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A Statistical Analysis: Full-body vs. Hand Skeletons

This section serves as an extension of Sec. 3 to statistically analyze the differ-
ences between hand poses and full-body poses. Action recognition datasets [7,11],
which primarily focus on full-body actions, often include actions involving par-
tial body movements. These actions exhibit limited global motion when viewed
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Fig. 1: With a random pool of 1000 sequences, we observe that the least active joints
can be viewed as static reference points, showing minimal movement in NTU RGB+D
120. In contrast, Assembly101 exhibits subtler distinctions between the most active
and the least active joints. The Pearson correlation coefficient (r) between the distance
values for these two joints yields a high value (0.93) for Assembly101, while r = 0.33
for NTU RGB+D 120. These results suggest strong coupling among hand joints during
motion, emphasizing the dominance of full-skeleton motion in hand poses. Our method
leverages this understanding, balancing long-term motion patterns and short-term ar-
ticulation changes by factorization.
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with respect to the entire skeleton, resulting in one or more relatively static
joints. The change in the locations of moving joints with respect to such static
joints can provide useful action cues. However, hand motions typically feature
no such static reference points, as all the hand joints move together most of the
time, making small changes in articulation to perform an action. To illustrate
this difference, we randomly sample 1000 pose sequences from NTU RGB+D
120 [7] (full-body) and Assembly101 [10] (hands). We take the distances covered
between two consecutive frames for each joint to form a distance array for the
corresponding joint j in a given pose sequence, which is determined by-

dj(t) =
∥∥Pj(t)− Pj(t− 1)

∥∥ (1)

Here, dj(t) is the distance covered by joint j at frame t in reference to the
previous frame, Pj(t) and Pj(t − 1) are the 3D pose coordinates for joint j
at time t and t − 1, respectively. ∥.∥ represents the Euclidean distance. Based
on the sum of distances Dj for each joint j, we define the least active joint
(static) and the most active joint (dynamic) for a particular sequence using
the following equations-

Dj =

T∑
t=1

dj(t)

jsta = argmin
j

Dj jdyn = argmax
j

Dj

(2)

For each of the selected 1000 sequences, we take the two temporal sequences
{djsta(t)}Tt=1 and {djdyn

(t)}Tt=1, normalize the distance values using the diame-
ters of the corresponding skeletons, and plot the sequences separately in Fig. 1.
As can be observed, compared to the distances covered by the most active joints
in NTU RGB+D 120, the least active joints show significantly lower movement,
effectively serving as the static reference points. On the other hand, the distinc-
tion in distance arrays between the most and the least active joints in Assem-
bly101 is less pronounced. In addition, we calculated the Pearson correlation
coefficient, denoted as r, between {djsta(t)}Tt=1 and {djdyn

(t)}Tt=1 for all Assem-
bly101 sequences, resulting in a value of 0.93. Conversely, for NTU RGB+D 120,
the corresponding correlation coefficient is 0.33. This suggests strong coupling
among hand joints during motion, and full-skeleton movement is more dominant
in hand poses compared to full-body poses. Consequently, modeling dependencies
between spatiotemporally distant joints is less effective for the highly dynamic
hand motion (also discussed in Sec. 3). Therefore, by considering both long-term
motion patterns and short-term articulation changes, our method facilitates ef-
ficient spatiotemporal factorization through micro-actions (Sec. 4.1). We also
incorporate the full-skeletal motion from the entire action during micro-action
encoding, using a global wrist token as a reference (Sec. 4.2).
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B 2D vs. 3D Pose for Hand Actions

For skeleton-based action recognition, PoseConv3D [2] proposes using 2D poses
as input, arguing that the quality of pose estimation is superior in 2D. By con-
structing 3D heatmap volumes from 2D poses and employing a simple 3D-CNN,
they surpass state-of-the-art GCN-based methods that rely on 3D poses. In-
corporating CNN-based modeling for the pose stream also facilitates seamless
integration with the RGB modality. In this section, we assess this proposition
specifically within the context of hand skeletons.

