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1 Details for Evaluation and Implementation

Dataset. Our proposed approach is developed and evaluated utilizing the widely
employed nuScenes [2] dataset, which encompasses 1000 diverse scenes from
Boston and Singapore. Annotations cover 10 classes for object detection, includ-
ing car, truck, bus, trailer, construction vehicle, pedestrian, motorcycle, bicycle,
barrier, and traffic cone. It also provides ego-centric surround-view images and
HD map. In nuScenes, the model is trained with a 2-second history to predict
a 6-second future trajectory. Unlike existing works [3,4, 6,10] that report about
single-agent prediction performance, our research takes a different approach. In-
stead of utilizing only the dataset provided for the prediction task, we used the
entire nuScenes dataset for training to conduct a multi-agent prediction approach
that considers all agents in a scene simultaneously. Therefore, our nuScenes-Text
dataset used for this study is created to cover all scenes in the nuScenes dataset.
The Vision Language Model BLIP-2 [5] (VLM) used to generate this text is
trained on the DRAMA [9] dataset, which provides an image of the driving en-
vironment, bounding box pointing to specific agent, and text representing this
agent. To accurately use textual descriptions obtained from fine-tuned VLM,
we refine the descriptions using GPT [1]. We also present metrics for all agents
and metrics specifically for agents involved in the prediction task, offering a
comprehensive evaluation.
Evaluation Metrics. Our model is evaluated using standard metrics for trajec-
tory prediction, including minimum Average Displacement Error (ADE), min-
imum Final Displacement Error (FDE), and Miss Rate (MR). These metrics
quantify the average and final displacement errors between the true trajectory
and the best prediction sample. MR further denotes the percentage of scenarios
where the distance between the endpoint of the true trajectory and the best
prediction exceeds a 2m threshold.
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∥∥∥Ŷ t
(k) − Y t

∥∥∥
2

(1)

FDE =
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Here, Ŷ t
(k) denotes the predicted position of the agent at timestep t in the (k)-

th mode, and Y t represents the ground truth position at timestep t. The (k)
represents the mode with the smallest error when compared to the ground truth,
while T indicates the number of timesteps to be predicted. Additionally, TFin

represents the timestep at which the prediction concludes, while Tcurr indicates
the current timestep.
Implementation Details. We train the model for 48 epochs using AdamW
optimizer [8] and four RTX 3090 Ti GPUs. The model has 32 batch sizes, 5×10−4

initial learning rates, 1× 10−4 weight decay, and 0.1 dropout rates. To manage
the learning rate, we adopt the cosine annealing scheduler [7]. For consistency, we
set the number of offsets for deformable attention in the Scene-Agent Interaction
Module, denoted as O, to 4. Additionally, augmentation techniques, including
rotation within (-22.5, 22.5) degrees and excluding a random agents (10% of all
agents in scene) from the loss calculation, are used to prevent overfitting and
increase the generalization performance of the model.

2 More Detail for nuScenes-Text Dataset

Prompt Engineering for LLM. We utilize the Large Language Model (LLM)
GPT to refine textual descriptions obtained from VLM regarding issues stem-
ming from the domain gap between datasets or completely missing parts, as well
as inaccurate location information caused by the characteristics of surround view
images (see Fig. 2). To enhance the quality of pseudo-text, we meticulously de-
sign prompt for LLM such as Fig. 1. The primary challenges in this improvement
process involved i) removing inaccurate location information such as ‘left,’ ‘right
lane,’ or ‘ego lane,’ caused by the characteristics of surround view images (see
Fig. 2) and ii) refining parts that are incorrectly predicted or completely missing
due to domain gaps between datasets. Given that the nuScene dataset includes
not only a front view but also a surround view, including back view, i) is crucial
to avoid confusion in the model caused by these location details. Additionally,
for ii), we explicitly integrate task details such as maneuvering and agent types
to eliminate hallucinations and generate clear information. Finally, we include
examples of both effective (‘good’) and ineffective (‘bad’) outputs to optimize the
capabilities of the LLM. Maneuvering extraction Algorithm. To integrate
information about the intention of each agent into our generated text dataset,
we utilize the maneuvering attribute. We classify the maneuvering of the agent
based on the actual future trajectory. Maneuvering is defined by comparing the
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Your Role: You are a writer tasked with generating descriptive captions about objects without including their location information.

Inputs Explained:
1. Caption: Describes an object but might contain location info which we don't want.
2. GT class: The actual type of the object.
3. Maneuvering: Predicted future movement of the object.

