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Abstract. In this supplementary material, we provide additional infor-
mation on G3R, experimental setup, additional quantitative and qual-
itative results, limitations, and broader implications. We first provide
additional information and motivation on G3R (Sec A). In Sec. B, we
provide details on baseline implementations and how we adapt them to
urban-driving and drone datasets. Next, we provide the experimental
setup for evaluation on urban-driving and drone datasets in Sec. C. We
then show more qualitative comparison with baselines (Sec. D.1), multi-
camera simulation results (Sec. D.2) and a generalization study across
datasets (Sec. D.3). Finally, we discuss the limitations and future works
(Sec. E), broader impact (Sec. F) and responsibility to human subjects
(Sec. G). Additionally, we include a supplementary video, supplemen-
tary_video.mp4 providing an overview of our methodology and videos
to demonstrate the efficacy of G3R.

A G3R Implementation Details

We first discuss three major paradigms for scene reconstruction as shown in
main-paper-Fig. 2 and then present implementation details for G3R.

A.1 Comparison of Three Paradigms for Scene Reconstruction

For better understanding, we provide detailed algorithms for three paradigms for
scene reconstruction discussed in the main paper. Each algorithm box depicts
the paradigm’s approach to reconstruct a new scene at inference time.

Algorithm 1 and 2 show the generalizable novel view synthesis (Fig. 2a)
and per-scene optimization paradigms (Fig. 2b) separately. Specifically, existing
generalizable approaches select a few reference images (usually ≤ 5) for feed-
forward prediction of intermediate representation and then decode/render the
feature representation to produce the rendered images. These approaches learn
data-driven priors across multiple scenes and enable fast reconstruction. They
need to reconstruct the scene again with different source images when rendering a
new view. Existing generalizable approaches work only for small objects/scenes
⋆ Equal contributions.
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Algorithm 1 Generalizable Novel View Synthesis
Inputs: Source Images Isrc, target view Πtgt, reconstruction encoder Gθ, decoder
network Dθ : S → I
Isrcnn = Select(Isrc,Πtgt) # select nearest neighboring source views
Snn ← Gθ(I

src
nn ,Π

tgt) # predicted representation depends on view selection
Îtgt = Dθ(Snn,Π

tgt) # render single target image from target view
Return Snn # only renders views close to Πtgt, need to re-run if it changes

Algorithm 2 Per-Scene Reconstruction by Gradient-Descent

Input: Initial scene representation S(0), source images Isrc, renderer frender : S → I,
optimiaztion iterations T (usually > 1000)
for t = 0, 1, 2, . . . , T − 1 do

Îsrc = frender(S(t))
∇S(t) ← ∇∥Isrc − Îsrc∥2
S(t+1) = S(t) +∇S(t)

end for
Return S(T )

and small view changes due to limited network capacity and handle a small
number of source images due to memory constraints.

Recently, neural rendering approaches such as NeRF and 3D Gaussian Splat-
ting have achieved realistic reconstructions for large scenes. These methods take
all source images and reconstruct a 3D representation via energy minimization
and differentiable rendering to the source views. However, they require a costly
per-scene optimization process which usually takes several hours (T > 1000) and
often exhibit artifacts when the view changes are large due to overfitting.

To enable fast large scene reconstruction while achieving high-fidity rendering
performance, we instead propose to learn a network that iteratively refines a 3D
scene representation with 3D gradient guidance (Algorithm 3). We highlight the
major differences of G3R paradigm compared to the other two paradigms in red.
Our key idea is to learn a single reconstruction network that iteratively updates
the 3D scene representation, combining the benefits of data-driven priors from
fast prediction methods with the iterative gradient feedback signal from per-
scene optimization methods. G3R can be viewed as a “learned optimizer” that
leverages spatial correlation and data-driven priors for fast scene reconstruction.