(a) NTU RGB+D 120 [7].

(b) Assembly101 [10].

Fig. 2: Heatmaps for joints and limbs for (a) full-body poses and (b) hand poses.

Fig. 2 illustrates sample heatmaps from NTU RGB+D 120 [7] and Assem-
bly101 [10]. Keypoints in full-body human poses are often prominently situ-
ated, with minimal self-occlusion, and the subject is typically centered within
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Method Input Pose Verb Accuracy (%)

PoseConv3D [2] 2D 46.71

HandFormer-B/6 2D 58.92
HandFormer-B/6 3D 63.70

Table 1: Impact of using 2D vs. 3D poses as input for skeleton-based action
recognition in hands. Experiments are done for verb recognition on Assembly101 [10].

the frame. As viewed in Fig. 2a, reducing pose dimensions to 2D does not sig-
nificantly compromise detail; rather, it enhances input reliability by simplify-
ing the pose estimation problem. However, this advantage diminishes when ap-
plied to hand poses. Hand poses present unique challenges, such as frequent
self-occlusion and closer proximity of the keypoints, which are exacerbated by
reducing the dimension to 2D. To empirically analyze this phenomenon, we eval-
uate HandFormer-B/6 with 2D and 3D poses for recognizing verbs in Assem-
bly101 [10] and report in Tab. 1. This analysis reveals about 5% difference in
favor of the 3D input. Furthermore, PoseConv3D [2] introduces a CNN-based
approach with 2D keypoints, which directly utilizes heatmaps from the pose
estimator or generates Gaussian heatmaps from the 2D coordinates. However,
feeding heatmaps can diminish the clarity of keypoints to the model, particu-
larly when they are in close proximity, as is often the case with hand poses.
Hence, PoseConv3D [2] performs poorly in recognizing hand actions, as evident
in Tab. 1.

In summary, although skeleton-based methods represent a broader field for
action recognition with poses, they often lack the necessary adaptation for di-
rectly addressing hand-specific actions. This demands dedicated research on
hand poses for hand-object interaction understanding.

C Alternatives for Frame Encoder

We utilize pre-trained ViT-g/14 and ViT-L/14 models from DINOv2 [9] fol-
lowed by a linear layer without any fine-tuning as the frame encoder F for As-

Method Variant Frame Encoder Action Verb Object

RGB-only ViT-g/14 32.07 55.61 44.89
ResNet50 35.09 56.59 48.54

Pose+RGB ViT-g/14 41.06 69.23 51.17
ResNet50 41.99 69.28 51.96

Table 2: Comparison of different frame encoder options on Assembly101 [10].
Frame-wise TSM features from pretrained ResNet50 perform better compared to all-
purpose features generated by DINOv2 with a ViT-g/14 backbone. RGB-only variant
greatly benefits from the pretraining as it works with domain-specific features for action
recognition. However, incorporating complementary pose modality reduces the gain
from pretraining.
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sembly101 [10] and H2O [5], respectively. Except for our experiments on Assem-
bly101 [10] with monochrome egocentric videos (Sec. 5.5), all our multimodal re-
sults are obtained using DINOv2 features. This approach enables us to assess the
effectiveness of image-based foundation models in videos, leveraging all-purpose
features from RGB frames and achieving strong cross-view generalization per-
formance (Sec 5.4). Although this is our default choice offering easy adaptation
to new datasets with faster training, it can be considered compute-heavy when
deployed in a low-resource setting due to the large ViT backbones. For better
efficiency during inference, we propose a pretraining scheme that allows us to
use a ResNet50 [4] that replaces the ViT without compromising accuracies, as
shown in Tab. 2.

Specifically, we first train a TSM [6] model with a ResNet50 [4] backbone
for action recognition, utilizing all action clips and then dropping the classifi-
cation layer. This ResNet50 becomes the frozen image encoder in our proposed
architecture, replacing ViT. During the training and inference of HandFormer,
the TSM backbone operates as a true image model (ResNet50), as we employ it
on individual frames without any channel shifting. The TSM features provided
in the Assembly101 [10] are generated in this way, and we utilize them in our
egocentric action recognition experiments (Sec. 5.5).