Your Task:
- DO NOT include location information like 'left side', 'right lane', 'away from the ego car', 'in the ego lane' etc.
- If the object described in the Caption is different from the GT class, craft your caption using only the GT class and Maneuver.
- If the action described in the Caption does not align with the Maneuver, adjust the description to fit the provided Maneuver.
- Explicitly mention the object's expected maneuver using the provided "Maneuver" input.

Example Input 1:
Caption: a white suv driving in the left lane, away from the intersection, in the rain
GT class: vehicle.car
Maneuvering: straight

Bad Output: A white SUV is driving in the left lane, away from the intersection, in the rain, and is expected to continue straight.
Good Output: A white SUV is driving in the rain, and is expected to continue straight.

Example Input 2:
Caption: a white suv parked on the left side of the road
GT class: vehicle.car
Maneuvering: stationary

Bad Output: A white SUV is parked on the left side of the road.
Good Output: A white SUV is parked, and is anticipated remain stationary.

Now, based on the above guidelines and examples, create a caption for the following:

Fig. 1: Example of prompt given to the LLM, specifically designed to generate accurate
descriptions. Inputs for this prompt, highlighted in red for emphasis, include the caption
obtained from VLM, the object’s class (GT class), and maneuvering information.

initial position and orientation with the final position and orientation. The gen-
erated maneuvering information is provided to the LLM to offer insights into
the agent’s intention. Therefore, the refined text, including information on the
agent’s characteristic points, current movement, and future intention, may be
utilized, thereby contributing to enhancing the performance of the model. The
maneuvering extraction algorithm can be observed in Fig. 3.



4 S. Moon et al.

VLM Caption: a white truck slowing in the ego lane,
because of traffic congestion ahead
Refined Caption 1: A white truck is slowing down due to
traffic congestion ahead, and is expected to continue straight.
Refined Caption 2: A truck is slowing down due to traffic
congestion ahead and maintaining a straight trajectory.
Refined Caption 3: A truck is adjusting its speed to
accommodate the traffic congestion ahead and continuing in a
straight path.

VLM Caption: a white truck parked on the left side of the
street
Refined Caption 1: A white truck is parked, and is expected
to remain stationary.
Refined Caption 2: A stationary white truck parked on the
side of the street.
Rfined Caption 3: A white truck parked on the side of the
street.

VLM Caption: a pedestrian wearing a white t-shirt, walking
on the left side of the road, away from the right side of the
road
Refined Caption 1: A pedestrian wearing a white t-shirt is
walking, and is expected to continue straight.
Refined Caption 2:A pedestrian is walking straight ahead.
Refined Caption 3: An adult pedestrian is moving in a
straight line.

VLM Caption: a gray sedan driving on the right side of the
road, away from the ego car
Refined Caption 1: A gray sedan is driving, and is expected
to make a left turn.
Refined Caption 2:A gray sedan making a left turn.
Refined Caption 3: A car making a left turn.

VLM Caption: a yellow motorcycle parked on the left side
of the road, in front of the ego car
Refined Caption 1: A yellow motorcycle is parked and is
expected to remain stationary.
Refined Caption 2:A stationary motorcycle is parked.
Refined Caption 3: Amotorcycle is parked, not moving.

VLM Caption: a pedestrian wearing a white shirt and
walking on the left side of the road
Refined Caption 1: A pedestrian wearing a white shirt is
walking, and is expected to continue straight.
Refined Caption 2: A pedestrian in a white shirt walking
straight ahead.
Refined Caption 3: An adult pedestrian walking straight
ahead.

Fig. 2: Example of captions for objects in the nuScenes [2] dataset are provided in
ego-centric surround-view images from a single scene. These captions describe each
agent within the images, and each agent is accompanied by three versions of text.
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Algorithm 1: Maneuver Classification Algorithm
Data: traj, traj_mask, category
Result: Classify agent's maneuver as "stationary", "lane change", "straight", "left turn", "right turn", "left U-turn", or "right U-turn"

begin
// Initialize thresholds without specific values
Initialize thresholds: displacement, lateral_displacement, and heading thresholds for both vehicle and pedestrian

// Rotate future path to align with the positive direction of the x-axis based on current heading
Rotate agent_positions based on origin_heading_vector

// Calculate heading_delta and final_displacement
Calculate heading_delta as the change in heading from the start to the last valid index in the trajectory
Calculate final_displacement as the Euclidean norm of the position difference (xy_delta) from the start to the last valid index

