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Abstract. We introduce Groma, a Multimodal Large Language Model
(MLLM) with grounded and fine-grained visual perception ability. Be-
yond holistic image understanding, Groma is adept at region-level tasks
such as region captioning and visual grounding. Such capabilities are
built upon a localized visual tokenization mechanism, where an image
input is decomposed into regions of interest and subsequently encoded
into region tokens. By integrating region tokens into user instructions
and model responses, we seamlessly enable Groma to understand user-
specified region inputs and ground its textual output to images. Besides,
to enhance the grounded chat ability of Groma, we curate a visually
grounded instruction dataset by leveraging the powerful GPT-4V and
visual prompting techniques. Compared with MLLMs that rely on the
language model or external module for localization, Groma consistently
demonstrates superior performances in standard referring and grounding
benchmarks, highlighting the advantages of embedding localization into
image tokenization. Project page: https://groma-mllm.github.io/.

[grounding] Can you describe this image 
in details?

In this image, we see a woman sitting on
a concrete bench working on her laptop.
She's surrounded by a green bag and a
white bicycle that's leaning against the
bench. Behind her, there's a large brick 
building and a tree.

Locate the the reflect-
ion of the frog.

It’s located at <region>. A large dinosaur skeleton.

Please give a brief 
description of <region>.

[grounding] Is it safe to drive like this?

It's not advisable. The man is
holding a cup in one hand and
talking on the phone, which
means he's not using both
hands on the steering wheel.
This could be a distraction and
increase the risk of an accident.

Fig. 1: Groma is a multimodal large language model with exceptional region un-
derstanding and visual grounding capabilities. It can take user-defined region inputs
(boxes) as well as generate long-form responses that are grounded to visual context.
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1 Introduction

Multimodal Large Language Models (MLLMs) have spread the sparks of artifi-
cial general intelligence [5] from language to the visual domain [13,33,50,57,67].
Owing to the foundational capabilities of Large Language Models (LLMs) [12,36,
37, 45, 46], MLLMs excel in vision-language tasks that require advanced under-
standing and reasoning, such as image captioning and visual question answering.
However, despite these achievements, current MLLMs typically fall short of lo-
calization capabilities, thus cannot ground understanding to the visual context.
Such limitations constrains the model from fulfilling its potential in real-world
applications like robotics, autonomous driving, and augmented reality.

In light of the gap, one stream of research attempts to augment the LLM
to directly output quantized object coordinates for localization [3,7,8,39,50,58]
(Fig. 2(a)). While this method is simple in design, the substantial computa-
tional demands of LLMs make it challenging to process high-resolution image
inputs, which are essential for accurate localization. Besides, the nature of se-
quence outputs in LLMs is not well-suited for dense prediction tasks such as
segmentation. These concerns elicit another stream of research, which incorpo-
rates an external localization module (e.g ., SAM [22]) to decode bounding boxes
or masks [26, 40, 43, 62] (Fig. 2(b)). This approach circumvents aforementioned
issues, but introduces additional model complexity.

The above motivates us to explore a new paradigm for grounded MLLMs.
Drawing inspiration from open-vocabulary object detection [66], we decompose
the grounding task into two sub-problems: discovering the object (localization)
and relating the object to texts (recognition). We notice that localization alone
requires little semantic understanding but demands perceptual skills, which is
typically out of the scope of an LLM’s expertise. This inspires us to decouple
localization and recognition within MLLMs. But instead of using external mod-
ules, we propose exploiting the spatial understanding capability in the visual
tokenizer of MLLMs for localization (Fig. 2(c)). This perceive-then-understand
design also resembles human vision process.

Building upon this concept, we introduce Groma1 (Grounded Multimodal
Assistant), an MLLM with localized and fine-grained visual perception abilities.
Specifically, Groma incorporates region tokenization alongside standard image
tokenization to identify and encode potential regions of interest (ROIs) into
region tokens. During this process, location information is extracted from the
image and associated with region tokens, with each region token anchored to
the underlying ROI. This allows Groma to ground its textual output by simply
referring to region tokens, alleviating the need for the LLM to meticulously
regress object coordinates. Moreover, the tokenizer of Groma can also encode
user-specified region inputs (i.e., bounding boxes) into region tokens, which are
directly inserted into user instructions to initiate referential dialogue.

1 In Latin, Groma refers to an instrument used for accurate measurement, which
implies our focus on accurate localization for MLLMs.
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By settling localization to the image tokenization process, Groma circumvents
the heavy computation of LLMs when handling high-resolution input. Specifi-
cally, Groma uses high-resolution images for tokenizer input but downsamples
image tokens for LLM input, which saves computation without sacrificing local-
ization accuracy. Besides, unlike methods adopting separate designs for modeling
grounding outputs and referring inputs [43,62], Groma seamlessly unifies the two
capabilities with the use of region tokens.

From the data perspective, to improve the localized understanding of Groma,
we adopt an extensive collection of datasets with region-level annotations for
training, which encompasses a range of region semantics from objects and re-
lationships to detailed region descriptions. In addition, to remedy the lack of
long-form grounded data, we construct a visually grounded chat dataset called
Groma Instruct for instruction finetuning. Groma Instruct is the first grounded
chat dataset constructed with both visual and textual prompts, leveraging the
powerful GPT-4V for data generation.

Our comprehensive experiments demonstrate the superiority of the design
of Groma, with results showing that it outperforms all comparable MLLMs on
established referring and grounding benchmarks. We also showcase that Groma
maintains strong image-level understanding and reasoning abilities on the con-
versational VQA benchmark. Moreover, to assess the ability to localize multiple,
diverse, and variably-sized objects, we adapt the LVIS [15] detection benchmark
for object grounding evaluation. On this challenging benchmark, Groma sur-
passes alternative methods by a significant margin (over 10% AR), highlighting
its robust and precise localization capabilities.
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Fig. 2: Different paradigms of grounded MLLMs. We mark the modules for localization
with . (a) LLM for localization (e.g ., Kosmos-2 [39] and Shikra [8]); (b) External
modules for localization (e.g ., Lisa [26]); and (c) Localized visual tokenization (Ours).