In Tab. 2, we present a comparison of the two backbone options for our frame
encoder – ResNet50 from TSM and ViT-g/14 from DINOv2. The ResNet50
outputs, enhanced through pretraining within TSM, incorporate domain-specific
features and temporal encoding via channel shifting during training. As a result,
the RGB-only variant achieves a 3% higher action accuracy compared to using
DINOv2 features alone. However, when introducing pose information, the image-
based features are complemented by motion features, reducing the impact of
motion understanding facilitated by the temporal shift mechanism of TSM in the
ResNet50 encoder. Therefore, integrating pose data diminishes the pretraining
advantage of ResNet50, resulting in a performance gap of less than 1%.

D Maintaining High Temporal Resolution at Low Cost

Our method is designed to perform action recognition efficiently in hand-object
interaction videos. Obtaining efficiency in such a setup is challenging as we need
to maintain a high temporal resolution to understand fine-grained hand move-
ments that constitute the actions. Therefore, we propose HandFormer using
densely sampled pose frames and sparse RGB frames. In this section, we quan-
tify the efficiency of this method compared to an alternative video model. As
mentioned, understanding fine-grained hand motion demands a high temporal
resolution to differentiate verb classes. For instance, relying on sparsely sampled
frames may make actions like “screwing" and “unscrewing" indistinguishable.
However, adopting a high temporal resolution with video models operating on
RGB frames is challenging, primarily due to (i) the excessive computation asso-
ciated with performing spatiotemporal operations on numerous frames, and (ii)
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Method Component GFLOPs Count Total
GFLOPs

TSM [6] - - - 669.79

HandFormer-B/21

Pose Estimator [3] 0.30 162

84.01
Frame Encoder 4.12 8

Trajectory Encoder 0.29 8
Multimodal Tokenizer 0.01 8
Temporal Transformer 0.05 1

Table 3: Comparison of FLOPs between HandFormer and TSM [6] when both
maintain a high temporal resolution at 60 fps. The number of frames is determined
by the average action duration in Assembly101 [10], and we use eight non-overlapping
micro-actions in our model.

the need to address redundancy in RGB frames to extract meaningful informa-
tion.

In Tab. 3, we compare the FLOPs of our model vs. an efficient video model,
TSM [6] with a ResNet50 backbone when both maintain a high temporal resolu-
tion. The results reveal that our model operates at about 8× fewer FLOPs. As
TSM has a 2D backbone and no 3D convolutions, it is expected to represent the
lower bound for the computational cost of a video model at that temporal res-
olution. For our frame encoder, we opt for the efficient alternative as described
in Sec. C. The average duration of fine-grained actions in Assembly101 [10] is 1.7
seconds. Following [10], we include an additional 0.5 seconds of context on either
side, resulting in an average of 2.7 × 60 = 162 frames per action clip. We use
K = 8 non-overlapping micro-actions, thus sampling 8 RGB frames and using
the trajectory encoder eight times.

E Additional Details for Multimodal Training

Our training recipe for the multimodal HandFormer involves initializing the
trajectory encoder with pretrained weights and utilizing hand-object ROI crop
within the frame encoder — ensuring better use of pose and RGB, respectively.

