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In the main paper, we introduce an innovative framework designed to produce
emotional talking face videos, which enables individual manipulation of mouth
shape, head pose, and emotional expression, conditioned on both video and
audio inputs. This appendix delves deeper into: 1) Implementation Details. 2)
Additional Experimental Results. 3) Discussion. In addition, we highly encourage
viewing the Supplementary Video.

1 Implementation Details

1.1 Network Architecture

We utilize identical structures for Generator G in LIA [28]. We recommend
consulting their original paper for further elaboration. Here, we delineate the
details of the other network architectures depicted in Fig. 1.

Encoder E. The component projects the identity source Ii and driving source
I∗ into the identity feature f id and the latent features f i→r, f∗→r. It comprises
several convolutional neural networks (CNN) and ResBlocks. The outputs of
ResBlock serve as the identity feature f id, which is then fed into Generator G to
enrich identity information through skip connections. Subsequently, four multi-
layer perceptrons (MLP) are employed to generate the latent features f i→r,
f∗→r.

MLPm, MLP p, MLP e and MLPm
A . To achieve efficient training and inference,

these four modules are implemented with four simple MLPs.

Audio Encoder Ea. This network takes audio feature sequences a1:T as input.
These sequences are passed through a series of convolutional layers to produce
audio feature fa

1:N .
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Fig. 1: Detailed architecture for different components in our EDTalk.

Normalizing Flow φp. Normalizing Flow φp comprises K flow step, each con-
sisting of actnorm, invertible convolution and the affine coupling layer. Initially,
given the mean µ and standard deviation δ for the weights W p of pose bank
Bp, actnorm is implemented as an affine transformation h′ = β−µ

δ . Subse-
quently, φp introduces an invertible 1 × 1 convolution layer, h′′ = W · h′, to
handle potential channel variable. Following this, we utilize a transformer-based
coupling layer F to derive z from h′′ and fa

1:N . Specifically, we split h′′ into
h′′
h1 and h′′

h2, where h′′
h2 undergoes affine transformation by F based on h′′

h1:
t, s = F(h′′

h1, f
a
1:N );h = (h′′

h2+ t)⊙s, where t and s represent the transformation
parameters. Thanks to the unchanged h′′

h1, tractability is easily maintained in
reverse. In summary, we can map W p into the latent code z and predict weight
Ŵ p from a sampled code ẑ ∈ pZ as follows:

z = φ−1
p (W p, fa

1:N ) (1)

Ŵ p = φp(ẑ, f
a
1:N ) (2)

1.2 Data Details

Datasets

MEAD. MEAD entails 60 speakers, with 43 speakers accessible, delivering 30
sentences expressing eight emotions at three varying intensity levels in a labo-
ratory setting. Consistent with prior studies [5,9], we designate videos featuring
speakers identified as ‘M003,’ ‘M030,’ ‘W009,’ and ‘W015’ for testing, while the
videos of the remaining speakers are allocated for training.

HDTF. The videos of the HDTF dataset are collected from YouTube, renowned
for their high quality, high definition content, featuring over 300 distinct identi-
ties. To facilitate training and testing, we partition the dataset using an 8:2 ratio
based on speaker identities, allocating 80% for training and 20% for testing.
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Fig. 2: Additional qualitative results, which are supplement to the main paper

Voxceleb2. Voxceleb2 [3] is a large-scale talking head dataset, boasting over 1
million utterances from 6,112 celebrities. It’s important to note that we solely
utilize Voxceleb2 for evaluation purposes, selecting 200 videos randomly from its
extensive collection.

LRW. LRW [4] is a word-level dataset comprising more than 1000 utterances
encompassing 500 distinct words. For evaluation, we randomly select 500 videos
from the dataset.

Data Processing For video preprocessing, we employ face cropping and resize
the cropped videos to the resolution of 256×256 for training and testing following
FOMM [18]. Adhere to Wav2Lip [14], audio is down-sampled to 16 kHz and
transformed into mel-spectrograms using an FFT window size of 800, hop length
of 200, and 80 Mel filter banks. During the evaluation, for datasets without
emotional labels, we utilize the first frame of each video as the source image and
the corresponding audio as the driving audio to generate talking head videos. For
emotional videos sourced from MEAD, we use the video itself as an expression
reference. We select a frame with a ‘Neutral’ emotion from the same speaker as
the source image for emotional talking head synthesis.
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Method
Voxceleb2 [3] LRW [4]

