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Abstract. Predicting future trajectories for other road agents is an es-
sential task for autonomous vehicles. Established trajectory prediction
methods primarily use agent tracks generated by a detection and track-
ing system and HD map as inputs. In this work, we propose a novel
method that also incorporates visual input from surround-view cam-
eras, allowing the model to utilize visual cues such as human gazes and
gestures, road conditions, vehicle turn signals, etc, which are typically
hidden from the model in prior methods. Furthermore, we use textual
descriptions generated by a Vision-Language Model (VLM) and refined
by a Large Language Model (LLM) as supervision during training to
guide the model on what to learn from the input data. Despite using
these extra inputs, our method achieves a latency of 53 ms, making it
feasible for real-time processing, which is significantly faster than that of
previous single-agent prediction methods with similar performance. Our
experiments show that both the visual inputs and the textual descrip-
tions contribute to improvements in trajectory prediction performance,
and our qualitative analysis highlights how the model is able to exploit
these additional inputs. Lastly, in this work we create and release the
nuScenes-Text dataset, which augments the established nuScenes dataset
with rich textual annotations for every scene, demonstrating the positive
impact of utilizing VLM on trajectory prediction. Our project page is at
https://moonseokha.github.io/VisionTrap.

Keywords: Motion Forecasting · Trajectory Prediction · Autonomous
Driving · nuScenes-Text Dataset

1 Introduction

Predicting agents’ future poses (or trajectories) is crucial for safe navigation in
dense and complex urban environments. To achieve such task successfully, it is
required to model the following aspects: (i) understanding individual’s behav-
ioral contexts (e.g ., actions and intentions), (ii) agent-agent interactions, and
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Fig. 1: Existing approaches are often conditioned only on agents’ past trajectories
and HD map to predict future trajectories. Here, we want to explore leveraging camera
images and textual descriptions obtained from images to better learn the agent’s behav-
ioral context and agent-environment interactions by incorporating high-level semantic
information into the prediction process, such as “a pedestrian is carrying stacked items,
and is expected to stationary.”

(iii) agent-environment interactions (e.g ., pedestrians on the crosswalk). Recent
works [5,12,13,24,25,31,49,50] have achieved remarkable progress, but their in-
puts are often limited – they mainly use a high-definition (HD) map and agents’
past trajectories from a detection and tracking system as inputs.

HD map is inherently static, and only provide pre-defined information that
limits their adaptability to changing environmental conditions like traffic near
construction areas or weather conditions. They also cannot provide visual data
for understanding agents’ behavioral context, such as pedestrians’ gazes, orien-
tations, actions, gestures, and vehicle turn signals, all of which can significantly
influence agents’ behavior. Therefore, scenarios requiring visual context under-
standing may necessitate more than non-visual input for better and more reliable
performance.

In this paper, we advocate for leveraging visual semantics in the trajectory
prediction task. We argue that visual inputs can provide useful semantics, which
non-visual inputs may not provide, for accurately predicting agents’ future tra-
jectories. Despite its potential advantages, only a few works [10, 23, 27, 36–39]
have used vision data to improve the performance of trajectory prediction in au-
tonomous driving domain. Existing approaches often utilize images of the area
where the agent is located or the entire image without explicit instructions on
what information to extract. As a result, these methods tend to focus only on
salient features, leading to sub-optimal performance. Additionally, because they
typically rely solely on frontal-view images, it becomes challenging to fully rec-
ognize the surrounding driving environment.

To address these limitations and harness the potential of visual semantics,
we propose VisionTrap, a vision-augmented trajectory prediction model that
efficiently incorporates visual semantic information. To leverage visual semantics
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obtained from surround-view camera images, we first encode them into a compos-
ite Bird’s Eye View (BEV) feature along with map data. Given this vision-aware
BEV scene feature, we use a deformable attention mechanism to extract scene
information from relevant areas (using predicted agents’ future positions), and
augment them into per-agent state embedding, producing scene-augmented state
embedding. In addition, recent works [4,15,23,27,36] have shown that classifying
intentions can improve model performance by helping predict agents’ instanta-
neous movements. Learning with supervision of each agent’s intention helps avoid
training restrictions and oversimplified learning that may not yield optimal per-
formance. However, annotating agents’ intentions by dividing them into action
categories involves inevitable ambiguity, which can be costly and hinder efficient
scalability. Moreover, creating models that rely on these small sets can limit
the model’s expressiveness. Thus, as shown in Fig. 1, we leverage textual guid-
ance as supervision to guide the model in leveraging richer visual semantics by
aligning visual features (e.g ., an image of a pedestrian nearby a parked vehicle)
with textual descriptions (e.g ., “a pedestrian is carrying stacked items, and is ex-
pected to stationary.”). While we use additional input data, real-time processing
is crucial in autonomous driving. Therefore, we designed VisionTrap based on
a real-time capable model proposed in this paper. VisionTrap efficiently utilizes
visual semantic information and employs textual guidance only during training.
This allows it to achieve performance comparable to high-accuracy, non-real-time
single-agent prediction methods [7, 29] while maintaining real-time operation.

Since currently published autonomous driving datasets do not include tex-
tual descriptions, we created the nuScenes-Text dataset based on the large-scale
nuScenes dataset [3], which includes vision data and 3D coordinates of each
agent. The nuScenes-Text dataset collects textual descriptions that encompass
high-level semantic information, as shown in Fig. 8: “A man wearing a blue shirt
is talking to another man, expecting to cross the street when the signal changes.”
Automating this annotation process, we utilize both a Vision-Language Model
(VLM) and a Large-Language Model (LLM).