E.1 Pretraining Trajectory Encoder

Encoding micro-action involves extracting RGB and pose features using frame
encoder F and trajectory encoder T , respectively. While the frame encoder stays
frozen and provides the appearance features, the trajectory encoder is learned
and is expected to capture the hand motion. To effectively guide the trajectory
encoder in achieving the desired encoding, we pretrain it for verb recognition
solely using pose input. This approach leverages the inherent ability of pose data
to capture hand motion, a key determinant of the verb while remaining agnostic
to explicit information about interacting objects. This pretraining scheme leads
to a better initialization of the trajectory encoder in multimodal HandFormer
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Frame Encoder Trajectory Encoder Accuracy(%)
Pretraining Action Verb Object

ViT-g/14 ✗ 39.79 67.40 50.69
✓ 41.06 69.23 51.17

ResNet50 ✗ 40.47 66.00 51.10
✓ 41.99 69.28 51.96

Table 4: Initializing the trajectory encoder T with pretrained weights im-
proves the overall performance with better verb recognition capability. Results are on
Assembly101 [10] dataset. The initial weights for T are obtained by training the model
to predict the verb classes from pose-only input.

for action recognition. In Tab. 4, we observe that initializing the trajectory en-
coder with pretrained weights leads to improved action recognition performance,
particularly enhancing the recognition of verb classes.

E.2 Hand-Object Interaction Crop

In hand-object interaction (HOI) videos, the region of interest typically centers
around the hands, capturing crucial information about the interacting object and
the type of interaction. Leveraging 3D hand poses obtained through a readily
available pose estimator [3], we project these poses onto RGB frames, extract the
enclosing rectangle of the projected 2D pose, and expand it by 25% to define the
ROI crop. However, relying solely on the cropped region can occasionally mislead
the model for three potential reasons: i) failure of the pose estimator on certain
frames, leading to the absence of useful features from the RGB frames, ii) the full
object might not be visible when the crop is taken based on hand poses only, and
iii) hand crops have limitations in capturing global changes compared to the full
frames. Hence, to capitalize on both the localized interaction information of hand
crops and the global contextual information provided by full frames, our model
combines them both. If a valid hand crop is found, we take the full and cropped
RGB frames, pass them through the frame encoder, average their features, and
re-normalize them to unit norm. This full vs. HOI crop ablation is shown in
Tab. 5, in which combining both performs better than the alternatives.

Full Frame HOI Crop Accuracy(%)
Action Verb Object

✓ ✗ 38.73 68.31 48.77
✗ ✓ 38.44 68.95 48.20
✓ ✓ 41.06 69.23 51.17

Table 5: Ablation study comparing full vs. HOI cropped RGB frames on
Assembly101 [10]. Incorporating both full and cropped RGB frames allows for lever-
aging localized interaction details from hand crops and global contextual information
from full frames, resulting in improved accuracy. HandFormer-B/21 is used with eight
non-overlapping micro-actions.
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F Efficiency Comparison with Shift-GCN

While MS-G3D [8] and ISTA-Net [12] show state-of-the-art performance for ac-
tion recognition with hand poses, they are not efficiency-focused. Our Hand-
Former outperforms them with significantly fewer FLOPs. However, HandFormer-
B/6 prioritizes efficiency while slightly trading off accuracy. Therefore, we im-
plement and test an efficiency-focused baseline, ShiftGCN [1], for verb recogni-
tion on Assembly101 [10] and compare it to HandFormer-B/6 in Tab. 6. While
Shift-GCN relies on graph shift operations and pointwise convolutions for effi-
ciency, our model identifies the crucial joints, i.e., the fingertips and the wrist
joint, and processes only these joints to reduce FLOPs substantially. As evident
from Tab. 6, our model outperforms Shift-GCN while incurring lower FLOPs.

Method GFLOPs Verb Accuracy (%)

Shift-GCN [1] 2.11 63.14
HandFormer-B/6 1.33 63.70

Table 6: Comparison of HandFormer-B/6 with Shift-GCN, an efficiency-
focused baseline for skeleton-based action recognition. Experiments are done for verb
recognition on Assembly101 [10].

G Qualitative Analysis

In this section, we analyze the class-wise verb accuracy using the pose-only
HandFormer, aiming to identify the model’s limitations. Furthermore, we exam-
ine the multimodal aspect of action recognition and its role in alleviating object
misclassification.