PSNR↑ SSIM↑ M-LMD↓ F-LMD↓ Syncconf ↑ PSNR↑ SSIM↑ M-LMD↓ F-LMD↓ Syncconf ↑

MakeItTalk [33] 20.526 0.706 2.435 2.380 3.896 22.334 0.729 2.099 1.960 3.137
Wav2Lip [14] 20.760 0.723 2.143 2.182 8.680 23.299 0.764 1.699 1.703 7.545
Audio2Head [25] 17.344 0.577 3.651 3.712 5.541 18.703 0.601 2.866 3.435 5.428
PC-AVS [32] 21.643 0.720 2.088 1.830 7.928 16.744 0.509 5.603 4.691 3.622
AVCT [26] 18.751 0.645 2.739 3.062 4.238 21.188 0.689 2.290 2.395 3.927
SadTalker [30] 20.278 0.700 2.252 2.388 6.356 - - - - -
IP-LAP [30] 20.955 0.724 2.125 2.154 3.295 23.727 0.770 1.779 1.683 3.027
TalkLip [22] 20.633 0.723 2.084 2.191 6.520 22.706 0.751 1.803 1.770 6.021

EAMM [9] 17.038 0.562 4.172 4.163 3.815 18.643 0.607 3.593 3.773 3.414
StyleTalk [12] 21.112 0.722 2.113 2.136 2.120 21.283 0.705 2.394 2.142 2.430
PD-FGC [21] 22.110 0.729 1.743 1.630 6.686 22.481 0.711 1.576 1.534 6.119
EAT [5] 20.370 0.689 2.586 2.383 6.864 21.384 0.704 2.128 1.927 6.630
EDTalk-A 22.107 0.763 1.851 1.608 6.591 23.409 0.779 1.729 1.379 6.914
EDTalk-V 22.133 0.764 1.829 1.583 6.155 24.574 0.823 1.202 1.139 6.027

GT 1.000 1.000 0.000/0.000 0.000 6.808 1.000 1.000 0.000/0.000 0.000 6.952

Table 1: Quantitative comparisons with state-of-the-art methods. We test
each method on Voxceleb2 and LRW datasets, and the best scores in each metric are
highlighted in bold. The symbol ” ↑ ” and ” ↓ ” indicate higher and lower metric values
for better results, respectively.

1.3 Training Details

The encoder E and generator G are pre-trained in a similar setting as LIA [28].
Subsequently, we freeze the weights of the encoder E and generator G, focusing
solely on training the Mouth-Pose Decouple Module. In this stage, our model is
trained exclusively on the emotion-agnostic HDTF dataset, where videos consis-
tently exhibit a ‘Neutral’ emotion alongside diverse head poses. It ensures that
the Mouth-Pose Decouple Module concentrates solely on variations in head pose
and mouth shape, avoiding the encoding of expression-related information. All
loss function weights are set to 1. The training process typically requires ap-
proximately one hour, employing a batch size of 4 and a learning rate of 2e-3,
executed on 2 NVIDIA GeForce GTX 3090 GPUs with 24GB memory. Once the
Mouth-Pose Decouple Module is trained, we freeze all trained parameters and
solely update the expression-related modules, including MLP e, expression bases
Be, and the Expression Enhance Module EEM , utilizing both the MEAD and
HDTF datasets. This stage typically takes around 6 hours, employing a batch
size of 10 and a learning rate of 2e-3, conducted on 2 NVIDIA GeForce GTX
3090 GPUs with 24GB memory. We train our Audio-to-Lip model on the HDTF
dataset for 30k iterations with a batch size of 4, requiring approximately 7 hours
of computation on 2 NVIDIA GeForce GTX 3090 GPUs with 24GB memory.
The Audio-to-Pose model is trained on the HDTF dataset for one hour.
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2 Additional Experimental Results

2.1 More Comparison with SOTA Audio-Driven Talking Face
Generation Methods

More quantitative results. Apart from the quantitative assessments conducted
on the MEAD and HDTF datasets, as detailed in the main paper, we present
additional quantitative comparisons on Voxceleb2 [3] and LRW [4]. The com-
parison results outlined in Tab. 1 demonstrate that our method outperforms
state-of-the-art approaches in both audio-driven (EDTalk-A) and video-driven
(EDTalk-V) scenarios across various metrics. We offer a plausible explanation for
the superior Syncconf achieved by Wav2Lip [14] in the main paper. IP-LAP [31]
merely alters the mouth shape of the source image while maintaining the same
head pose and expression, hence achieving a higher PSNR score. PD-FGC [21]
attains superior M-LMD performance by training on Voxceleb2, a dataset com-
prising over 1 million utterances from 6,112 celebrities, totaling 2400 hours
of data, which is hundreds of times larger than our dataset (15.8 hours).
Nevertheless, we still outperform PD-FGC in terms of F-LMD. SadTalker [30]
encounters challenges in processing even one second of audio, leading to the fail-
ure to generate talking face videos on the LRW dataset, where all videos are one
second in duration.