A.2 G3R Training Algorithm

We further show the presudocode algorithm for G3R reconstruction network
training in Algoirthm 4 (See Eqn. 1, 4 and 6). G3R-Net takes current 3D neural
Gaussians S(t) and 3D gradient ∇S(t) and output the refinement ∆S(t). We
update the parameters of the reconstruction network and transformation MLP
at every update step t.
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Algorithm 3 Gradient-Guided Generalizable Reconstruction (G3R)

Input: Initial scene representation S(0), source Images Isrc, renderer frender : S → I,
reconstruction network Gθ, update iterations T = 24
for t = 0, 1, 2, . . . , 24 do

Îsrc = frender(S(t))
∇S(t) ← ∇∥Isrc − Îsrc∥2 # lift 2D to 3D as gradients
S(t+1) = S(t) + γ(t) ·Gθ(S(t),∇S(t) ; t) # iteratively refine the 3D representation

end for
Return S(T )

Algorithm 4 G3R-Net Training

Input: Data D: collection of (scene S(0), images I, poses Π) pairs, frast: differential
tile renderer, Gθ: generalizable reconstruction network, fmlp: transformation MLP,
γ(t) update scheduler
while Gθ not converged do
S(0), I,Π = Sample(D)
(Isrc,Πsrc), (Itgt,Πtgt) = Split(I,Π)
for t = 0, 1, 2, . . . , T − 1 do
∇S(t) = ∇∥Isrc − frast(fmlp(S(t)); Πsrc)∥2
S(t+1) = S(t) + γ(t) ·Gθ(S(t),∇S(t) ; t)
loss = L(frast(fmlp(S(t+1)); Π), I)
loss.backward()
update Gθ and fmlp

end for
end while

A.3 G3R Implementation Details

Scene Representation: We develop our model based on the 3DGS implemen-
tation1 [5]. We disable spherical harmonics in our model for simplicity and
efficiency following [8]. Moreover, we empiricially find the performance drops are
minor when disabling spherical harmonics, as also observed in 3DGS [6]. The
dimension C of the feature vector hi ∈ RC is set to 46, with 32 for the latent
feature and the remaining 14 for Gaussian attributes including position (R3),
scale (R3), orientation (R4), color (R3), and opacity (R1).

Reconstruction Network (G3RNet): We use two generalizable networks with the
same architecture for the static background and dynamic scene. We borrow the
encoder-decoder UNet architecture from SparseResUNet in torchsparse [13]
and do not tune the architecture. The 3D neural Gaussians and gradients are
concatenated as the input of G3R-Net. The timestep positional encodings are
concatenated with points’ features output from the last encoder layer and fed to
the decoder. For the background reconstruction network, we use a 2D CNN with
2 residual blocks, without downsampling or upsampling. For the transformation
1 https://github.com/wanmeihuali/taichi_3d_gaussian_splatting

https://github.com/wanmeihuali/taichi_3d_gaussian_splatting
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MLP network fmlp that converts the 3D neural Gaussians to a set of explicit
3D Gaussians, we adopt one linear layer with a tanh activation. The output is
combined with a learning rate decay factor γ(t) to ensure gradual updates. The
input raw gradient values are normalized for each channel by dividing them by
the maximal absolute value in that channel.

Training and Inference: During training, we subsample 800k points in total for
the static background and dynamic actors to fit into GPU memory. During in-
ference, we subsample 3 million points for higher photorealism. To model the
sky, we use a sphere image with a fixed radius (i.e., 2048 meters to the center
of the ego vehicle at the last frame). As most parts of the sky scene are not
visible in the camera, we further crop the top and bottom part of the sphere to
only keep the region between 30◦N and 15◦S to reduce the memory usage. We
initialize the sky points with a resolution of 512 × 2048 during training, while
using 1024×4096 during inference. We select closest 10 source and target frames
to train the model. To produce the camera simulation results in D.2 and sup-
plementary_video.mp4, we use all source images. λlpips and λreg are both set
to 0.01. We train our model on front-facing camera and filter actors/points that
are not visible in the field of view. For multi-camera simulation, we finetune the
model on all cameras for 100 iterations. To further speed up the reconstruction
while slightly reducing the photorealism, we also introduce G3R (turbo), where
we reduce the number of static/dynamic points to 1.5 million, the sky resolution
to 512× 2048, and the number of reconstruction steps to 12.

