-2.2 Frequency-weighted sampling method details

The idea of Frequency Weighted Sampling (FWS) is to assign more sampling
weights for recent samples while ensuring that older samples can be selected.
Specifically, when a new sample xi is received, its sampling weight wi is initialized
to 1. After including the sample in a training batch, the weight is updated by:

wi = max(wi ∗ ξ, wmin), (S3)

where ξ ∈ [0, 1] is the decay multiplier. To be clear, wi is proportional to the
likelihood that a training sample is used in the next training batch, not as a
loss weight. We set a lower bound wmin for sampling weights, for numerical
stability and to ensure relatively well-trained instances have equal chance of
being sampled. When a new training example is received, a batch of size B
is filled with that example and B − 1 other random stored examples, drawn
with a wi weighting. One training iteration is performed with that batch. The
FWS strategy hastens convergence to the expectation that all training samples
are eventually sampled an equal number of times, regardless of their order of
appearance. ξ is not critical to performance: whether it is 0 or 1, it is equivalent
to uniform sampling; any values in between adjust the degree of frequency bias—
larger values lead to more repeated sampling of recently added examples. In the
comparison, we set it to 0.99.
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S-2.3 More implementation details

If not otherwise specified, we use the same seed for all experiments for consis-
tency. Our dataset splits on class, data, task incremental, and flexible inference
are the same as Zhu et al. [64], for fair comparison. The offline AnytimeCL model
is trained with 10 epochs for each stage.

S-3 Additional ablation experiments

(a) Ablation on online batch size (c) Ablation on loss balancing parameter(b) Ablation on EMA decay

Fig. S1: Additional ablation results. Best viewed in color and zoomed-in. All exper-
iments in these plots are conducted under the union data incremental setting. Our
default selected options are 32 as the online training batch size in (a), 0.99 as the EMA
decay for accuracy estimation in (b), 0.1 as the loss balancing parameter in (c).

S-3.1 Ablation on the online training batch size

For our online training method, assume the batch size is B, the total computation
allowed for training new samples equals to processing B epochs of new samples.
Therefore, our online learning method can fit to different computation budgets
by using different online learning batch sizes. We evaluate the impact of batch
size on union data incremental in Fig. S1 (a). For this comparison, we keep the
ratio of learning rate and batch size constant. When the batch size is smaller
than 32, the corresponding accuracy, especially in later portions of data received,
is obviously lower than other batch sizes. When the batch size is 64 or 128, the
performance can be better than using 32. However, the performance of batch
size 256 is relatively worse than 32. This shows that given larger computation
budget (i.e., increasing batch size), performance can be improved though the
gain diminishes quickly.

S-3.2 Ablation on the EMA decay for the accuracy estimation of
OCW

As can be seen in Fig. S1 (b), our method is robust against different EMA decays
but generally larger EAM decay leads to better result. As a result, we choose
0.99 as its default value throughout all experiments.

https://orcid.org/0000-0003-1557-8473
https://orcid.org/0009-0007-5520-7999
https://orcid.org/0000-0001-6260-5708
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S-3.3 Ablation on the loss balancing parameter β

In Sec. 4.4 of the main paper, we already showed using the “other” logit regu-
larization enhances the performance. Here in Fig. S1 (c), we additionally test
the performance of various loss balancing weights. The results validate including
the regularization term is important but the exact value of the loss balancing
parameter is not critical to performance.

S-3.4 Ablation on the number of components for per-instance PCA

As default, we use only 5 components for per-instance PCA in Tab. 2. Here, we
additionally present results using 3, 10, and 20 components in Tab. S1. Using
5 components maintains good accuracy after applying our proposed techniques
(+CLS-weight and int-quantize). It is possible to compress further by using 3
components but the average accuracy also decreases. The gains of introducing
more components than 10 are not significant.

No. components Per-instance +CLS-weight +int-quantize
FT Acc. KB/sample FT Acc. KB/sample FT Acc. KB/sample

3 75.2± 0.23 12.9 77.4± 0.26 12.9 77.4± 0.22 3.7
5 74.7± 0.34 19.4 77.7± 0.19 19.4 77.6± 0.16 5.3
10 77.4± 0.17 35.8 78.1± 0.14 35.8 77.7± 0.25 9.4
20 77.7± 0.11 68.5 77.8± 0.35 68.5 77.7± 0.20 17.7

Table S1: Fine-tuning accuracy for CIFAR100 when choosing different number of
components. FT accuracy is obtained from averaging six runs with different seeds.
Numbers after ± denote the standard deviations of FT accuracies across six runs.

S-3.5 Ablation on the per-instance PCA compression methods
under union data incremental

To conduct the comparison to using full features on the union data incremen-
tal scenario, for the per-PCA compression methods, we load all cached contents
to RAM and recover the intermediate features on the fly. Using full features re-
quires extensive I/O operations to load stored features from disk during training,
though it no reconstruction is needed. As presented in Fig. S2, from comparing
per-instance PCA and +CLS-weight, reweighting the patch tokens using their
similarities to the CLS token dramatically improves performance. The int quan-
tization technique compresses the data further without compromising on perfor-
mance. Both +CLS-weight and +int-quantization are close to the full features
method in every stage, showing the effectiveness of our proposed compression
methods.
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Fig. S2: Comparison of different per-instance PCA compression methods under the
union data incremental scenario.

S-4 Additional results to the main draft

S-4.1 DINOv2 [31] vs. CLIP [38] tuned model on class, data, and
union data incremental

(a) Different tuned models under class incremental (c) Different tuned models under union data incremental(a) Different tuned models under data incremental

Fig. S3: Comparison between DINOv2 [31] and CLIP [38] as tuned model on class (a),
data (b), and union data incremental scenarios (c).