00 29 46 70 128 242
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[CVPR' 21]

ECG
[IJCAI' 22]

EDTalk

DiffTalk

[CVPR' 23]
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Fig. 3: Comparison results with SOTA
methods that have not released their codes
and pretrained models.

More qualitative results. In addi-
tion to the state-of-the-art (SOTA)
methods discussed in the main pa-
per, we extend our comparative
analysis to include both emotion-
agnostic talking face generation meth-
ods: MakeItTalk [33], Wav2Lip [14],
Audio2Head [25], AVCT [26], and
PC-AVS [32], as well as emotional
talking face generation methods:
StyleTalk [12] and EMMN [20]. The
comprehensive qualitative results can
be found in Fig. 2, serving as a sup-
plement to the previously presented
data in Fig. 4 of the main paper. We
further conduct the comparison ex-
periments with several SOTA talking
face generation methods, including:
GC-AVT [11], EVP [10], ECG [19]
and DiffTalk [17]. However, due to
the unavailability of codes and pre-
trained models for these methods (ex-

cept EVP), we can only extract video clips from the provided demo videos for
comparison. The results are demonstrated in Fig. 3. Specifically, EVP and ECG
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are emotional talking face generation methods that utilize one-hot labels for
emotional guidance, with EVP being a person-specific model and ECG being a
one-shot method. Our method outperforms these methods in terms of emotional
expression, while the teeth generated by ECG contribute to slightly unrealistic
results. GC-AVT aims to mimic emotional expressions and generate accurate lip
motions synchronized with input speech, resembling the setting of our EDTalk.
However, compared to EDTalk, GC-AVT struggles to preserve reference identity,
resulting in significant identity loss. DiffTalk is hindered by severe mouth jitter,
which is more evident in the Supplementary Video.

Metric/Method TalkLip IP-LAP EAMM EAT EDTalk GT

Lip-sync 3.31 3.42 3.49 3.85 4.13 4.74
Realness 3.14 3.13 3.26 3.75 4.92 4.81
Accemo (%) 19.7 17.6 44.3 59.7 64.5 75.6

Table 2: User study results.

User Study. We conduct a user study
to evaluate our method for human
likeness test. We generate 10 videos
for each method and invite 20 par-
ticipants (10 males, 10 females) to
score from 1 (worst) to 5 (best) in
terms of lip-synchronization, realness,
and emotion classification. The aver-
age scores reported in Tab. 2 demon-
strate that our method achieves the best performance in all aspects.

2.2 More Comparison with SOTA Face Reenactment Methods

Method/Metric PSNR↑ SSIM↑ LPIPS↓ L1 ↓ AKD↓ AED↓
PIRenderer [15] 22.13 0.72 0.22 0.053 2.24 0.032
OSFV [27] 23.29 0.74 0.17 0.037 1.83 0.025
LIA [28] 24.75 0.77 0.16 0.036 1.88 0.019
DaGAN [8] 23.21 0.74 0.16 0.041 1.93 0.023
MCNET [7] 21.74 0.69 0.26 0.057 2.05 0.037
StyleHEAT [29] 22.15 0.65 0.25 0.075 2.95 0.045
VPGC [24] - - - - - -

EDTalk 26.5 0.85 0.13 0.031 1.74 0.017

Table 3: The quantitative results com-
pared with SOTA face reenactment meth-
ods on HDTF dataset.

Qualitative results. We perform a
comparative analysis with state-of-
the-art face reenactment methods, in-
cluding PIRenderer [15], OSFV [27],
LIA [28], DaGAN [8], MCNET [7],
StyleHEAT [29], and VPGC [24],
where VPGC is a person-specific
model. Given that the compared
methods are not specifically trained
on emotional datasets, we conduct
comparisons using videos with and
without emotion, the results of which
are presented in the Supplemen-
tary Video (4:07-4:50). Our method
demonstrates superior performance in
terms of face reenactment.