Additional details for BlendedMVS: We initialize 3D Gaussian points by sam-
pling on the surface of provided mesh. We use the high-resolution (1536× 2048)
images. During training we take 25 input source images, and 25 as novel views.
There are no dynamic actors in BlendedMVS, so we only model the static back-
ground in G3R. We also do not model a sky-region, as distant regions not covered
by the mesh are masked out in the input images. During training, we subsample
1.5 million points, while during inference we subsample 3.5 million points. The
turbo version for BlendedMVS is with 2.5 million points and 24 update steps.
However, in each update step, half of the source images are subsampled (each
scene has an average of 381 images).

B Implementation Details for Baselines

We now review generalizable reconstruction baseline methods and per-scene op-
timization methods we compare against. Unless stated otherwise, we train all
generalizable approaches using the same training data as G3R and optimize 3D
representations of validation scenes individually with the same source frames for
per-scene optimization approaches.

B.1 MVSNeRF

MVSNeRF [2] is a generalizable radiance field reconstruction method that em-
ploys a deep neural network to process a few nearby input views and generate
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the radiance fields representation. Specifically, it builds a plane-swept 3D cost
volume by warping 2D image features (inferred by a 2D CNN) from input views.
Then it leverages a 3D CNN to reconstruct a neural scene volume, encoding both
local scene geometry and appearance information. This 3D neural scene volume
is decoded with a multi-layer perceptron (MLP) to infer density and radiance
at arbitrary continuous locations using tri-linearly interpolated neural features
inside the scene volume. Following the original paper, to enhance the rendering
realism and leverage more input frames, we fine-tune the neural scene volume
along with the MLP decoder for one epoch (around 30 minuites). We run the
official repository2 on PandaSet in our experiments. To handle unbounded driv-
ing scenes, we set the maximum rendering range to be 300 meters for each frame
and sample 128 points for each ray during volume rendering.

B.2 ENeRF

ENeRF [7] constructs a sequential cost volume to predict the approximate ge-
ometry and conducts efficient depth-guided sampling. To meet the requirements
of the CNN used in ENeRF, we crop the image to 1920× 1056 on PandaSet so
that the image dimensions are divisible by 32. Due to GPU memory contraints,
we downscale the images 2× on PandaSet and BlendedMVS during training, but
during inference we use the original full resolution. We train two models from
scratch on PandaSet and BlendedMVS training scenes for 300 epochs using the
official repository3. We adopt the expoential learning rate decay schedule with
gamma=0.5 and decay_epochs=50 During training, we select 4 source images
with the closest viewpoints to each target view. We choose 2 source images for
PandaSet and 4 for BlendedMVS during inference as it empirically produces
the best performance. When taking more source images (i.e. 5), ENeRF pro-
duces more blurry results (-0.73 drop in PSNR on PandaSet) due to geometry
inaccuracy and dynamics.

B.3 GNT

GNT [14] samples points along each target ray and predicts the pixel color
by learning the aggregation of view-wise features from the epipolar lines using
transformers. We adopt the official repository4 and use gnt_realestate config
to train the models on PandaSet and BlendedMVS. Specifically, we use the
original image resolution and train each model for 250k and adjust the batch
size to fit within 24GB GPU memory. We choose 2 source views on PandaSet and
10 for BlendedMVS to increase the coverage. When taking more source images
(i.e. 5), GNT produces more blurry results (-1.98 drop in PSNR on PandaSet)
due to geometry inaccuracy and dynamics. During inference, we sample 192
points per pixel as suggested by the official guidelines.
2 https://github.com/apchenstu/mvsnerf
3 https://github.com/zju3dv/ENeRF
4 https://github.com/VITA-Group/GNT

https://github.com/apchenstu/mvsnerf
https://github.com/zju3dv/ENeRF
https://github.com/VITA-Group/GNT
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B.4 PixelSplat

Concurrent work PixelSplat [1] predicts 3D Gaussians with a 2-view epipolar
transformer to extract features and then predict the depth distribution and pixel-
aligned Gaussians. We adopt the official repository5 and use 2× A6000 (48GB)
to train the models. Due to the GPU memory constraint, we downscale the image
resolution to 360 × 640 for PandaSet and 384 × 512 for BlendedMVS. We note
that the original work uses an 80GB A100 for training and handles 256 × 256
resolution. We use re10k config and train each model for 100k iterations with
batch_size=1.