Our extensive experiments on the nuScenes dataset show that our proposed
text-guided image augmentation is effective in guiding our trajectory prediction
model successfully to learn individuals’ behavior and environmental contexts,
producing a significant gain in trajectory prediction performance.

2 Related Work

Encoding Behavioral Contexts for Trajectory Prediction. Recent works
in trajectory prediction utilize past trajectory observations and HD map to pro-
vide static environmental context. Traditional methods use rasterized Bird’s Eye
View (BEV) maps with ConvNet blocks [5,12,34,41,44], while recent approaches
employ vectorized maps with graph-based attention or convolution layers for bet-
ter understanding complex topologies [11, 13, 14, 21, 40, 41]. However, HD maps
are static and cannot adapt to changes, like construction zones affecting agent
behavior. To address this, some works [10,27,37–39] aim to address these issues
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by utilizing images. To obtain meaningful visual semantic information about the
situations an agent faces in a driving scene, it is necessary to utilize environ-
mental information containing details from the objects themselves and from the
environments they interact with. However, [27,37,39] focus solely on extracting
information about agents’ behavior using images near the agents, while [10, 38]
process the entire image at once and focus only on information about the scene
without considering the parts that agents need to interact with. Therefore, in
this paper, we propose an effective way to identify relevant parts of the image
that each agent should focus on and efficiently learn semantic information from
those parts.
Scene-centric vs. Agent-centric. Two primary approaches to predicting road
agents’ future trajectories are scene-centric and agent-centric. Scene-centric meth-
ods [32, 42, 47] encode each agent within a shared scene coordinate system, en-
suring rapid inference speed but may exhibit slightly lower performance than
agent-centric methods. Agent-centric approaches [2,8,24,25,50] standardize en-
vironmental elements and separately predict agents’ future trajectories, offering
improved predictive accuracy. However, their inference time and memory re-
quirements are linearly scaled with the number of agents in the scene, posing a
scalability challenge in dense urban environments with hundreds of pedestrians
and vehicles. Thus, in this paper, we focus on scene-centric approaches.
Multimodal Contrastive Learning. With the increasing diversity of data
sources, multimodal learning has become popular as it aims to effectively in-
tegrate information from various modalities. One of the common and effective
approaches for multimodal learning is to align the modalities in a joint em-
bedding space, using contrastive learning [18,35,45]. Contrastive Learning (CL)
pulls together the positive pairs and pushes away the negative pairs, construct-
ing an embedding space that effectively accommodates the semantic relations
among the representations. Although CL is renowned for its ability to create
a robust embedding space, its typical training mechanism introduces sampling
bias, unintentionally incorporating similar pairs as negative pairs [6]. Debiasing
strategies [6,16,17,30,48] have been introduced to mitigate such false-negatives,
and it is particularly crucial in autonomous driving scenarios where multiple
agents within a scene might have similar intentions in their behaviors. In our
work, we carefully design our contrastive loss by filtering out the negative sam-
ples that are considered to be false-negatives. Inspired by [30,48], we do this by
utilizing the sentence representations and their similarities, and finally achieve
debiased contrastive learning in multimodal setting.

3 Method

This paper explores leveraging high-level visual semantics to improve the trajec-
tory prediction quality. In addition to conventionally using agents’ past trajecto-
ries and their types as inputs, we advocate for using visual data as an additional
input to utilize agents’ visual semantics. As shown in Fig. 2, our model consists
of four main modules: (i) Per-agent State Encoder, (ii) Visual Semantic Encoder,
(iii) Text-driven Guidance module, and (iv) Trajectory Decoder. Our Per-agent
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Fig. 2: An overview of VisionTrap, which consists of four main steps: (i) Per-agent State
Embedding, which produces per-agent context features given agents’ state observations;
(ii) Visual Semantic Encoder, which transforms multi-view images with an HD map into
a unified BEV feature, updating agents’ state embedding via a deformable attention
layer; (iii) Text-driven Guidance Module, which supervises the model to reason about
detailed visual semantics and (iv) Trajectory Decoder, which predicts agents’ the future
poses in a fixed time horizon.

State Encoder takes as an input a sequence of state observations (which are often
provided by a detection and tracking system), producing per-agent context fea-
tures (Sec. 3.1). In our Visual Semantic Encoder, we encode multi-view images
(capturing the surrounding view around the ego vehicle) into a unified Bird’s
Eye View (BEV) feature, followed by concatenation with a dense feature map
of road segments. Given this BEV feature, the per-agent state embedding is up-
dated in the Scene-Agent Interaction module (Sec. 3.2). We utilize Text-driven
Guidance module to supervise the model to understand or reason about detailed
visual semantics, producing richer semantics (Sec. 3.3). Lastly, given per-agent
features with rich visual semantics, our Trajectory Decoder predicts the future
positions for all agents in the scene in a fixed time horizon (Sec. 3.4).

3.1 Per-agent State Encoder

Encoding Agent State Observations. Following recent trajectory prediction
approaches [31, 50], we first encode per-agent state observations (e.g ., agent’s
observed trajectory and semantic attributes) provided by object detection and
tracking systems. We utilize the geometric attributes with relative positions (in-
stead of absolute positions) by representing the observed trajectory of agent i
as {pti − pt−1

i }Tt=1 where pti = (xt
i, y

t
i) is the location of agent i in an ego-centric

coordinate system at time step t ∈ {1, 2, . . . , T}. T denotes the observation time
horizon. Note that we use an ego-centric (scene-centric) coordinate system where
a scene is centered and rotated around the current ego-agent’s location and ori-
entation. Given these geometric attributes and their semantic attributes ai (i.e.,
agent types, such as cars, pedestrians, and cyclists), per-agent state embedding
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sti ∈ Rds for agent i at time step t is obtained as follows:

sti = fgeometric(p
t
i − pt−1

i ) + ftype(ai) + fPE(e
t), (1)

where fgeometric : R2 → Rds , ftype : R1 → Rds , and fPE : Rdpe → Rds are MLP
blocks. Note that we use the learned positional embeddings et ∈ Rdpe , guiding
the model to learn (and utilize) the temporal ordering of state embeddings.
Encoding Temporal Information. Following existing approaches [46,50], we
utilize a temporal Transformer encoder to learn the agent’s temporal informa-
tion over the observation time horizon. Given the sequence of per-agent state
embeddings {sti}Tt=1 and an additional learnable token sT+1 ∈ Rds stacked into
the end of the sequence, we feed these input into the temporal (self-attention)
attention block, producing per-agent spatio-temporal representations s′i ∈ Rds .
Encoding Interaction between Agents. We further use the cross-attention-
based agent-agent interaction module to learn the relationship between agents.
Further, as our model depends on the geometric attributes with relative posi-
tions, we add embeddings of the agents’ current position pTi to make the em-
beddings spatially aware, producing per-agent representation zi = s′i + floc(p

T
i )

where floc : R2 → Rds is another MLP block. This process is performed at once
within the ego-centric coordinate system to eliminate the cost of recalculating
correlation distances with other agents for each individual agent. The agent state
embedding zi is used as the query vector, and those of its neighboring agents
are converted to the key and the value vectors as follows:

qInteract
i = W Interact

Q zi, kInteract
j = W Interact

K zj , vInteract
j = W Interact

V zj , (2)

where W Interact
Q ,W Interact

K ,W Interact
V ∈ RdInteract×ds are learnable matrices.

3.2 Visual Semantic Encoder

Vision-Augmented Scene Feature Generation. Given ego-centric multi-
view images I = {Ij}nI

j=1, we feed them into Vision Encoder using the same
architecture from BEVDepth [20], to produce the BEV image feature as BI ∈
Rh×w×dbev . Then, we incorporate the rasterized map information into the BEV
embeddings to align BI . We utilize CNN blocks with Feature Pyramid Net-
work (FPN) [22] to produce another BEV feature Bmap ∈ Rh×w×dmap . Lastly,
we concatenate all generated BEV features into a composite BEV scene feature
B = [BI ;Bmap] ∈ Rh×w×(dbev+dmap). In this process, we compute map aligned
around the current location and direction of the ego vehicle only once, even in the
presence of n agents, as we adopt an ego-centric approach. This significantly re-
duces computational costs compared to agent-centric approaches, which require
reconstructing and encoding map for each of the n agents.
Augmenting Visual Semantics into Agent State Embedding. When
given the vision-aware BEV scene feature B, we use deformable cross-attention [51]
module to augment map-aware visual scene semantics into the per-agent state
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Fig. 3: An overview of our Text-driven Guidance Module. We extract word-level em-
beddings using pretrained BERT [9] as a text encoder, and then we use an attention
module to aggregate these per-word embeddings into a composite sentence-level embed-
ding. Based on the cosine similarity between these embeddings, we apply contrastive
learning loss to ground textual descriptions into the agent’s state embedding.

embedding zi, as illustrated in Fig. 2 (b). This allows for the augmentation of
agent state embedding zi. Compared to commonly used ConvNet-based archi-
tectures [5, 12, 34], our approach leverages a wide receptive field and can se-
lectively focus on scene feature, explicitly extracting multiple areas where each
agent needs to focus and gather information. Additionally, as the agent state
embedding is updated for each block, the focal points for the agent also re-
quire repeated refinement. To achieve this, we employ a Recurrent Trajectory
Prediction module, which utilizes the same architecture as the main trajectory
decoder(explained in Sec. 3.4). This module refines the agent’s future trajectory
uaux = {uaux

i }Tf

i=1 by recurrently improving the predicted trajectories. These
refined trajectories serve as reference points for agents to focus on in the Scene-
Agent Interaction module, integrating surrounding information around the ref-
erence points into the agent’s function. Our module is defined as follows:

zscene
i = zinteract

i +

H∑
h=1

Wh

[
O∑

o=1

(
αhioW

′
hB(uaux

i +△uaux
hio)

)]
, (3)

where H denotes the number of attention heads and O represents the number of
offset points for every reference point uaux

i where we use an auxiliary trajectory
predictor and use the agent’s predicted future positions as reference points. Note
that Wh and W ′

h are learnable matrices, and αhio is the attention weight for each
learnable offset △uaux

hio in each head. The number of attention points is typically
set fewer than the number of surrounding road elements, reducing computational
costs.

3.3 Text-driven Guidance Module

We observe that our visual semantic encoder simplifies visual reasoning about a
scene to focus on salient visible features, resulting in sub-optimal performance
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in trajectory prediction. For instance, the model may primarily focus on the
vehicle itself, disregarding other semantic details, such as “a vehicle waiting in
front of the intersection with turn signals on, expected to turn left.” Therefore, we
introduce the Text-driven Guidance Module to supervise the model, allowing the
model to understand the context of the agents using detailed visual semantics.
For this purpose, we employ multi-modal contrastive learning where positive pair
is pulled together and negative pairs are pushed farther. However, the textual
descriptions for prediction tasks in the driving domain are diverse in expression,
posing an ambiguity in forming negative pairs between descriptions.