// Define xy_delta as the displacement vector from the starting to the final valid position in the rotated agent_positions
Define xy_delta

if category is a vehicle then
if final_displacement < vehicle_displacement_for_stationary then

return "stationary"
end if
if abs(xy_delta[1]) < vehicle_lateral_displacement_for_straight and abs(heading_delta) < heading_delta_for_straight then

if abs(xy_delta[1]) > lane_change_threshold then
return "lane change"

else
return "straight"

end if
end if
if heading_delta < -heading_delta_for_straight then

if xy_delta[0] < vehicle_longitudinal_displacement_for_uturn then
return "right U-turn"

else
return "right turn"

end if
end if
if xy_delta[0] < vehicle_longitudinal_displacement_for_uturn then

return "left U-turn"
else

return "left turn"
end if

else if category is a pedestrian then
if final_displacement < pedestrian_displacement_for_stationary then

return "stationary"
end if
if abs(xy_delta[1]) < pedestrian_lateral_displacement_for_straight and abs(heading_delta) < heading_delta_for_straight then

return "straight"
end if
if heading_delta < -heading_delta_for_straight then

if xy_delta[0] < pedestrian_logitudinal_displacement_for_uturn then
return "right U-turn"

else
return "right turn"

end if
end if
if xy_delta[0] < pedestrian_logitudinal_displacement_for_uturn then

return "left U-turn"
else

return "left turn"
end if

end if
end

Fig. 3: Maneuver Classification Algorithm. This algorithm shows the process for clas-
sifying the maneuvers of agents based on their future path and heading vector.
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Fig. 4: Example of the Mechanical Turk evaluation interface used for assessing
the alignment between generated text descriptions and corresponding images in the
nuscenes-text dataset.

More Details about Dataset Statistics. We further explore the details of
the dataset we have created. The dataset contains 15,369,058 words, leading to a
total of 17,134,981 tokens. This significant amount of text reflects the dataset’s
comprehensive scope, encompassing a variety of subjects and scenarios relevant
to autonomous vehicles. With an average of 13.08 words and 14.58 tokens per
text, the dataset showcases a wide-ranging vocabulary and linguistic diversity.
Additionally, An example of the Mturk evaluation interface we used can be seen
in Fig. 4. The results from the human evaluation conducted via Mechanical Turk
further demonstrate how well the captions included in our dataset describe the
corresponding objects, indicating their substantial validity.

More Details about nuScenes-Text Dataset. In this section, we provide ad-
ditional examples of our created nuScenes-Text dataset. Fig. 2 represents textual
descriptions obtained from surround-view images. Each agent has three distinct
versions of textual descriptions and shows this descriptions of each agent in the
bounding box. The description generated through VLM in the top center image
(CAM_FRONT) includes location information based on the perspective of the
ego vehicle (highlighted in red). However, this may differ from the perspective
of other vehicles and pedestrians. Additionally, the location data highlighted
in red in the top right image (CAM_FRONT_RIGHT) indicates the position
of a person located on the left side of the image, but from the perspective of
the autonomous vehicle, it may inaccurately depict the location (from the per-
spective of the autonomous vehicle, the person is positioned to the right). Such
inaccuracies in image-based location data have the potential to compromise the
trajectory prediction functionality of the model. This issue is addressed by re-
moving incorrect information through LLM, and the improvements are clearly
evident in the refined captions. Through this, we demonstrate the capability to
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Caption 1: A pedestrian wearing a black t-shirt is sitting on a
concrete block, waiting for a bus, and is expected to remain
stationary.
Caption 2: A stationary adult pedestrian is waiting for a bus.
Caption 3: An adult pedestrian is patiently waiting for a bus.

Caption 1: A pedestrian carrying an umbrella is walking, and
is expected to continue straight.
Caption 2: A pedestrian with an umbrella walking straight on
the road.
Caption 3: An adult pedestrian walking straight with an
umbrella.

Caption 1: A red SUV is driving in the rain, and is expected
to continue straight.
Caption 2:A red SUV is driving straight in the rain.
Caption 3: A car is maneuvering straight in the rain.

Caption 1: A pedestrian wearing a green shirt is standing in
the middle of the road at night. The pedestrian is expected to
make a right turn.
Caption 2: A pedestrian wearing a green shirt, preparing to
make a right turn.
Caption 3: A pedestrian in the middle of the road, about to
turn right.

Caption 1: A truck is parked, as it is being unloaded, and is
expected to remain stationary.
Caption 2:A stationary truck being unloaded.
Caption 3: A truck that is parked and currently being
unloaded.

Caption 1: A cyclist wearing a white t-shirt is cycling, and is
expected to continue straight.
Caption 2:A cyclist is cycling straight ahead.
Caption 3: The bicycle is expected to continue moving
straight.