PixelSplat cannot handle large view changes and produces rendering results
with significant visual artifacts due to inaccurate geometry estimation (e.g .,
blurry appearance) especiallly on BlendedMVS. To address this issue, we en-
hance PixelSplat, named PixelSplat++, to leverage the 3D scaffold to reduce
ambiguity and take all available source images for good coverage. Specifically,
we first initialize a unified 3D Gaussian representation, unproject DINO [10]
image features to 3D points and then use a shared decoder to predict the 3D
Gaussian residues. Similar to G3R, we randomly select one target view, and
then choose 10 nearest source views and additional 9 nearest target views dur-
ing training. We use both the source and target views to supervise the shared
decoder and adopt L2 and LPIPS losses. Compared to PixelSplat, PixelSplat++
takes all source images (original resolution: 1536× 2048) as inputs and predicts
a higher-quality 3D representation, achieving a signficiant performance boost at
novel views.

B.5 Instant-NGP

Instant-NGP [9] introduces efficient hash encoding, accelerated ray sampling,
and fully fused MLPs to neural volumetric rendering. In our experiments, we
use the official repository6 and normalize the scenes to occupy the unit cube
and set aabb_scale as 32 for PandaSet and 8 for BlendedMVS to handle the
background regions (e.g ., far-away buildings and sky) outside the unit cube. We
further enhance Instant-NGP with depth supervision for better performance.
Sepcifically, we aggregate the recorded LiDAR data and create a surfel triangle
representation based on estimated per-point normals. Then we render a pseudo-
ground-truth depth image at each camera training viewpoint, which is used for
depth supervision. The models are trained for 20k iterations on PandaSet scenes
and 100k on BlendedMVS, and converge on the training views.

B.6 3DGS

The vanilla version of 3D Gaussian Splatting (3DGS) does not support dynamic
scenes or unbounded regions such as the sky. We therefore employ the same
5 https://github.com/dcharatan/pixelsplat
6 https://github.com/NVlabs/instant-ngp

https://github.com/dcharatan/pixelsplat
https://github.com/NVlabs/instant-ngp
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extended version with decomposed foreground, background, and distant regions
as in G3R. The 3DGS baseline used in this study can be considered as replac-
ing G3RNet during inference with a fixed Stochastic Gradient Descent (SGD)
update. More specifically, we utilize the Adam optimizer with a learning rate of
0.1 and apply learning rate decay by a factor of 0.5 at iterations 200, 300, 400,
and 450. The training process is conducted for a total of 500 iterations. Training
for longer iteration does not further improve the performance on the validation
views. It is worth noting that, in each iteration, we aggregate gradients from
all source images, which contrasts with other approaches that typically use a
single source image per iteration. Aggregating gradients from all source frames
improves performance and enables more stable training. We employ the same
number of Gaussian points in 3DGS optimiaztion as in G3R inference stage.
Note that we remove adaptive density control in our experiments as it does not
help 3DGS much in test views when it has dense initialization, unless we allow it
to grow significantly more points (PSNR+0.58 with 50% more points (5.3M) in
BlendedMVS), at the cost of increased resources. We also note that enhancing
3DGS with neural Gaussians leads to better results (+0.38 PSNR) and faster
early convergence.

B.7 Efficiency Comparison

Tab. A1, reports the model capacity and training efficiency of baselines and G3R.
G3R’s capacity and efficiency is on par with generalizable methods.

Table A1: Model capacity and training effiency of generalizable approaches.

Method Train time Train mem Recon mem #param
ENeRF 108 hours 24GB 10GB 4.3× 105

GNT 49 hours 23GB 21GB 8.8× 105

PixelSplat 110 hours 48GB 11GB 1.3× 108

G3R 60 hours 20GB 24GB 2.6× 107

C Experiment Details

C.1 Experiment Setup

We conduct experiments on two public datasets with large real-world scenes:
PandaSet [17] and BlendedMVS [20]. PandaSet contains 103 urban driving scenes,
each with 6 HD (1920 × 1080) cameras and LiDAR sweeps. We select 7 di-
verse scenes (001, 030, 040, 080, 090, 110, 120) for testing and the re-
maining are used for training. We consider the front camera only for all base-
lines and G3R for quantitative evaluation experiments. BlendedMVS-large is a
collection of 29 real-world scenes captured by a drone. We use high-resolution
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Cameras Source Images WarpingTarget Image

1

43

2

Fig.A1: Large view changes on BlendedMVS. We highlight the target view
in red and 4 closest source views in blue. The distance and view-orientation changes
between the source views and the target view are large. The image warping (rightmost
column, colored by image source index, missing regions in black) shows that limited
source views cannot get full coverage to synthesize the target view.