Quantitative results. We additionally offer extensive quantitative comparisons
regarding: (1) Generated video quality assessed through PSNR and SSIM. (2)
Reconstruction faithfulness evaluated using LPIPS and L1 norms. (3) Seman-
tic consistency measured by average keypoint distance (AKD) and average Eu-
clidean distance (AED). The quantitative results on the HDTF dataset are out-
lined in Tab. 3, showcasing the superior performance of our EDTalk method.
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Note that since VPGC is a person-specific model, it cannot be generalized on
identities in HDTF dataset.

2.3 Robustness

Method/Metric PSNR↑ SSIM↑ M/F-LMD↓ FID↓ Syncconf ↑ Accemo ↑
w/o Lfea 21.134 0.713 1.914/1.625 28.053 5.601 54.34
w/o Lself 20.913 0.707 1.815/1.629 29.314 5.030 44.23
w/o Lm

rec 21.955 0.744 1.666/1.397 18.528 5.447 67.19
w/o Lm

sync 21.524 0.728 1.626/1.349 17.844 4.007 61.29

w/o Orthogonal 21.429 0.711 1.687/1.320 17.820 4.398 38.71
w/o Bank 20.302 0.660 2.137/1.711 26.842 2.316 9.677
w/o EEM 20.731 0.673 2.131/1.927 27.135 7.326 49.367

only lip 19.799 0.639 1.767/1.920 31.918 8.291 15.13
lip+pose 21.519 0.695 1.645/1.378 19.571 8.474 16.75

Full Model 21.628 0.722 1.537/1.290 17.698 8.115 67.32

Table 4: Ablation study results.

Loss functions. We further explored
the effects of different loss functions
on the MEAD dataset. The results
in Table 5 indicate that Lfea and
Lself contribute to more disentangled
spaces, while Lm

rec and Lm
sync lead

to more accurate lip synchronization.
Notably, the Full Model shows a re-
duction in Syncconf compared to only
lip and lip+pose, suggesting a trade-
off between lip-sync accuracy and emotion performance. In this work, we sacrifice
a slight lip-sync accuracy to enhance expression.

2.4 Robustness

Our method demonstrates robustness across out-of-domain portraits, encom-
passing real human subjects, paintings, sculptures, and images generated by
Stable Diffusion [16]. Moreover, our approach exhibits generalizability to vari-
ous audio inputs, including songs, diverse languages (English, French, German,
Italian, Japanese, Korean, Spanish, Chinese), and noisy audio. Please refer to
the Supplementary Video (5:40-8:40) for the better visualization of these results.

2.5 Expression Manipulation

We accomplish expression manipulation by interpolating between expression
weights W e of the expression bank Be, which are extracted from any two distinct
expression reference clips, using the following equation:

W e = αW e
1 + (1− α)W e

2 , (3)

where W e
1 and W e

2 represent expression weights extracted from two emotional
clips, while α denotes the interpolation weight. Fig. 4 illustrates an example of
expression manipulation generated by our EDTalk. In this example, we success-
fully transition from Expression1 to Expression2 by varying the interpolation
weight α. This demonstrates the effectiveness of our ELN module in accurately
capturing the expression of the provided clip, as discussed in the main paper.

2.6 Probabilistic Pose Generation
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Expression 1 Expression 2

Fig. 4: The results of expression manipulation.
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Fig. 5: The results of generated head poses.

Thanks to the distribution pZ mod-
eled by the Audio2Pose module, we
are able to sample diverse and real-
istic head poses from it. As shown
in Fig. 5, by passing the same inputs
through our EDTalk, our method syn-
thesizes various yet natural head mo-
tions while preserving the expression
and mouth shape unchanged.

2.7 Semantically-Aware
Expression Generation

We input two transcripts into a Text-
To-Speech (TTS) system to synthe-
size two audio clips. These audios, along with their respective transcripts, are
then fed into our Audio-to-Motion module to generate talking face videos. The
results of semantically-aware expression generation are depicted in Fig. 6, show-
casing our method’s ability to accurately generate expressions corresponding
to the transcripts (left: happy; right: sad). Additionally, in the Supplementary
Video, we provide further results where expressions are inferred directly from
audio.