Caption 1: A construction worker is sitting on a rock with a
dog on the sidewalk, and is expected to remain stationary.
Caption 2: A construction worker sitting on a rock with a dog,
on the sidewalk, remaining stationary.
Caption 3: A construction worker with a dog, on the
sidewalk, staying put.

Caption 1: A pedestrian wearing a white shirt and gray pants
is running on the sidewalk, and is expected to continue
straight.
Caption 2: A pedestrian wearing a white shirt and gray pants
is running on the sidewalk, moving straight ahead.
Caption 3: A person in a white shirt and gray pants is running
on the sidewalk, continuing in a straight line.

Caption 1: A bicycle has been knocked over on the side of
the road, and is expected to remain stationary.
Caption 2:A bicycle is lying on the ground, not moving.
Caption 3: A bicycle has fallen over on the roadside and is
not in motion.

Caption 1: A pedestrian is standing on a sidewalk at night,
with a building in the background and a palm tree nearby, and
is expected to remain stationary.
Caption 2: An adult pedestrian standing still on a sidewalk
with a building in the background and a palm tree nearby.
Caption 3: A stationary adult pedestrian with a building and
a palm tree in the background.

Caption 1: A child pedestrian is pushing a stroller, and is
expected to make a left turn.
Caption 2: A child pedestrian pushing a stroller is expected
to make a left turn.
Caption 3: A pedestrian with a stroller is preparing to turn
left.

Caption 1: A black SUV is stopped, and the driver is getting
out of the vehicle. The SUV is expected to remain stationary.
Caption 2: The black SUV is stationary on the side of the
road, with the driver getting out of the vehicle.
Caption 3: The car is parked on the side of the road, with the
driver exiting the vehicle.

Fig. 5: Textual descriptions of unique scenarios in out dataset.

generate accurate textual descriptions for all objects visible in surround-view
images.

Fig. 5 provides additional examples of unique situations that can be cap-
tured by camera images. Surprisingly, the textual description describes scenarios
of rainy conditions and can also describe situations where camera data is com-
promised, such as low-light conditions. In addition, the text description shows
that it can also capture situation information and details well, such as pedes-
trians holding umbrellas, unloading from trucks, people riding cycle, a driver
getting out of a vehicle and pedestrians sitting on concrete blocks. Please refer
to the images and captions together.
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Table 1: Results for various types: A uses only observed trajectory data, B without
and C with our Visual Semantic Encoder and Text-driven Guidance Module. The data
is used from the nuScenes [2] whole set.

Model
Type: All Type: Vehicles Type: Pedestrians

ADE10 ↓ FDE10 ↓ MR10 ↓ ADE10 ↓ FDE10 ↓ MR10 ↓ ADE10 ↓ FDE10 ↓ MR10 ↓

A 0.425 0.641 0.081 0.453 0.702 0.102 0.341 0.471 0.019
B 0.407 0.601 0.075 0.431 0.649 0.095 0.339 0.463 0.017

C 0.368 0.535 0.051 0.386 0.573 0.064 0.319 0.430 0.016

3 Further Results

Additional Quantitative Results. In Table 1, results for various agent types
in the nuScenes whole dataset are presented. VisionTrap conducts predictions for
both vehicles and pedestrians, showcasing information for both types. Model A
employs only observed trajectories, Model B incorporates map data in addition
to trajectory information, and Model C represents the results of VisionTrap.
The outcomes demonstrate that the Visual Semantic Encoder and Text-driven
Guidance Module contribute to improved performance across all agents.
Additional Qualitative Examples. We present additional qualitative exam-
ples obtained from various scenes. The examples are selected from the nuScenes
dataset. Results from Fig.6 to Fig.12 illustrate without and with our Visual
Semantic Encoder and Text-driven Guidance Module. Refer to the respective
captions for explanations about the figures.

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

Fig. 6: Examples where visual semantic information is used to improve the performance
of trajectory prediction
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p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

Fig. 7: Align trajectory to lane: Despite the use of nighttime images, it effectively aids
in course adjustment when the vehicle makes a right turn.

p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

Fig. 8: Align trajectory to lane: The trajectory is adjusted to align with the lane when
the parked bus starts moving.
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p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

Fig. 9: Prevent collision: Vision data enables an understanding of the detailed situa-
tions of agents, enhancing interactions among them based on this understanding.

p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

Fig. 10: Prevent collision: The pedestrian’s trajectory is adjusted to ensure there is no
collision with the car and align with walking on the sidewalk.
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p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

Fig. 11: The direct utilization of vision information: Vision information can determine
the direction of the lane and the heading of the agents.
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p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

Fig. 12: Visualization results for trajectory prediction by our model for all objects
(vehicles, pedestrians) in ego-centric surround view images.
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