To address this, as shown in Fig. 3, we extract word-level embeddings us-
ing BERT [9], and then we use a attention module to aggregate these per-word
embeddings into a composite sentence-level embedding Ti for agent i. Given Ti,
we measure cosine similarity with other agents’ sentence-level embeddings Tj
for j ̸= i, and we treat as negative pairs if simcos (Ti, Tj) < θth where θth is
a threshold value (we set θth = 0.8 in our experiments). Further, we limit the
number of negative pairs within a batch for stable optimization, which is par-
ticularly important as the number of agents in a given scene varies. Specifically,
given an agent i, we choose top-k sentence-level embeddings from {Tj} sorted
in ascending order for j ̸= i. Subsequently, we form a positive pair between the
agent’s state embedding zscene

i and corresponding textual embedding Ti, while
negative pairs as zscene

i and {Tj}kj=1. Ultimately, we use the following InfoNCE
loss [33] to guide agent’s state embedding with textual descriptions:

Lcl = − log
esimcos(z

scene
i ,Ti)/τ∑k

j=1 e
simcos(zscene

i ,Tj)/τ
, (4)

where τ is a temperature parameter used in the attention layer, enabling biasing
the distribution of attention scores.

3.4 Trajectory Decoder
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Fig. 4: An overview of transformation
module, which standardizes agents’ orien-
tation.

Transformation Module. For fast
inference speed and compatibility
with ego-centric images, we adopt
ego-centric approach in the State En-
coder and Scene Semantic Interaction.
However, as noted by Su et al . [42],
ego-centric approaches typically un-
derperform compared to agent-centric
approaches due to the need to learn
invariance for transformations and ro-
tations between scene elements. This implies that the features of agents with
similar future movements are not standardized. Thus, prior to utilizing the Text-
driven Guidance Module and predicting each agent’s future trajectory, we em-
ploy the Transformation Module to standardize each agent’s orientation, aiming
to mitigate the complexity associated with learning rotation invariance. This
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allows us to effectively apply the Text-driven Guidance Module, as we can make
the features of agents in similar situations similar. As depicted in Fig. 4, the
Transformation Module takes the agent’s feature and rotation matrix R as in-
put and propagates the rotation matrix to the agent’s feature using a Multi-Layer
Perceptron (MLP). This transformation enables the determination of which sit-
uations the agent’s features face along the y-axis.
Trajectory Decoder. Similar to [5,31,34,43], we use a parametric distribution
over the agent’s future trajectories u = {ui}

Tf

i=1 for ui ∈ R2 as Gaussian Mixture
Model (GMM). We represent a mode at each time step t as a 2D Gaussian
distribution over a certain position with a mean µt ∈ R2 and covariance Σt ∈
R2×2. Our decoder optimizes a weighted set of a possible future trajectory for
the agent, producing full output distribution as

p(u) =

M∑
m=1

ρm

Tf∏
t=1

N (ut − µt
m, Σt

m), (5)

where our decoder produces a softmax probability ρ over mixture components
and Gaussian parameters µ and Σ for M modes and Tf time steps.
Loss Functions. We optimize trajectory predictions and their associated con-
fidence levels by minimizing Ltraj to train our model in an end-to-end manner.
We compute Ltraj by minimizing the negative log-likelihood function between
actual and predicted trajectories and the corresponding confidence score, and it
can be formulated as follows:

Ltraj = − 1

N

N∑
i=1

log

(
M∑

m=1

ρi,m√
2b2

exp

(
− (Yi − Ŷi,m)2

2

))
. (6)

Here, b and Y represent the scale parameters and the real future trajectory,
respectively. We denote predicted future positions as Ŷi,m and the corresponding
confidence scores as ρi,m for agent i at future time step t across different modes
m ∈ M . Furthermore, we minimize an auxiliary loss function Laux

traj similar to
Ltraj to train the trajectory decoder used by the Recurrent Trajectory Prediction
module. Ultimately, our model is trained by minimizing the following loss L, with
λaux

traj and λcl controlling the strength of each loss term:

L = Ltraj + λaux
trajLaux

traj + λclLcl. (7)

4 nuScenes-Text Dataset

To our best knowledge, currently available driving datasets for prediction tasks
lack textual descriptions of the actions of road users during various driving
events. While the DRAMA dataset [26] offers textual descriptions for agents
in driving scenes, it only provides a single caption for one agent in each scene
alongside the corresponding bounding box. This setup suits detection and cap-
tioning tasks but not prediction tasks. To address this gap, we collect the textual
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“There's a pedestrian wearing a cap, a brown coat 
and carrying a handbag, crossing the street in front 

of the ego-car, because there's a crosswalk.”

DRAMA Dataset

VLM

Fine-tuned
VLM

nuScenes Dataset

“a pedestrian wearing a black t-shirt 
and shorts, crossing the street from 
the left side to the right side, in the 

middle of the crosswalk”

Generated
TEXT

GT Class Maneuvering

“A pedestrian wearing a black t-shirt 
and shorts is crossing the street in the 

middle of the crosswalk, and is 
expected to continue straight.”

Fine-tuning Stage Image-to-Text Generation using VLM Text Refinement using LLM

GPT

Fig. 5: To create the nuScenes-Text Dataset, three main steps are involved: (i) Fine-
tuning stage using DRAMA Dataset [26], (ii) Image-to-Text Generation stage applying
the fine-tuned VLM to the nuScenes Dataset [3], and (iii) Text Refinement process using
ground truth information (e.g . GT class, Maneuvering) along with generated text and
GPT [1]. The red color indicates that needs to be filtered out, while the cyan color
indicates additional content related to the intention.

descriptions for the nuScenes dataset [3], which provides surround-view camera
images, trajectories of road agents, and map data. With its diverse range of
typical road agents activities, nuScenes is widely used in prediction tasks.