(1538 × 2048) images in our experiments. The list of large scenes are based
on github split7 We select 4 scenes for testing (58eaf1513353456af3a1682a,
5b69cc0cb44b61786eb959bf,5bf18642c50e6f7f8bdbd492, 5af02e904c8216-
544b4ab5a2), each containing 68 to 836 images (381 on average). Unless stated
otherwise, for both datasets, we use every other frame as source and the remain-
ing for test. We use all available images in the supplementary camera simulation
demonstrations for novel scene manipulations such as sensor shifts and actor
editing in Sec 4.2 and Sec D.2.

C.2 Metrics

We report peak signal-to-noise ratio (PSNR), structural similarity (SSIM) [15]
and perceptual similarity (LPIPS) [21] to evaluate the photorealism of novel view
synthesis. To measure the efficiency of different approaches, we also report the
reconstruction time and rendering FPS using a single RTX 3090. We note that
the generalizable approaches (e.g ., ENeRF, GNT, PixelSplat) usually need to
reconstruct the scene again with different source images when rendering at new
target views We report the reconstrucion time for one feed-forward prediction.
For MVSNeRF, we report the prediction + finetuning time in Tab. 1. In contrast,
the per-scene optimization methods, PixelSplat++, and G3R obtain a unified
representation that takes all input views into account.

C.3 Evaluation on BlendedMVS

BlendedMVS has more challenging novel views, as the distance between two
nearby views can be large as shown in Fig. A1. We note that there is no ex-
plicit interpolation/extrapolation split for BlendedMVS as the multi-pass drone
trajectories are not available.

C.4 Comparison with Generalizable Baselines

We note that generalizable baselines including ENeRF, GNT and PixelSplat
can access all source images but cannot take all images at once due to their
7 https://github.com/kwea123/BlendedMVS_scenes/

https://github.com/kwea123/BlendedMVS_scenes/
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limitations. In our experiments, we run baselines in PandaSet for each test frame
using 2 closest source images. When taking more source images (i.e. 5), warping-
based methods such as ENeRF and GNT produce more blurry results (-0.73/-
1.98 PSNR) due to geometry inaccuracy and dynamics. PixelSplat cannot take
more than 2 views due to the memory constrains (48GB) as it predicts pixel-
aligned Gaussians and the memory increases linearly with the number of input
views. PixelSplat++ takes all source images as input but it is still worse than
G3R as the single-step prediction has limited capacity.

D Additional Experiments and Analysis

We provide additional results and analysis for scene reconstruction on PandaSet
and BlendedMVS. We then showcase more camera simulation examples and a
generalization study on Waymo Open Dataset (WOD) using G3R.

D.1 Additional Qualitative Examples

We provide additional qualitative comparison with state-of-the-art (SoTA) scene
reconstruction approaches on PandaSet. As shown in Fig. A2, compared to G3R,
exsiting SoTA generalization approaches suffer from noticeable artifacts such as
blurry rendering results, unnatural discontinuities and inaccurate color palette.
In Fig. A3, we further compare G3R with SoTA per-scene optimization ap-
proaches. Instant-NGP has severe artifacts on dynamic actors due to lack of dy-
namics modelling and 3DGS can produce noticeable artifacts (e.g ., black holes)
sometimes. In contrast, G3R leads to the most robust rendering results while
shortenning the reconstruction times to 2 minutes (10× speedup).

Ground Truth MVSNeRF GNT PixelSplat G3R (ours)ENeRF

Fig.A2: Qualitative comparison to generalizable approaches on PandaSet.