2.8 Motion Direction Controlled by Base

We initially present the results showcasing individual control over mouth shape,
head pose, and emotional expression in Fig. 7. Specifically, by feeding our EDTalk

        "But I will be a little sad if I miss out on this opportunity""I will be very happy if my paper is accepted!"

Input Transcript T  Input Transcript T 
TTS

Synthesized Audio

Generated Results Generated Results

Synthesized Audio

Fig. 6: The results of semantically-aware expression generation.
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Fig. 7: The results of individual control over mouth shape, head pose, emotional ex-
pression and combined facial dynamics.
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Fig. 8: Motion direction controlled by each base.

with an identity source and various driving sources (first row of each part), our
method generates corresponding disentangled outcomes in the second row. Sub-
sequently, we integrate these individual facial motions into full emotional talking
head videos with synchronized lip movements, head gestures, and emotional ex-
pressions. It’s worth noting that our method facilitates the combination of any
two facial parts, such as ‘expression+lip’, ‘expression+pose’, etc. An example
of ‘lip+pose’ is shown in the first row in the lower right corner of Fig. 7. Ad-
ditionally, we provide comparisons with state-of-the-art facial disentanglement
methods like PD-FGC [21] and DPE [13] in terms of facial disentanglement per-
formance and computational efficiency. For further details, please refer to the
Supplementary Video (4:50-5:12).

We are also intrigued by understanding how each base in the banks influ-
ences motion direction. Consequently, we manipulate only a specific base b∗i
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Method
Mouth Bank Bm Expression Bank Be

PSNR↑ SSIM↑ M/F-LMD↓ Syncconf ↑ Accemo ↑ PSNR↑ SSIM↑ M/F-LMD↓ Syncconf ↑ Accemo ↑

5 20.39 0.69 2.02/1.67 6.35 63.53 21.54 0.70 1.60/1.35 8.27 53.26
10 21.45 0.72 1.65/1.33 7.89 65.74 21.63 0.72 1.54/1.29 8.12 67.32
20 21.63 0.72 1.54/1.29 8.12 67.32 21.37 0.72 1.64/1.46 8.23 61.34
40 20.79 0.71 1.65/1.48 7.62 63.12 21.41 0.71 1.68/1.42 8.16 59.65

Table 5: Ablation study on the number of base.

and repeat the setup. The results, as depicted in Fig. 8, indicate that the bases
hold semantic significance for fundamental visual transformations such as mouth
opening/closing, head rotation, and happiness/sadness/anger.

2.9 Ablation Study

Bank size. In this section, we perform a series of experiments on the MEAD
dataset to explore the impact of base number selection on final performance.
Specifically, we vary the base number of the Mouth Bank Bm and Expression
Bank Be across values of 5, 10, 20, and 40, respectively. The quantitative results
are provided in Tab. 5, where we observe the best performance when utilizing
20 bases in Bm and 10 bases in Be.

3 Discussion

3.1 Novelty

Our approach is efficient thanks to the constraints we impose on the latent spaces
(requirement (a), (b)). Based on these requirements, we propose a simple and
easy-to-implement framework and training strategy. This does not require large
amounts of training time, training data, and computational resources. However,
it does not indicate a lack of innovation in our approach. Quite the contrary, in an
age where computational power reigns, our aim is to propose an efficient strategy
that attains state-of-the-art performance with minimal computational resources,
eschewing complex network architectures or training gimmicks. We aspire for
our method to offer encouragement and insight to researchers operating within
resource-constrained environments, presented in a simple and elegant manner!

3.2 Why Different Disentanglement Strategies?

The design is based on: (1) Physical nature. On one hand, both mouth shape
and emotional expression are performed on face region with mutual influence,
while the head pose is independent of them, manifested as whole head rotation
and translation. It makes pose disentanglement easier than mouth and expres-
sion. On the other hand, in facial dynamics, mouth moves more frequently
than emotional expressions, which makes mouth feature extraction easier than
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emotional expression. These physical natures motivate us to simplify the whole
decoupling process by first decoupling head pose and mouth shape (a relatively
simpler task) and then decoupling emotional expression (a more complex
task). (2) Dataset. Current datasets can be broadly divided into two types:
those comprising neutral expressions with diverse poses (e.g., HDTF) and those
containing diverse expressions with subtle poses (e.g., MEAD). Such datasets
also motivate us to leverage the former (where there are no distractions from
expressions) for pose/mouth disentanglement and the latter for expression dis-
entanglement.