Textual Description Generation. We employ a three-step process for gener-
ating textual descriptions of agents from images, as illustrated in Fig. 5. Initially,
we employ a pre-trained Vision-Language Model (VLM) BLIP-2 [19]. However,
it often underperforms in driving-related image-to-text tasks. To address this,
we fine-tune the VLM with the DRAMA dataset [26], containing textual de-
scriptions of agents in driving scenes. We isolate the bounding box region rep-
resenting the agent of interest, concatenate it with the original image (Fig. 5),
and leverage the fine-tuned VLM to generate descriptions for each agent sep-
arately in the nuScenes dataset [3] as an image captioning task. However, the
generated descriptions often lack correct action-related details, providing unnec-
essary information for prediction. To address shortcomings, we refine generated
texts using GPT [1], a well-known Large Language Model (LLM). Inputs in-
clude the generated text, agent type, and maneuvering. Rule-based logic deter-
mines the agent’s maneuvering (e.g ., stationary, lane change, turn right). We
use prompts to correct inappropriate descriptions, aiming to generate texts that
provide prediction-related information on agent type, actions, and rationale. Ex-
amples are provided in Fig. 6, with additional details (e.g ., rule-based logic, GPT
prompt) in the supplemental material.

Coverage of nuScenes-Text Dataset. In this section, we demonstrate how
well our created nuScene-Text Dataset encapsulates the context of the agent,
as depicted in Fig. 6, and discuss the coverage and benefits of this dataset.
Fig. 6a represents the contextual information of the agent changing over time
in text form. This attribute assists in accurately predicting object trajectories
under behavioral context changes. We also demonstrate in Fig. 6b that distinc-
tive characteristics of each object can be captured (e.g ., “A pedestrian waiting
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A bendy bus is expected to continue
straight ahead.

A silver bendy bus is driving, and is
anticipated to perform a lane change.

A pedestrian is crossing the street in the
rain, and is expected to make a right turn.

A pedestrian wearing a brown coat is
crossing the street in the rain, and is
expected to continue straight.

Caption 1: A pedestrian wearing a black t-shirt is
standing, waiting to cross the street.
Caption 2: A stationary adult pedestrian waits to
cross the street.
Caption 3: An adult pedestrian is waiting to cross the
street.

Caption 1: A construction worker wearing a green
vest is sitting in the middle of a grassy area, and is
expected to remain stationary.
Caption 2: A stationary construction worker wearing
a green vest, situated in the middle of a grassy area.
Caption 3: A construction worker in a green vest, not
moving and positioned in a grassy area.

VLM Caption: a pedestrian wearing a blue jacket,
walking on the left side of the road, away from the
ego car
Refined Caption: A construction worker wearing a
blue jacket is walking on the road, and is expected to
continue walking straight.

VLM Caption: a pedestrian crossing the street at a
crosswalk, from the left side to the right side
Refined Caption: A pedestrian is crossing the street
at a crosswalk and is expected to continue straight.

(a) Capturing the changing behavior of objects over time

(b) Diversity of generated textual descriptions (c) Refinement of textual description with LLM

Fig. 6: Examples of our generated textual descriptions

to cross the street.”, “A construction worker sitting on the lawn.”) and generate
three unique textual descriptions for each object, showcasing diverse perspec-
tives. Additionally, to enhance text descriptions when the VLM generates in-
correct agent types, behavior predictions, or harmful information, such as “from
the left side to the right side”, which can be misleading due to the directional
variation in BEV depending on the camera’s orientation, we refine the text using
an LLM. This refinement process aims to improve text quality for identifying
driving scenes through surround images. Fig. 6c illustrates this improvement
process, ensuring the relevance and accuracy of text by removing irrelevant de-
tails (indicated by red) and adding pertinent information (indicated by cyan).
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Fig. 7: Frequency of words

Dataset Statistics. Our created dataset
contains 1,216,206 textual descriptions for
391,732 objects (three for each object), aver-
aging 13 words per description. In Fig. 7, we
visualize frequently used words, highlighting
the dataset’s rich vocabulary and diversity.
Further, we conduct a human evaluation using
Amazon Mechanical Turk (Mturk) to quanti-
tatively evaluate image-text alignments. 5 hu-
man evaluators are recruited, and it is per-
formed on a subset of 1,000 randomly selected
samples. Each evaluator is presented with the
full image, cropped object image, and corre-
sponding text and asked the question: “Is the image well-aligned with the text,
considering the reference image?”. The results show that 94.8% of the respon-
dents chose ‘yes’, indicating a high level of accuracy in aligning images with
texts. All results are aggregated through a majority vote. Further details on the
nuScenes-Text Dataset are provided in the supplemental material.
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p=0 p=1.0 t=0 t=6s t=0 t=6s
Prediction GTConfidence

(c)

p=0

(b)

'A pedestrian is crossing the street in the rain, and is 
expected to make a left turn.'

p=0

'A pedestrian is crossing the street in the rain, and is 
expected to make a left turn.'

(b)

'A man is standing behind the truck, and is expected 
to remain stationary.'

‘A man wearing a blue shirt is talking to another man, 
expecting to cross the street when the signal changes.'

with Visual Semantic Encoder and Text-driven Guidance

without Visual Semantic Encoder and Text-driven Guidance

(b)(a)

'The gray sedan in front of the ego car is waiting for 
an opportunity to make a left turn.'

(f)

'The black sedan is driving on the road, and is 
expected to make a right turn.’

(d)

'A bus is moving on the left side of the road, and is 
expected to stationary’

(e)

with Visual Semantic Encoder and Text-driven Guidance

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

without Visual Semantic Encoder and Text-driven Guidance

with Visual Semantic Encoder and Text-driven Guidance

without Visual Semantic Encoder and Text-driven Guidance

Fig. 8: Examples of trajectory prediction outputs in six different scenarios. The exam-
ples on the top row represent scenarios with pedestrians, while those on the bottom
row have vehicles. We also provide ground truth textual descriptions about an object
in a red box, which were not seen during inference.

