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Abstract. 3D hand pose is an underexplored modality for action recog-
nition. Poses are compact yet informative and can greatly benefit ap-
plications with limited compute budgets. However, poses alone offer an
incomplete understanding of actions, as they cannot fully capture ob-
jects and environments with which humans interact. We propose Hand-
Former, a novel multimodal transformer, to efficiently model hand-object
interactions. HandFormer combines 3D hand poses at a high temporal
resolution for fine-grained motion modeling with sparsely sampled RGB
frames for encoding scene semantics. Observing the unique characteris-
tics of hand poses, we temporally factorize hand modeling and represent
each joint by its short-term trajectories. This factorized pose represen-
tation combined with sparse RGB samples is remarkably efficient and
highly accurate. Unimodal HandFormer with only hand poses outper-
forms existing skeleton-based methods at 5x fewer FLOPs. With RGB,
we achieve new state-of-the-art performance on Assembly101 and H20
with significant improvements in egocentric action recognition.

Keywords: Skeleton-based action recognition - 3D hand poses - Multi-
modal transformer

1 Introduction

The popularity of AR/VR headsets has driven interest in recognizing hand-
object interactions, particularly through egocentric [14,26] and multiview cam-
eras |34,[51]. Such interactions are inherently fine-grained; recognizing them
requires distinguishing subtle motions and object state changes. State-of-the-
art methods for hand action recognition [23}45},/47,66] primarily rely on multi-
or single-view RGB streams, which are computationally heavy and unsuitable
for resource-constrained scenarios like AR/VR. Motivated by advancements in
lightweight hand pose estimation methods leveraging monochrome cameras |27,
28),46], and the evolution of low-dimensional sensors [36}/42] such as accelerome-
ters, MMG, EMG, demonstrating real-time hand pose estimation, we advocate
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Fig. 1: We densely sample 3D hand poses to understand fine-grained hand motions and
sparsely sample RGB frames to capture the scene semantics. Our 3D hand poses are
acquired from low-resolution monochrome cameras but can also come from wearable
sensors, facilitating an efficient understanding of hand-object interactions. Video frames
and hand poses in the figure are from Assembly101 [51].

the use of 3D hand poses as an input modality for recognizing hand-object inter-
actions. Hand poses are a compact yet informative representation that captures
the motions and nuances of hand movements.

Existing works on 3D pose-based action recognition have focused primarily on
full-body skeletons [20,44,65./68]. Hand poses differ fundamentally from full-body
skeletons. In full-body recognition datasets [41,52], the actions are predominantly
static from a global perspective. The relative changes in joint or limb positions
signify the action category, e.g., ‘sitting down’. Conversely, hand joints typically
move together for many actions and lack a static joint as a global reference [51],
e.g., ‘put down toy’. Full-body skeleton methods also benefit from modeling
long-range spatiotemporal dependencies between joints [44], while this is less
important for the hands as shown in Fig. [2 and in Sec. [3|

However, the 3D pose alone cannot encode the hands’ actions. Unlike the
full-body case, where actions are self-contained by the sequence of poses, the
hands are often manipulating objects [34}|46]/51]. Hand pose is excellent for
identifying motions (verbs) but struggles with associated objects [51]. Therefore,
supplementing pose data with visual context from images or videos is crucial for
full semantic understanding. However, as noted earlier, using dense RGB frames
contradicts our motivation for using hand poses.

This paper introduces HandFormer, a novel and lightweight multimodal trans-
former that leverages dense 3D hand poses complemented with sparsely sampled
RGB frames. To this end, we conceptualize an action as a sequence of short seg-
ments, termed micro-actions, which are analogous to words that form sentence-
level complex actions. Each micro-action comprises a dense sequence of pose
frames and a single RGB frame. As every hand joint moves in close spatial prox-
imity, we encode the pose sequence from a Lagrangian view [49] and track each
joint as an individual entity. HandFormer effectively models each micro-action
whose features are then temporally aggregated for action classification. This for-
mulation benefits from our observations on the spatiotemporal dynamics of hand
movement and delivers strong performance. Additionally, limiting long-range
spatiotemporal dependencies among joints and only using sparse RGB frame
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features improves computational efficiency, making it well-suited for always-on,
low-compute AR/VR, applications.