3.3 Potential Worries about Mouth-pose Decouple Module

‘Pose’ or ‘Non-Mouth’? Since we only replace the mouth regions of the data
during training mouth-pose decouple module, the decoupled ‘pose’ space in this
stage actually refers to the ‘non-mouth’ region, including expression and head
pose. To mitigate the influence of expression on this pose space, we exclusively
train with an expression-agnostic dataset, where all images maintain a neutral
expression. As a result, the mouth-pose decouple module in this stage solely
focuses on the head pose and lacks the capability to model emotive expression.
Therefore, we refer to it as ‘pose’ instead of ‘non-mouth’. This hypothesis was
further validated in our experiments (Fig. 7 and Fig. 8); even when emotional
videos are inputted, the PLN module solely extracts head pose without incor-
porating emotional expression.

Fig. 9: Examples of synthesized images.
ImB
pA refers to image A with the mouth of
B, and vice versa.

Color Artifact caused by replacing
mouth. We notice that there ex-
ist some color artifacts in synthe-
sized images (pointed by red arrows
in Fig. 9). However, we argue that
these artifacts do not significantly im-
pact performance and provide a de-
tailed analysis to support this claim.
(1) Our Encoder E and Generator
G are pretrained in a similar set-
ting as LIA [28], using a dataset col-
lected from various sources with di-
verse identities, backgrounds, and mo-
tions. This diversity results in richness and colorfulness in each frame, making
the Encoder E robust to different input images. We have verified this robustness
in our experiments (see Sec. 2.4). Therefore, despite the presence of artifacts,
the Encoder E can effectively process synthetic images. (2) During the train-
ing process, we employ not only cross-reconstruction but also self-reconstruction
loss (Lself ) on images without mouth replacement. This loss makes the training
data contain not only synthesized images but also a large number of unmodified
images, thereby preventing performance degradation. We have also confirmed
the contribution of self-reconstruction through our ablation study.
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Comparison Protocol. One might raise concerns regarding the evaluation datasets,
as both MEAD and HDTF datasets used for evaluation are also the datasets on
which the model is trained. Moreover, several prior works used for comparison
haven’t been trained on the HDTF dataset. For instance, PD-FGC isn’t trained
on the HDTF dataset, raising questions about the fairness of such comparisons.
We provide several explanations to address these concerns: (1) To maintain con-
sistency with previous works, we adhere to the comparison protocol established
by them [9, 12]. Specifically, both MEAD and HDTF datasets contain a mix
of 43 available speakers and over 300 speakers. We randomly allocate 4 and 60
speakers for testing and the remainder for training. This ensures that the test set
comprises identities unseen during training, thereby ensuring a fair comparison.
(2) While some works, such as PD-FGC, aren’t trained on the HDTF or MEAD
datasets, they utilized the Voxceleb2 dataset, which includes over 1 million
utterances from 6,112 celebrities. This dataset size is hundreds of times larger
than ours, ensuring that they have ample data for training. (3) Additionally, we
conduct comparisons on the LRW and Voxceleb2 datasets, which are not utilized
by our method. The results presented in Tab. 1 reaffirm the superiority of our
approach, providing further validation of the performance.

Limitation While our current work has made significant strides, it also possesses
certain limitations. Firstly, due to the low resolution of the training data, our
approach is constrained to generating videos with a resolution of 256×256. Con-
sequently, the blurred teeth in the generated results may diminish their realism.
Secondly, our method currently overlooks the influence of emotion on head pose,
which represents a meaningful yet unexplored task. Unfortunately, the existing
emotional MEAD dataset [23] maintains consistent head poses across emotions,
making it challenging to model the impact of emotion on pose. However, once
relevant datasets become available, our approach can readily be extended to in-
corporate the influence of emotion on head pose by introducing emotion labels e
as an additional conditioning factor, as depicted in Eq. (13): Ŵ p = φp(z, f

a
t , e).

Ethical considerations. Our approach is geared towards generating talking face
animations with individual facial control, which holds promise for various appli-
cations such as entertainment and filmmaking. However, there is a potential for
malicious misuse of this technology on social media platforms, leading to nega-
tive societal implications. Despite significant advancements in deepfake detection
research [1, 2, 6, 34], there is still room for improvement in detection accuracy,
particularly with the availability of more diverse and comprehensive datasets. In
this regard, we are pleased to offer our talking face results, which can contribute
to enhancing detection algorithms to better handle increasingly sophisticated
scenarios.
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