5 Experiments

Dataset. We conduct experiments using the nuScenes dataset [3], which offers
two versions: (i) a dataset dedicated to a trajectory prediction task and (ii) a
whole dataset. While the former focuses solely on single-agent prediction tasks,
the latter is more suitable for our purposes. Therefore, we provide scores for both
datasets in our experiments. Further implementation, evaluation, and dataset
details can be found in the supplemental material.
Qualitative Analysis. Fig. 8 presents the results of VisionTrap on nuScenes
dataset [3], demonstrating the impact of Visual Semantic Encoder and Text-
driven Guidance Module on agent trajectory prediction.

The top row shows improved results of pedestrians. For (a), while the result
without visual information predicts the man will cross the crosswalk, the predic-
tion with visual information indicates the man will remain stationary due to red
traffic light and people talking to each other rather than trying to cross the road.
(b) presents how gaze and body orientation help in predicting the pedestrian’s
intention to walk towards the crosswalk, and (c) provides visual context of the
man getting on a stationary vehicle, implying the trajectory of the man would
remain stationary as well. The following row exhibits the improved prediction
results of vehicles. In (d), understanding that the people are standing at a bus
stop enables the model to make a reasonable prediction for the bus. (e) gives a
visual cue of turn signal, indicating the vehicle’s intention of turning left. Lastly,
visual context in (f) leads to a more stable prediction of the vehicle turning right,
as the image clearly shows the vehicle is directed towards its right.
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Table 1: Trajectory prediction performance comparison on nuScenes [3] dataset re-
garding ADE10, MR10, and FDE1. Inference times are reported in milliseconds (msec),
measured based on 12 agents using a single RTX 3090 Ti GPU.

Model
Prediction
Method

Using
Map Data

Time ↓
(msec)

ADE10 ↓ MR10 ↓ FDE1 ↓

Multipath [5] single ✔ 87 1.50 0.74 -
MHA-JAM [29] single ✔ - 1.24 0.46 8.57
P2T [7] single ✔ 116 1.16 0.46 10.5
PGP [8] single ✔ 215 1.00 0.37 7.17
LAformer [24] single ✔ 115 0.93 0.33 -

Trajectron++ [41] multi ✔ 38 1.51 0.57 9.52
AgentFormer [46] multi ✔ 107 1.45 - - Average
VisionTrap baseline multi 13 1.48 0.56 10.75 improvement:

+ Map Encoder multi ✔ 21 1.40 0.53 10.41 4.65%
+ Visual Semantic Encoder multi ✔ 53 1.23 0.36 9.32 21.97%
+ Text-driven Guidance (Ours) multi ✔ 53 1.17 0.32 8.72 27.56%

These examples highlight the crucial role of visual data in improving trajec-
tory prediction accuracy, offering insights that cannot obtained from non-visual
data. Further qualitative analysis details are available in the supplemental ma-
terial.

Quantitative Analysis. Tab. 1 compares our model with other methods for
single and multi-agent prediction. Our query-based prediction model designed to
effectively utilize visual semantic information and Text-driven Guidance Module,
which we use as baseline, achieves the fastest inference speed. We also demon-
strate that the Visual Semantic Encoder significantly improves performance,
especially when combined with the Text-driven Guidance Module, yielding com-
parable results to existing single-agent prediction methods with better miss rate
performance, while still maintaining real-time operation. These results suggest
that vision data provides additional information inaccessible to non-vision data,
and textual descriptions derived from vision data effectively guide the model.

Table 2: Ablation study of variant models
on nuScenes [3] whole dataset.
Method ADE10 ↓ FDE10 ↓ MR10 ↓
VisionTrap baseline 0.425 0.641 0.081
+ Map Encoder 0.407 0.601 0.075
+ Visual Semantic Encoder 0.382 0.551 0.056
+ Text-driven Guidance (Ours) 0.368 0.535 0.051

Since our method employs egocen-
tric surround-view images, it is feasi-
ble to effectively predict for all ob-
served agents in the scene. We uti-
lize the nuScenes dataset covering all
scenes, enabling comprehensive evalu-
ation of all observed agents (refer to
Tab. 2). This demonstrates the contributions of all proposed components to
predicting all agents in the scene.

Finally, we emphasize that the purpose of this study is not to achieve state-of-
the-art performance. Instead, our aim is to demonstrate that vision information,
often overlooked in trajectory prediction tasks, can provide additional insights.
These insights are inaccessible from non-vision data, thereby enhancing perfor-
mance in trajectory prediction tasks. This is our original motivation for this
task, and the results in Fig. 8, Tab. 1 and Tab. 2 provide justification for our
method.
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A black sedan is driving in the left lane, and is 
expected to make a left turn.

A blue bus is driving on the road, and is 
expected to make a left turn.

A pedestrian is standing near a stop sign, and is
expected to continue straight.

A pedestrian wearing a brown shirt is standing in
front of a green building and is expected to 

continue straight.

A gray van is parked and is anticipated to 
remain stationary.

A blue bus is stopped due to traffic congetion 
ahead, and is expected to remain stationary.

(a) without Visual Semantic Encoder and Text-driven Guidance (c) with Visual Semantic Encoder and Text-driven Guidance(b) Textual Description

Fig. 9: UMAP [28] visualizations for per-agent state embeddings from models (a) with-
out and (c) with leveraging visual and textual semantics. (b) We also provide corre-
sponding ground truth textual descriptions.