We also present more qualitative comparison with SoTA scene reconstruc-
tion approaches on BlendedMVS in Fig. A4 and Fig. A5. As shown in Fig. A4,
ENeRF, GNT and PixelSplat cannot handle large view changes and produces
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Ground Truth Instant-NGP G3R (ours)3DGS

Fig.A3: Qualitative comparison to per-scene optimization approaches on
PandaSet.

rendering results with signficant visual artifacts, including blurry appearance and
unnatural discontinuities due to the challenges of estimate high-quality geome-
try from limited views. PixelSplat++ achieves a significant performance boost
but still produces blurry results compared to G3R due to the chalenge of one-
step prediction with limited network capacity. In Fig. A5, we compare G3R with
Instant-NGP and 3DGS, and show comparable or better rendering performance
with signficiant reconstruction acceleration.

Robust 3D Gaussian Prediction : To understand why our method achieves supe-
rior performance over 3DGS per-scene optimization, we compare the rendering
performance at source and novel views. We show a qualitative comparison be-
tween 3DGS and G3R where each method gets 20 consecutive frames as input,
and then renders the target view several meters forward from the last source
view pose (Fig. A6). As shown in Tabs. A2 and A3, while 3DGS has sufficient
capacity to memorize the source frames, it suffers a significant performance drop
(e.g ., 1.59 PSNR decrease and 0.054 LPIPS increase) when rendering at novel
views. This may be due to the 3DGS-optimized Gaussians having alpha, co-
variance scales, and orientations that only work well for the source views it’s
optimized on, resulting in poor underlying geometry [3, 4]. In contrast, G3R
yields more robust Gaussian representations and achieves better rendering per-
formance at novel views on unseen scenes. This is because G3R is trained with
novel view supervision across many scenes, which helps regularize the 3D neu-
ral Gaussians to generalize rather than merely memorize the source views. As
a result, G3R predicts 3D gaussians in a more robust way and produces more
realistic rendering performance in both training and extrapolated views.
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Ground Truth GNT PixelSplat PixelSplat++ G3R (ours)ENeRF

Fig.A4: Qualitative comparison to generalizable approaches on Blended-
MVS.
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Ground Truth G3R (ours)Instant-NGP 3DGS

Fig.A5: Qualitative comparison to per-scene optimization approaches on
BlendedMVS.
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Table A2: 3DGS overfits to source
views while G3R is more robust.

PSNR↑ SSIM↑ LPIPS↓

3DGS (source views) 26.73 0.805 0.318
Ours (source views) 25.94 0.779 0.356

3DGS (novel views) 25.14 0.747 0.372
Ours (novel views) 25.22 0.742 0.371

Table A3: Comparison to 3DGS at
extrapolated views (future 3 frames).

PSNR (1st) PSNR (2nd) PSNR (3rd)

3DGS [6] 23.96 22.43 21.58
Ours 24.13 23.35 22.82

3DGS G3R (ours) 3DGS G3R (ours)

replay

sensor shift

replay

sensor shift

replay

sensor shift

replay

sensor shift

Fig.A6: Qualitative comparison of G3R to 3DGS on novel views in Pan-
daSet.

D.2 Additional Camera Simulation Examples

We now showcase applying G3R for high-fidelity multi-camera simulation for a
wide variety of large-scale driving scenes. In Fig. A7 and Fig. A8, G3R produce
consistent and high-fidelity multi-camera or panorama image simulation for di-
verse scenarios. Please see Appendix E for additional anlaysis on the challenges
of multi-camera simulation.

G3R can reconstruct an explicit standalone representation that models the
dynamics, which allows us to control, edit and simulate different variations for
robotics simulation. In Fig. A9 and Fig. A10, we show realistic and control-
lable multi-camera and panorama simulation results by either manipulating the
positions of dynamic actors (scene manipulation) or changing the sensor loca-
tions (SDV camera sensor shifts). Please see supplementary_video.mp4 for
complete simulation videos. These results demonstrate the potential of G3R for
scalable self-driving simulation for autonomy validation and training.

D.3 Additional Generalization Study

Finally, we supplement additional results on generalization study across different
datasets. In Fig. A11, we directly apply a pretrained G3R model (on PandaSet)
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Fig.A7: Multi-camera simulation on PandaSet.