Fig. S3 shows the comparison. Clearly using DINOv2 as the tuned model has
better results eventually in all cases. It is interesting that DINOv2 as the tuned
model shows superiority over CLIP in the very beginning of data incremental
scenarios in Fig. S3 (b) & (c), unlike the class incremental case in (a). This result
may indicate that DINOv2 is more helpful in few-shot learning scenarios.

https://orcid.org/0000-0003-1557-8473
https://orcid.org/0009-0007-5520-7999
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(b) Ablation on tuned parts under task incremental(a) Ablation on weighting methods under task incremental

Fig. S4: Supplemental results to existing ablations in the main draft. In (a), OCW
(0/1) is hard to be observed since OCW overlaps with it.

S-4.2 Weighting method ablation on task incremental

Fig. S4 (a) shows the results of different weighting methods on the task in-
cremental scenario. This scenario cannot fully demonstrate the effectiveness of
weighting methods for the similar reason stated in Sec. 4.2.

S-4.3 Tuned parts ablation on task incremental

Our proposed method only tunes the last transformer block and freezes the
label encoder. This leads to better target task performance than replacing the
label encoder with a tuned classifier, as shown in Fig. S4 (b). Training only
the classifier layer underperforms because it cannot tune the features. When
fine tuning the last transformer block, keeping the label encoder fixed improves
performance, perhaps because it provides a regularization on the feature tuning.

S-4.4 Detailed results under the MTIL task incremental learning
benchmark [63]

We also present the detailed accuracies of AnytimeCL online and offline in
Tab. S2 and Tab. S3, respectively. Our internal tests revealed that hyperpa-
rameter tuning, such as adjusting the learning rate for each task, can enhance
results, as revealed in ZSCL’s released code [63]. However, we tend to avoid
hyperparameter tuning of different tasks since selected hyperparameters do not
guarantee a better performance when the data distribution in an online data
stream shifts.

https://github.com/Thunderbeee/ZSCL/tree/8cd0caf19dfbb024dcde3fb3af8adbf6949259e8
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Transfer 87.9 68.2 45.3 54.6 71.4 88.9 59.4 89.1 64.6 64.1 69.4

Aircraft 44.85 87.90 68.22 45.32 54.61 71.43 88.86 59.45 89.07 64.61 64.05
Caltech101 50.50 96.60 68.22 45.32 54.61 71.43 88.86 59.45 89.07 64.61 64.05
CIFAR100 52.45 96.89 82.23 45.32 54.61 71.43 88.86 59.45 89.07 64.61 64.05
DTD 52.42 96.66 83.03 69.63 54.61 71.43 88.86 59.45 89.07 64.61 64.05
EuroSAT 52.78 96.77 83.57 75.64 94.46 71.43 88.86 59.45 89.07 64.61 64.05
Flowers 53.59 96.83 83.52 74.95 95.59 87.84 88.86 59.45 89.07 64.61 64.05
Food 54.04 96.77 83.6 75.11 96.63 92.83 91.36 59.45 89.07 64.61 64.05
MNIST 54.40 96.49 83.77 75.32 96.19 93.23 91.60 98.51 89.07 64.61 64.05
OxfordPet 55.12 96.43 83.54 75.37 96.83 92.97 92.22 98.76 91.63 64.61 64.05
Cars 53.44 96.60 83.68 74.73 96.63 92.94 92.10 98.58 92.75 83.48 64.05
SUN397 53.11 96.37 83.27 73.51 95.93 92.88 92.04 98.36 93.16 85.77 79.67 85.8

Avg. 52.4 95.8 80.6 66.4 81.0 82.7 90.2 73.7 90.0 68.2 65.5 77.0
Table S2: Accuracy (%) of AnytimeCL Online on the MTIL benchmark with order-I.
Each row represents the performance on every dataset of the model trained after the
corresponding task. Transfer, Avg., and Last metrics are shown in color. We follow the
same table arrangement as in ZSCL [63].
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Transfer 87.9 68.2 45.3 54.6 71.4 88.9 59.4 89.1 64.6 64.1 69.4

Aircraft 36.87 87.90 68.22 45.32 54.61 71.43 88.86 59.45 89.07 64.61 64.05
Caltech101 45.48 97.00 68.22 45.32 54.61 71.43 88.86 59.45 89.07 64.61 64.05
CIFAR100 49.68 96.72 84.46 45.32 54.61 71.43 88.86 59.45 89.07 64.61 64.05
DTD 51.28 96.77 84.14 73.83 54.61 71.43 88.86 59.45 89.07 64.61 64.05
EuroSAT 52.18 96.71 84.48 74.79 97.37 71.43 88.86 59.45 89.07 64.61 64.05
Flowers 53.02 96.89 84.45 75.16 97.59 91.67 88.86 59.45 89.07 64.61 64.05
Food 52.39 96.95 84.20 74.41 97.54 91.72 92.43 59.45 89.07 64.61 64.05
MNIST 53.17 96.66 84.3 74.73 97.59 91.90 92.48 98.99 89.07 64.61 64.05
OxfordPet 53.92 96.83 84.45 74.31 97.52 91.88 92.35 99.16 93.92 64.61 64.05
Cars 53.80 97.06 84.23 75.05 97.50 91.54 92.41 99.20 94.11 85.86 64.05
SUN397 52.48 96.72 83.83 73.94 97.33 91.56 92.23 99.14 93.73 85.84 81.50 86.2

Avg. 50.4 96.0 81.3 66.6 81.9 82.5 90.5 73.9 90.4 68.5 65.6 77.0
Table S3: Accuracy (%) of AnytimeCL Offline on the MTIL benchmark with order-I.
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