Our contributions are: (i) We analyze the differences between hand pose and
full-body skeleton actions and design a novel pose sequence encoding that reflects
hand-specific properties. (ii) We propose HandFormer that takes a sequence of
dense 3D hand pose and sparse RGB frames as input in the form of micro-actions.
(#7i) HandFormer achieves state-of-the-art action recognition on H20 [34] and
Assembly101 [51]. Unimodal HandFormer with only hand poses outperforms
existing skeleton-based methods in Assemblyl01, incurring at least 5x fewer
FLOPs. (iv) We experimentally demonstrate how hand poses are crucial for
multiview and egocentric action recognition.

2 Related Work

Video Action recognition. Video-based action recognition systems are well-
developed with sophisticated 3D-CNN [9,[23]/57,/67] or Video Transformer [2,[3]
43\|47] architectures. However, they all bear significant computational expense
for both feature extraction and motion modeling, either explicitly in the form of
optical flow [933.[55] or implicitly through the architecture |2,/47]. Such designs
are well-suited for high-facility applications but are not suitable for integration
into lightweight systems. To this end, efficient video understanding is an active
topic of research, with a focus on reducing expensive 3D operations [22,/40,[58]
67], quadratic complexity of attention [32,/43,47] and dropping tokens [4,[21].
Additionally, densly-sampled RGB frames incur a high cost, yet limiting the
temporal resolution will hinder fine-grained action understanding. We propose
complementing 3D hand poses with sparsely-sampled RGB frames, developing a
lightweight video understanding system.

Skeleton-based Action Recognition. Skeleton-based action recognition has
been tackled with hand-crafted features [60,/62], sequence models like RNNs and
LSTMs [19,/69], and CNN-based methods that either employ temporal convo-
lution on the pose sequence [56| or transform the skeleton data into pseudo-
images to be processed with 2D or 3D convolutional networks [71/20,31]. Recent
progress has been driven by GNN-based methods that exploit the graph struc-
ture of skeletal data to construct spatio-temporal graphs and perform graph
convolutions [68}|70]. These methods often model functional links between joints
that go beyond skeletal connectivity [39}/54] or expand the spatiotemporal re-
ceptive field [44]. Self-attention and transformer-based methods have also been
proposed [48,/65,|71]. However, most existing methods are tailored for datasets
involving full-body poses. Few works [24},|30,/37,/50] study hand poses but are
restricted to simple gestures, recognizable without complex temporal modeling.
Fusing RGB with Skeleton. Skeletal data has been used for cropping images
of body parts [12], for weighting RGB patches around regions of interest [5,/6],
or for pooling CNN features [1,/8]. Projecting into common embedding space
is done in |16, enabling pose distillation [15]. Multi-stream architectures are
also designed with separate paths for RGB and skeleton having lateral connec-
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Fig. 2: Comparing skeletal changes in full-body actions from NTU RGB+D 120
(left) and hand actions from Assembly101 (right). Two pose frames at interval
T are shown. J;; indicates the 3D coordinate of joint j at timestep ¢, and <J, J,>
is the correlation between two such joints. Modeling the correlation between spatio-
temporally distant joints can be informative for full-body poses but does not provide
a useful action cue for hand poses.

tions between them [38}/63]. RGBPoseConv3D is a two-stream model that
employs 3D CNNs for both RGB and pose. Similar to skeleton-based action
recognition, these multimodal approaches primarily focus on full-body poses.
Some approaches simultaneously perform both hand pose estimation and action
recognition, using pose data to supervise the training process . However,
it is important to note that pose estimation deals with lower-level semantics
than action recognition. Actions can often be inferred even when the estimated
poses are not accurate [46].

3 Modeling Full-body vs. Hand Skeletons

Existing skeleton-based action recognition datasets primarily consist of full-body
poses where actions feature significant changes over time in limb positions rel-
ative to other body parts, which highly correlate to the action category. These
changes can be captured through long-range spatiotemporal modeling using
graph convolutions with large receptive fields or self-attention . Con-
versely, hand actions show diverse movement patterns, as hands can move in ar-
bitrary directions, often without significant changes in articulation. We analyze
pose sequences from NTU RGB+D 120 and Assembly101 [51], calculating
the distance covered by each joint and identifying the least and the most ac-
tive joints. We observe that, for full-body poses, these two representative joints
show a significant difference in the distances covered, while for hand poses, the
difference is subtle. The Pearson correlation coefficient is 0.93 for hand poses
(indicating highly coupled joints) and 0.33 for full-body poses. Please refer to
Suppl. Sec. A for details regarding these computations and comparisons.