2 Related Work

Image-level MLLMs. Large language models (LLMs) such as GPT series [1,
53] and LLaMA [45,46] have recently undergone rapid development and sparked
a revolution in the field of natural language processing. Such progress inspires
the community to extend the foundational capabilities of LLMs to the visual
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domain, giving birth to multimodal large language models (MLLMs). The pio-
neering works [2, 13, 27, 28, 57, 62, 67] of MLLMs typically follow a tripartite ar-
chitecture, comprising a visual encoder, a vision-language connector, and a large
language model. Speci�cally, BLIP-2 [28] and Flamingo [2] �rst propose the Q-
Former/Resampler to bridge vision and language. LLaVA [62] and MiniGPT4 [67]
streamline this vision-language connector to a linear layer, and introduce visual
instruction tuning to enhance the instruction-following ability of MLLMs. Fol-
lowing works [10,50] further showcase the immense potential of MLLMs by scal-
ing up the visual components to the magnitude as LLMs. While these works have
exhibited impressive visual understanding capabilities, they are predominantly
constrained to image-level tasks, such as image captioning and image visual ques-
tion answering. This necessitates the research into region-level MLLMs, which
unlock more nuanced and granular visual-language interactions.

Region-level MLLMs. In pursuit of �ne-grained and grounded image under-
standing, recent studies further integrate region-level data into the training of
MLLMs [7, 8, 39, 51, 52, 60, 65]. In particular, to model box inputs and outputs,
Kosmos-2 [39] and Shikra [8] directly quantize bounding boxes into discrete
location tokens or numeric representation of positions. GPT4RoI [64] and Re-
gionGPT [14] use a simple pooling operation to extract the features within boxes
or masks as the region representations. While Ferret [58] proposes a spatial-aware
visual sampler to deal with free-form region inputs. Besides, to achieve more
accurate localization, some works [26, 43, 63] resort to o�-the-shelf models for
pixel-level grounding. For instance, LISA [26] takes the segmentation token gen-
erated by the MLLM as the prompts for SAM [22] to produce the segmentation
masks. GLaMM [43] and LLaVA-Ground [62] further advance the concept and
enable grounded conversation generation. Our work shares the same focus with
the aforementioned methods on region-level understanding and grounding. Yet,
we distinguish ourselves from existing studies by proposing a novel perspective
in enhancing the localization ability of MLLMs.

3 Method

In this section, we present Groma, a grounded multimodal large language model
capable of understanding user-de�ned region inputs and generating visually
grounded outputs. We �rst illustrate the model architecture of Groma in Sec. 3.1.
Then we introduce how to format region input and output in Sec. 3.2. Finally,
we detail the learning pipelines Sec. 3.3.

3.1 Model Architecture

As illustrated in Fig. 3, Groma primarily consists of (1) an image encoder for
scene-level image tokenization, (2) a region proposer for discovering regions of
interest, (3) a region encoder for region-level image tokenization, and (4) a large
language model for modeling multimodal input and output. We detail each com-
ponent in the following paragraphs.
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Fig. 3: Overview of Groma . Groma encodes the image input into both global im-
age tokens and local region tokens. For region tokenization, a general-purpose region
proposer is introduced to discover regions of interest, followed by a light-weight re-
gion encoder. By integrating region tokens into user instructions and model responses,
Groma unlocks the referring and grounding abilities of MLLMs.

Image Encoder. Groma employs a pretrained DINOv2 [38] model as the im-
age encoder with the input image resolution set to448� 448. Compared with
the commonly adopted CLIP [42] visual encoder, DINOv2 is preferred in this
work for its compatibility with high-resolution inputs and �ne-grained features
for localization. However, the use of higher-resolution images leads to extended
sequences of visual input for the language model,e.g., 1024 tokens in this case.
To save computations, we further concatenate every four neighbor patch tokens
into a single token following MiniGPT-v2 [7]. But slightly di�erent from [7], we
merge tokens adjacent in 2D instead of 1D, which yields better performance.

Region Proposer. To obtain localized understanding of the image, Groma in-
novatively incorporates a region proposer into the image tokenization process.
Speci�cally, the region proposer is implemented as a class-agnostic detector head
using the Deformable DETR (DDETR) transformer [68]. The original classi�ca-
tion head of DDETR is replaced by a binary classi�er to score region proposals
based on their localization quality. Inspired by ViTDet [29], we extract feature
maps from the last 4 layers of the image encoder, and rescale these feature maps
to construct a hierarchical feature pyramid as the input to the region proposer.
For each image, the region proposer generates 300 region proposals, which are
then �ltered by NMS and objectness scores before fed into the region encoder.

Region Encoder. The region encoder translates region proposals (i.e., bound-
ing boxes), coming from both user input and the region proposer, into region
tokens. Akin to the previous step, we select feature maps from the last three
layers of the image encoder to create a hierarchical feature pyramid. A multi-
scale ROIAlign [16] module as implemented in [43, 64] is utilized to crop and
fuse these hierarchical features into uni�ed region tokens. Compared with al-
ternative ways to represent regional inputs, such as numerical representation of
positions [8] and discrete location tokens [7,39], the region token representation
o�ers distinct bene�ts as it is semantically aligned with the underlying region,
which renders it more intuitive for the language model to comprehend.


	Groma: Localized Visual Tokenization for Grounding Multimodal Large Language Models