UMAP Visualization. We observe an overall improvement in clustering of
agent state embeddings when leveraging visual and textual semantics in Fig. 9.
Furthermore, extracting textual descriptions of agents within the same cluster
group is shown to exhibit similar situations. This indicates that state embeddings
for agents in similar situations are located in a similar embedding space.

Table 3: Performance comparison to ana-
lyze the effect of each component of Text-
Based Guidance Module on the nuScenes [3]
all dataset.
Method ADE6 ↓ FDE6 ↓ MR6 ↓
A. CLIP loss 0.51 0.79 0.10
B. Ours w/ symmetric loss 0.50 0.76 0.10
C. Ours w/o refining negative pair 0.49 0.72 0.09
D. Ours w/o top-k algorithm 0.46 0.67 0.08

E. Ours 0.44 0.66 0.07

Analyzing the Text-driven Guid-
ance Module. To analyze the ef-
fect of each component of the pro-
posed Text-Based Guidance Module,
we removed each factor to see how
the model performs, as shown in
Tab. 3. In the case of A, we use sim-
ple symmetric contrastive loss that is
used in [35]. However, our loss adopts
asymmetric form of contrastive loss that only calculates softmax probabilities
in one direction. B gives the result of incorporating symmetric loss in our loss
design. C shows the result of removing the stage of negative pair refinement,
allowing potential false-negatives. In D, we skip the process of ascending sorting
and limiting the number of negative pairs. Removing these steps causes variance
in number of agents considered each scene, leading to different scales of loss.
In the end, our asymmetric contrastive loss with negative pairs refined and its
number constrained demonstrated the best performance across all metrics.

6 Conclusion

In this paper, we introduced an novel approach called VisionTrap to trajectory
prediction by incorporating visual input from surround-view cameras. This en-
ables the model to leverage visual semantic cues, which were previously inacces-
sible to traditional trajectory prediction methods. Additionally, we utilize text
descriptions produced by a VLM and refined by a LLM to provide supervision,
guiding the model in learning from the input data. Our thorough experiments
demonstrate that both visual inputs and textual descriptions contribute to en-
hancing trajectory prediction performance. Furthermore, our qualitative analysis
shows how the model effectively utilizes these additional inputs.



VisionTrap 15

Acknowledgment. This work was supported by Autonomous Driving Center, Hyundai
Motor Company R&D Division. This work was partly supported by IITP under the
Leading Generative AI Human Resources Development(IITP-2024-RS-2024-00397085,
10%) grant, IITP grant (RS-2022-II220043, Adaptive Personality for Intelligent Agents,
10% and IITP-2024-2020-0-01819, ICT Creative Consilience program, 5%). This work
was also partly supported by Basic Science Research Program through the NRF funded
by the Ministry of Education(NRF-2021R1A6A1A13044830, 10%). This work also sup-
ported by Culture, Sports and Tourism R&D Program through the Korea Creative
Content Agency grant funded by the Ministry of Culture, Sports and Tourism in
2024((International Collaborative Research and Global Talent Development for the
Development of Copyright Management and Protection Technologies for Generative
AI, RS-2024-00345025, 4%),(Research on neural watermark technology for copyright
protection of generative AI 3D content, RS-2024-00348469, 25%)), Institute of Infor-
mation & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT)(RS-2019-II190079, 1%). We also thank Yujin Jeong and
Daewon Chae for their helpful discussions and feedback.

References

1. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. Advances in neural information processing systems 33, 1877–1901 (2020)

2. Buhet, T., Wirbel, E., Bursuc, A., Perrotton, X.: Plop: Probabilistic polynomial ob-
jects trajectory planning for autonomous driving. arXiv preprint arXiv:2003.08744
(2020)

3. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 11621–11631 (2020)

4. Casas, S., Luo, W., Urtasun, R.: Intentnet: Learning to predict intention from raw
sensor data. In: Conference on Robot Learning. pp. 947–956. PMLR (2018)

5. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: Multiple proba-
bilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint
arXiv:1910.05449 (2019)

6. Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased con-
trastive learning. Advances in neural information processing systems 33, 8765–8775
(2020)

7. Deo, N., Trivedi, M.M.: Trajectory forecasts in unknown environments conditioned
on grid-based plans. arXiv preprint arXiv:2001.00735 (2020)

8. Deo, N., Wolff, E., Beijbom, O.: Multimodal trajectory prediction conditioned
on lane-graph traversals. In: Conference on Robot Learning. pp. 203–212. PMLR
(2022)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

10. Fang, L., Jiang, Q., Shi, J., Zhou, B.: Tpnet: Trajectory proposal network for
motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 6797–6806 (2020)



16 S. Moon et al.

11. Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., Schmid, C.: Vectornet:
Encoding hd maps and agent dynamics from vectorized representation. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 11525–11533 (2020)

12. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Home:
Heatmap output for future motion estimation. In: 2021 IEEE International In-
telligent Transportation Systems Conference (ITSC). pp. 500–507. IEEE (2021)

13. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Thomas:
Trajectory heatmap output with learned multi-agent sampling. arXiv preprint
arXiv:2110.06607 (2021)

14. Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Gohome:
Graph-oriented heatmap output for future motion estimation. In: 2022 interna-
tional conference on robotics and automation (ICRA). pp. 9107–9114. IEEE (2022)

15. Girase, H., Gang, H., Malla, S., Li, J., Kanehara, A., Mangalam, K., Choi, C.:
Loki: Long term and key intentions for trajectory prediction. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 9803–9812 (2021)

16. Hwang, I., Lee, S., Kwak, Y., Oh, S.J., Teney, D., Kim, J.H., Zhang, B.T.: Selecmix:
Debiased learning by contradicting-pair sampling. Advances in Neural Information
Processing Systems 35, 14345–14357 (2022)