Fig.A8: Panorama image simulation on PandaSet.
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Original full 360° replay

Scene manipulation

SDV sensor shifts

Fig.A9: Realistic and controllable multi-camera simulation.

Original full 360° replay

SDV sensor shifts

Scene manipulation

Fig.A10: Realistic and controllable panorama image simulation.
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and show it generalizes to new scenes in Waymo Open Dataset [12] (WOD). As
shown in Fig. A11, G3R can generalize well across datasets with different sensor
configurations (placements, sensor type, appearance etc) and can reconstruct
new scenes in under a few minutes. This demonstrates the potential of G3R for
scalable real-world camera simulation. Please see supplementary_video.mp4
for the complete videos.

t = 0s

t = 8s

Fig.A11: Scene reconstruction on WOD with PandaSet-trained model.
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D.4 Adaptive Density Control and Robustness Analysis

We experiment with adding density control to G3R and observe enhanced per-
formance. Specifically, we initialize G3R with 25% points (0.9M), and grow the
points at the 5th step (adding 8 new points around each point and downsample
to 3.5M). The PSNR increases 1.04 compared to no densification, and is 0.42
lower than the original G3R. While achieving better performance, we notice that
G3R has difficulty in handling extremely sparse initialization. Moreover, we test
G3R with dense noisy points from MVS [16] (Fig. A12) and find G3R is robust to
the noisy initialization (only 0.36 PSNR drop). For robotics applications, dense
points from either LiDAR or fast MVS (∼2 min) is typically available.

Initial MVS points G3R inferred points G3R w/ MVS pts GT ResultsOriginal G3R

Fig.A12: G3R is robust to point initialization (zoom-in).

E Limitations and Future Works

While G3R can reconstruct unseen large scenes efficiently with high photoreal-
ism, there are several limitations as shown in Fig. A13. First of all, as shown in
Fig. A13-leftmost, our approach has artifacts in large extrapolations (e.g ., 5 ∼ 10
meters shift), which may require scene completion and larger scale training to
predict novel views with larger differences. Better surface regularization [3, 4]
and adversarial training [11, 19] may mitigate these issues. Moreover, although
G3R shows strong generalizability and robustness thanks to the 3D gradients
and recursive updates (Fig. A12), it relies on dense points as initialization and
it is an open problem to build effective adaptive density control mechanism for
G3R similar to original 3DGS [6] to prune and grow 3D Gaussians. We notice
that the reconstruction quality of G3R degrades on sparse initialization.

We also do not model non-rigid deformations [8] and emissive lighting for
more controllable simulation. We also notice more artifacts in multi-camera sim-
ulation (Fig. A13-second-column), primarily due to the different exposure and
white balance settings across cameras, misalignment due to calibration errors,
as well as motion blur and rolling shutter for the side cameras. Additionally,
nearby dynamic actors have more artifacts, particularly due to the resolution of
the Gaussian points (Fig. A13-third-column). Incorporating multi-resolution or
level-of-detail modelling to the neural 3D Gaussians could improve this. Lastly,
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there are artifacts when points are missing for some regions (e.g., the higher
part of the building, particularly in the WOD dataset), because these regions
are not scanned by the LiDAR and are thus modeled as part of the sky (Fig. A13-
rightmost). SfM and MVS points can be added to mitigate this problem [18].

Large Extrapolation Multi Camera Nearby Actor Missing Geometry

Nearby actor

Fig.A13: Failure cases of G3R.

F Broader Impact

G3R provides a scalable and efficient way to reconstruct large-scale real-world
scenes for high-quality and real-time rendering. Its ability to generate control-
lable camera simulation videos (e.g ., scene manipuation and sensor shifts) can
potentially improve the robustness and safety of robotic systems for real-world
environments or can be used to build immersive experience in VR/AR applica-
tions.

G Responsibility to Human Subjects

We use two public self-driving datasets in this research: PandaSet [17] and
Waymo Open Dataset [12], both of which involve 2D/3D scanning of real-world
street scenes with different sensors such as camera and LiDAR. They have un-
dergone vetting for ethical considerations pertaining to data collection. Despite
containing pedestrian data, neither dataset reveals any personally identifiable
information or offensive content. Furthermore, our research does not involve
generating new content related to human subjects.
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