An example showing the difference between body and hand poses is provided
in Fig. [2] where we depict two frames separated by an interval of T frames.
For the full body skeleton, the head joint Jy remains static, while the right
hand joint Jr moves upward. Conversely, for the hand, all the joints move,
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Fig. 3: Overall architecture of HandFormer. An action segment is divided into
K micro-actions {M1, M> ... Mk }. Each micro-action comprises a dense sequence of
pose frames and a single RGB frame. The frame encoder F' and the trajectory encoder
T encode the RGB and the dense poses, respectively, after which they are passed
to a Multimodal Tokenizer. The modality-mixed tokens are then fed to a Temporal
Transformer. Dotted paths are optional and only required when RGB is used.

including the wrist joint Jy and index fingertip J;. The spatiotemporal corre-
lation between the head joint in the first frame and the hand joint in the last
frame (<Jm o, Jrr>) is a crucial action cue that captures the relative struc-
tural change. However, such a correlation between the wrist and the fingertip
for hand skeleton (<Jwo, Jr 7>) does not provide a stronger cue than the wrist
movement itself. To avoid such redundant spatiotemporally distant correlations,
we propose to divide the hand pose sequence into micro-action blocks of fixed
temporal length. This formulation allows for encoding short-term movements
while enabling parameter sharing.

Moreover, full-skeletal motion is a dominant feature in hand pose sequences,
differentiating them from full-body poses. While the location and orientation of
the human body can be trivial for most actions, this is not the case for hands. The
hands do not conform to any particular 6D pose, and notably, they frequently
and unpredictably alter their 6D poses over time. A comprehensive analysis of
this phenomenon is provided in Suppl. Sec. A. To this end, we explicitly consider
the global 6D poses of the hands during micro-action-based pose encoding.

4 HandFormer

Fig. [3] illustrates our proposed HandFormer, which consists of a sequence of
micro-action blocks, a novel trajectory encoder, and a temporal aggregation
module. The design of our HandFormer allows us to easily incorporate semantic
context by sampling a single RGB frame from certain micro-actions.
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4.1 Micro-actions

Given an action segment containing 7 frames sampled at a certain fps, the input
to our model comprises — i) a dense sequence of 3D hand poses, represented as
S ={Py, Ps,..., Pr}, where P, = {P/“"| P/"9"} € R2%/*3 signifying the 3D co-
ordinates of J keypoints in the left and right hands, respectively, and i) a sparse
set of RGB frames sampled at intervals Af, denoted as V = {I1, Ii1 af, ..., IT.},

where I; € REXWX3 gre frame-wise RGB features and 7, = 1 + V—T_J}J x Af.

We factorize the raw input into a sequence of K micro-action blocks of length
N frames, obtained by shifting the window across the action segment with a
stride of R frames. Each block consists of two components — the initial appear-
ance derived from the first RGB frame within the block and the hand motion
characterized by the dense sequence of N pose frames. To obtain a fixed length
input containing 7’ = (K —1) x R+ N pose frames, we perform linear interpola-
tion for each joint along the temporal axis, transforming pose sequence S having
T frames to S’ = {P{, P,..., P}, } having T’ frames, where P] € R?*7*3. Thus,
we represent the input as a sequence of micro-actions M = {My, Ma, ..., Mg},
derived from V and S’ through the following equations:

My, = [MZ9P, MPoe] = [Ih(k)v{Pg;(k)-q—i}iv:_ol} ) (1)

where g(k) = (k— 1) x R+ 1 denotes the first pose frame in k-th Micro-action,
and h(k) determines the index of the nearest available RGB frame.

The dense pose sequence in a micro-action captures fine-grained hand motion
crucial for recognizing verbs, whereas a single RGB frame provides semantic
context for recognizing objects. To extract features from micro-actions, we use
a frame encoder F' and a trajectory encoder T, which operate on RGB frames
and pose sequences, respectively. Consequently, the RGB and pose features for
the &' micro-action is given by-

[FES8 f0o%] = [F(MESR), T(M™)] (2)
RGB fppose

where fi*7°, f € R?, where d denotes the common dimensionality of both
RGB and pose embedding space.