G.1 Pose-only Performance

Fig. 3 displays the confusion matrix for verb classes using HandFormer-L/21 on
the test set. Notably, inspect, rotate, position, and remove verbs present recog-
nition challenges despite ample dataset samples. One potential explanation for
this phenomenon is the shared presence of certain signature movements among
these classes, which also occur in two head classes, namely, pick up and put
down. Another interesting observation in the results is the frequent classification
of ‘attempt to x’ classes as ‘x’. This is expected, as determining the successful
completion of a task adds another layer of complexity to these classes, espe-
cially when relying solely on pose information without considering changes in
the appearance of the interacting object throughout the clip.
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Predicted verb

pick up

put down

inspect

rotate

unscrew

position

screw

remove

position screw on

remove screw from

pass

tilt up

attempt to position

push

tilt down

pull

attempt to remove

attempt to pick up

clap

attempt to unscrew

attempt to put down

spin

attempt to screw

shake
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ue
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Fig. 3: Confusion matrix for pose-only verb recognition with HandFormer-L/21.

G.2 Multimodal Fusion

To gain insights into how appearance information from RGB complements pose-
based models in hand-object interaction scenarios, we analyze samples involving
put down actions. In Tab. 7, we showcase the action classes predicted for these
samples using our pose-only model, referred to as Pose + 0 RGB. In these
samples, the model successfully detected the verb but struggled with object
classification. This challenge arises due to similarities in articulations observed
during tasks such as grasping a screwdriver and a screw or differentiating be-
tween a partially assembled toy and a completed one. These similarities lead to
misclassifications by the pose-only model. However, introducing a single RGB
frame, denoted as Pose + 1 RGB, enhances the model’s ability to correctly iden-
tify the relevant object by providing visual context. This observation highlights
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Pose + 0 RGB Put down Put down Put down
screwdriver screw partial toy

RGB Sample

Pose + 1 RGB Put down Put down Put down
screw screwdriver finished toy

Table 7: Action classification by our model with and without sampling an RGB frame.
Incorrect predictions are highlighted in red, while correct predictions are marked in
green.

the limitations of recognizing actions, i.e. verb+object, solely from hand poses,
emphasizing the importance of incorporating visual cues.

References

1. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based ac-
tion recognition with shift graph convolutional network. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 183–192
(2020)

2. Duan, H., Zhao, Y., Chen, K., Lin, D., Dai, B.: Revisiting skeleton-based action
recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 2969–2978 (2022)

3. Han, S., Liu, B., Cabezas, R., Twigg, C.D., Zhang, P., Petkau, J., Yu, T.H., Tai,
C.J., Akbay, M., Wang, Z., et al.: Megatrack: monochrome egocentric articulated
hand-tracking for virtual reality. ACM Transactions on Graphics (ToG) 39(4),
87–1 (2020)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

5. Kwon, T., Tekin, B., Stühmer, J., Bogo, F., Pollefeys, M.: H2o: Two hands ma-
nipulating objects for first person interaction recognition. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 10138–10148 (2021)

6. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 7083–7093 (2019)

7. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: Ntu rgb+ d
120: A large-scale benchmark for 3d human activity understanding. IEEE trans-
actions on pattern analysis and machine intelligence 42(10), 2684–2701 (2019)

8. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying
graph convolutions for skeleton-based action recognition. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 143–152
(2020)



Supplementary: HandFormer 11

9. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

10. Sener, F., Chatterjee, D., Shelepov, D., He, K., Singhania, D., Wang, R., Yao, A.:
Assembly101: A large-scale multi-view video dataset for understanding procedural
activities. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 21096–21106 (2022)

11. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: Ntu rgb+ d: A large scale dataset for
3d human activity analysis. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1010–1019 (2016)

12. Wen, Y., Tang, Z., Pang, Y., Ding, B., Liu, M.: Interactive spatiotemporal token
attention network for skeleton-based general interactive action recognition. arXiv
preprint arXiv:2307.07469 (2023)


	Supplementary:  On the Utility of 3D Hand Poses for  Action Recognition