17. Jang, T., Wang, X.: Difficulty-based sampling for debiased contrastive representa-
tion learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 24039–24048 (June 2023)

18. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H.,
Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning
with noisy text supervision. In: International conference on machine learning. pp.
4904–4916. PMLR (2021)

19. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023)

20. Li, Y., Ge, Z., Yu, G., Yang, J., Wang, Z., Shi, Y., Sun, J., Li, Z.: Bevdepth:
Acquisition of reliable depth for multi-view 3d object detection. In: Proceedings of
the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1477–1485 (2023)

21. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning
lane graph representations for motion forecasting. In: Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16. pp. 541–556. Springer (2020)

22. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

23. Liu, B., Adeli, E., Cao, Z., Lee, K.H., Shenoi, A., Gaidon, A., Niebles, J.C.: Spa-
tiotemporal relationship reasoning for pedestrian intent prediction. IEEE Robotics
and Automation Letters 5(2), 3485–3492 (2020)

24. Liu, M., Cheng, H., Chen, L., Broszio, H., Li, J., Zhao, R., Sester, M., Yang,
M.Y.: Laformer: Trajectory prediction for autonomous driving with lane-aware
scene constraints. arXiv preprint arXiv:2302.13933 (2023)

25. Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction
with stacked transformers. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 7577–7586 (2021)

26. Malla, S., Choi, C., Dwivedi, I., Choi, J.H., Li, J.: Drama: Joint risk localization
and captioning in driving. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 1043–1052 (2023)



VisionTrap 17

27. Malla, S., Dariush, B., Choi, C.: Titan: Future forecast using action priors. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 11186–11196 (2020)

28. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

29. Messaoud, K., Deo, N., Trivedi, M.M., Nashashibi, F.: Trajectory prediction for
autonomous driving based on multi-head attention with joint agent-map represen-
tation (2020)

30. Miao, P., Du, Z., Zhang, J.: Debcse: Rethinking unsupervised contrastive sentence
embedding learning in the debiasing perspective. In: Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management. pp. 1847–
1856 (2023)

31. Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K.S., Sapp, B.: Wayformer:
Motion forecasting via simple & efficient attention networks. In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). pp. 2980–2987. IEEE
(2023)

32. Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H.T.L., Ling, J., Roelofs,
R., Bewley, A., Liu, C., Venugopal, A., et al.: Scene transformer: A unified archi-
tecture for predicting multiple agent trajectories. arXiv preprint arXiv:2106.08417
(2021)

33. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

34. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: Cover-
net: Multimodal behavior prediction using trajectory sets. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 14074–
14083 (2020)

35. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

36. Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.: Pie: A large-scale dataset and
models for pedestrian intention estimation and trajectory prediction. In: ICCV
(2019)

37. Rasouli, A., Rohani, M., Luo, J.: Bifold and semantic reasoning for pedestrian
behavior prediction. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV). pp. 15600–15610 (October 2021)

38. Rasouli, A., Yau, T., Lakner, P., Malekmohammadi, S., Rohani, M., Luo, J.: Pep-
scenes: A novel dataset and baseline for pedestrian action prediction in 3d. arXiv
preprint arXiv:2012.07773 (2020)

39. Rasouli, A., Yau, T., Rohani, M., Luo, J.: Multi-modal hybrid architecture for
pedestrian action prediction. In: 2022 IEEE Intelligent Vehicles Symposium (IV).
pp. 91–97. IEEE (2022)

40. Rowe, L., Ethier, M., Dykhne, E.H., Czarnecki, K.: Fjmp: Factorized joint multi-
agent motion prediction over learned directed acyclic interaction graphs. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 13745–13755 (2023)

41. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVIII 16. pp. 683–700. Springer (2020)



18 S. Moon et al.

42. Su, D.A., Douillard, B., Al-Rfou, R., Park, C., Sapp, B.: Narrowing the coordinate-
frame gap in behavior prediction models: Distillation for efficient and accurate
scene-centric motion forecasting. In: 2022 International Conference on Robotics
and Automation (ICRA). pp. 653–659. IEEE (2022)

43. Varadarajan, B., Hefny, A., Srivastava, A., Refaat, K.S., Nayakanti, N., Cornman,
A., Chen, K., Douillard, B., Lam, C.P., Anguelov, D., et al.: Multipath++: Efficient
information fusion and trajectory aggregation for behavior prediction. In: 2022
International Conference on Robotics and Automation (ICRA). pp. 7814–7821.
IEEE (2022)

44. Wu, D., Wu, Y.: Air2 for interaction prediction. arXiv preprint arXiv:2111.08184
(2021)

45. Yuan, X., Lin, Z., Kuen, J., Zhang, J., Wang, Y., Maire, M., Kale, A., Faieta, B.:
Multimodal contrastive training for visual representation learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
6995–7004 (2021)

46. Yuan, Y., Weng, X., Ou, Y., Kitani, K.: Agentformer: Agent-aware transform-
ers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

47. Zeng, W., Liang, M., Liao, R., Urtasun, R.: Lanercnn: Distributed representations
for graph-centric motion forecasting. In: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). pp. 532–539. IEEE (2021)

48. Zhou, K., Zhang, B., Zhao, X., Wen, J.R.: Debiased contrastive learning of unsu-
pervised sentence representations (2022)

49. Zhou, Z., Wang, J., Li, Y.H., Huang, Y.K.: Query-centric trajectory prediction.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 17863–17873 (2023)

50. Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K.: Hivt: Hierarchical vector transformer
for multi-agent motion prediction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 8823–8833 (2022)

51. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020)


	VisionTrap: Vision-Augmented Trajectory Prediction Guided by Textual Descriptions