4.2 Trajectory Encoder

We devise a trajectory-based pose encoder to encode dense hand pose sequences
within micro-actions, illustrated in Fig. [l Each joint is represented by its tra-
jectory of dimension 3 x IV, encapsulating the sequence of 3D coordinates across
the N pose frames of a micro-action. This yields 2 x J feature vectors for the J
joints of two hands. Each joint’s trajectory is passed through a TCN 35|, whose
parameters are shared for all joints. This produces 2 x J Local Trajectory To-
kens. Additionally, the full-skeletal motion of the hand during the entire action
is used as a reference through an additional token named Global Wrist Token.
This token is generated by a separate TCN operating on the sequence of 6D
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Fig. 4: Our Trajectory Encoder T, which operates on micro-actions, derives tokens
with trajectory-based features and performs self-attention to encode the pose sequence
into a feature vector. The Single-Joint TCN is a Temporal Convolutional Network [35]
that processes the trajectories of all the joints individually with shared parameters
across all joints. Wrist-TCN takes an action-wide sequence of wrist location and hand
orientation (6D pose) to produce a global reference token.

poses of hands, indicating wrist location and hand orientation. Subsequently, a
self-attention layer is applied to these trajectory tokens, preserving the temporal
dimension for subsequent stages. This iterative process culminates in spatiotem-
poral average pooling, summarizing the hand motion of the micro-action.

4.3 Multimodal Tokenizer

This section discusses incorporating sparsely sampled RGB frames into Hand-
Former to better capture scene semantics. A single frame is sampled from each
micro-action, generating an extended crop (1.25%) around the hands. While the
full image provides an overall scene context, the crop focuses specifically on hand-
object interaction regions [10|. Features for both are separately generated using
a pre-existing image encoder and then aggregated to enrich the hand-object in-
teraction feature with scene context. The hand-object ROI crop can be obtained
using an off-the-shelf HOI detector [53] or by using the corresponding hand pose
projections. We opt for the latter.

Our multimodal tokenizer in Fig. [3] generates RGB and Pose tokens enhanced
via multimodal interactions. This involves concatenating each frame feature and
trajectory encoding, and projecting them into a shared PoseRGB feature space
using an MLP. This PoseRGB feature is then split into two parts, which are
added to the original frame feature and trajectory encoding, respectively.

4.4 Temporal Transformer

The multimodal tokenizer provides RGB and pose tokens for each micro-action.
Since an action segment consists of a sequence of micro-actions, these micro-
action tokens are aggregated over time via a temporal transformer. A video V,
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divided into K micro-actions can be represented by two sets of tokens { fREBIE |
and { f,f OSG}IIf:l, respectively, produced by the multimodal tokenizer. These 2 x K
tokens of dimension d form the input sequence of the temporal transformer.
Positional encoding and modality embedding are added to each input token to
indicate the temporal location and source modality. We use the fixed sine/cosine
positional encoding [59], assigning the same position to two tokens from the same
micro-action. Modality embeddings are learned and shared across the tokens
from the same modality (RGB or Pose). Following standard practice |17}/18|, we
prepend an additional learnable class token [CLS] € R¢, the output of which is
then used for classifying actions.

4.5 Learning Objectives

HandFormer is trained end-to-end for action recognition, supervised by a cross-
entropy loss: L,s = —a;loga;, where a; represents the ground truth action
label for the i*" sample, and @; denotes the predicted action category. The input
pose and RGB modalities provide complementary information regarding a scene,
capturing motion and interacting objects, respectively. To effectively utilize this,
we employ explicit verb and object supervision (Lyerb, Lop;) via two additional
learnable class tokens. Given that pose strongly correlates with verbs, whereas
objects are identifiable from RGB frames alone, we let the verb class token attend
exclusively to pose encodings and the object class token to frame features.
Feature Anticipation Loss. Hand pose sequence captures the primary sources
of state changes during hand-object interactions. We posit that the visual state
from an initial RGB frame, in combination with the subsequent hand pose se-
quence, is indicative of the visual state that results from the completion of the
sequence. Therefore, given an RGB feature and the corresponding pose features
from a micro-action, we force our model to anticipate the RGB feature for the
next micro-action by minimizing an L, feature loss. This loss, inspired by exist-
ing efforts [25//61], quantifies the difference between the anticipated image feature
and the true feature extracted from a frozen image encoder. Formally,

K—-1
Lant = Y ||ane (FFREP) — REE| 3)
k=1

where @,,,; denotes a linear projection layer. Hence, the total loss is-

L= Ecls + )\l‘cverb + )\2£obj + )\3£ant (4>
where A1, A2, A3 are hyperparameters used to balance the four losses.
5 Experiments

Datasets. We conduct experiments on two publicly available hand-object inter-
action datasets. Assembly101 [51] is a large-scale multiview dataset that fea-
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tures videos of procedural activities for assembling and disassembling 101 take-
apart toy vehicles. This dataset has 1380 fine-grained actions based on 24 verbs
and 90 objects. It consists of 12 temporally synchronized views — eight static
and four egocentric. The egocentric views exhibit low-resolution monochrome
images, making it challenging even for human eyes to discern objects in view.
Hence, we opt for fixed views as our RGB modality. 3D hand poses estimated
using off-the-shelf MEgATrack [27] are provided by the dataset. H20 [34] fea-
tures four participants performing 36 actions that involve 8 objects and 11 verbs.
Ground truth 3D hand poses are provided. The dataset consists of 5 temporally
synchronized RGB views — 4 fixed and 1 egocentric. We use RGB frames from
the egocentric view only.

Implementation Details. Similar to [65], our pose input consists of 120 frames
by setting 7' = 120. The number of frames per micro-action (N) is 15. For
multimodal experiments, we set the window stride R = N and take K = 8
non-overlapping micro-actions, which allows us to sample 8 RGB frames for
each video following [51]. However, we allow a 50% overlap between consecutive
micro-actions for pose-only variants. A frozen ViT [18] or ResNet [29], followed
by a learnable linear layer, is used as the frame encoder F'. More details are
provided in Suppl. Sec. C. Each model is trained for 50 epochs using SGD with
momentum 0.9, a batch size of 32, a learning rate of 0.025, and step LR decay
with a factor of 0.1 at epochs {25, 40}. Loss hyperparameters {\1, A2, A3} are
chosen to be {1.0,1.0,2.0}.

Model Variants. We propose several variants of our model by adjusting the
width d and the number of layers T,, of the transformer to balance efficiency
and accuracy. Our default HandFormer, denoted HandFormer-B, has param-
eters (d,T,) = (256,2). We introduce a larger variant, HandFormer-L, with
(d,T,) = (512,4). We also explore different configurations for the number of
input joints J per hand. Unless otherwise mentioned, we utilize all 21 joints per
hand along with the base model denoted as HandFormer-B/21 while offering a
highly efficient option utilizing only six joints per hand (five fingertips and the
wrist) termed HandFormer-B/6. Additionally, HandFormer-X/JxA denotes a
multimodal variant that utilizes A" RGB frames, where N < K.

5.1 Comparison with State-of-the-Art

To evaluate the effectiveness of our proposed architecture, we compare it against
several baselines. For pose-only comparisons, we choose a graph-based network
MS-G3D [44] and an attention-based method ISTA-Net [65] — the two best per-
forming skeleton-based methods on Assembly101 [51], as reported by [65]. We
also employ video baselines TSM [40] and SlowFast [23], emphasizing efficiency
and high temporal resolution, respectively. Additionally, we include H20TR |13],
the state-of-the-art for the H20 dataset. For Assembly101, we replicate the re-
sults of the methods above using RGB frames from view 4 of the dataset, while
results on H20 are acquired from the respective papers. Furthermore, on both
datasets, we train and test RGBPoseConv3D [20], which is current state-of-the-
art in multimodal action recognition with skeleton and RGB data.
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Table 1: Quantitative comparison with state-of-the-art methods on Assem-
bly101 [51] and H20 |34]. For H20, 6D object pose is used by ISTA-Net during training
and inference and by H20OTR during training. ‘MS-G3D + TSM’ denotes a late fusion of
the corresponding unimodal architectures. Reported GFLOPs include pose estimation
costs in the context of Assembly101 at 15 fps. TFor pose-only methods, pose estimation
costs are common and excluded for simpler comparison.

Assembly101 H20
Method Pose RGB GFLOPs Action Verb Object Action
MS-G3D |[44] v X 21.2F 28.78 63.46 37.26 50.83
ISTA-Net [65] v X 35.2f 28.14 62.70 36.77 89.09
SlowFast |23| X v 65.7 - - - 77.69
TSM [40] X v 33.0 35.27 58.27 47.45 -
H20TR |13] X v - - - - 90.90
RGBPoseConv3D |20| v v 68.9 33.61 61.99 42.90 83.47
MS-G3D + TSM v v 66.2 39.74 65.12 51.12 -
v X 4.2f 28.80 65.33 36.28 57.44
HandFormer-B/21x8 X v 33.0 32.07 55.61 44.89 84.71
v v 47.6 41.06 69.23 51.17 93.39

We evaluate three variants of our method by controlling the input modalities.
As shown in Tab. [1} our unimodal pose-only model excels in verb recognition on
Assembly101. In contrast, RGB-based methods benefit from object appearance
and usually perform well for actions due to the strong object recognition.

In this context, the accuracy of ISTA-Net on H20 is not directly compa-
rable to our method, as they also use the 6D object poses, while we only use
hand poses as input. RGBPoseConv3D struggles to achieve satisfactory per-
formance, particularly on AssemblylOl, suggesting that generalizing to hand
poses is non-trivial for skeleton-based methods. Therefore, we combine two best-
performing unimodal methods with late fusion (MS-G3D + TSM) to create a
stronger baseline. Our model even outperforms this, indicating the effectiveness
of our proposed multimodal fusion.

5.2 Skeleton-based Action Recognition for Hands

The compositional nature of action classes in hand-object interaction videos al-
lows us to break down the action into a verb and an object. Recognizing such
actions from 3D hand poses is an ill-posed problem, as the hand skeletons lack
explicit information about the interacting objects, which are also part of the ac-
tion semantics. However, as the pose data completely captures the hand motion
information, it can be reliably used for verb recognition. Therefore, we evalu-
ate a pose-only version of our method on the verb recognition task and compare
the performance and efficiency metrics with other state-of-the-art skeleton-based
methods in Fig. [5] Our method uses significantly fewer GFLOPs due to our spa-
tiotemporal factorization using micro-actions. With J = 21, all our HandFormer
variants outperform existing methods. The J = 6 variant is exceptionally effi-
cient with comparable accuracy, notably surpassing the efficiency-focused Shift-
GCN [11]. HandFormer-H/21 combines the HandFormer-B and HandFormer-L
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Fig.5: Comparison of skeleton- Fig. 6: Ablating number of RGB
based methods for verb recog- frames in HandFormer on Assem-
nition on Assemblyl01 [51]. Our bly101 [51]. With more RGB frames,
method achieves state-of-the-art perfor- verb recognition shows marginal gain,
mance while utilizing significantly fewer whereas object recognition shows im-
FLOPs. provement with diminishing returns.

variants and becomes our best-performing model, improving over MS-G3D by
2.04% while maintaining comparable FLOPs.

5.3 How many RGB frames are required?

In our model, the pose modality maintains a high temporal resolution to capture
fine-grained hand movements, resulting in good verb recognition performance.
On the contrary, RGB frames are primarily required to introduce semantic con-
text for object recognition and does not necessitate a high temporal resolution
like hand movements. The design of our model allows us to sample only a few
RGB frames (as low as one) but still perform competitively at a reduced com-
putational cost. Fig.[f]shows the impact of using more RGB frames for Assem-
bly101 [51]. For this experiment, non-overlapping micro-actions are considered.
Using only one RGB frame in HandFormer (35.46) outperforms the video model
TSM (35.27), as shown in Tab. [I} This performance gain stems primarily from
a significant improvement in object accuracy, with only a slight enhancement in
verb accuracy. However, including more RGB frames shows a diminishing return,
which is unsurprising as additional frames are expected to provide redundant in-
formation. These results are obtained with a simplified version of our model by
setting £ = L.;s and bypassing the multimodal tokenizer.

5.4 Can 3D hand pose be an efficient alternative to multi-view?

While multiview action recognition benefits from precise hand-movement infor-
mation in 3D space, processing all views with video models is expensive and
highly redundant. In Tab. we demonstrate that combining 3D hand pose
with a single RGB view (view 4) achieves comparable performance to multi-
view action recognition on Assembly101 [51]. Specifically, our action recognition
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Table 2: Multi-view Action Table 3: Cross-view performance of
Recognition on Assemblyl01 [51]. HandFormer in Assembly101 [51] shows its
HandFormer with ‘Single View+Pose’  generalization capability to unseen view I,
has better performance than ‘Single outperforming the video baseline which is
View-+ Egocentric’. Also, verb perfor- trained on wview 1 directly. Egocentric views
mance is comparable to using all (8) are the source of hand poses here and, there-

RGB views. fore, are included in the video models.
Views Action Verb Object Method Train on Test on Action Verb Object
Single View 35.27 58.27 47.45 v4 +ego v4 +ego 37.75 61.80 49.43
Single View + Egocentric 37.75 61.80 49.43 TSM [40] vf +ego vl +ego 3527 59.53 47.72
Two Views 41.96 65.22 53.26 vl +ego vl + ego 36.21 60.78 48.52
All (8) Views 47.51 70.99 57.73 "+ Pose vj + Pose 41.06 69.23 51.17

Our Method Z4

Single View + Pose 41.06 69.23 51.17 4 + Pose vl + Pose 38.43 67.86 48.32

performance (‘Single View + Pose’) matches the fusion of the two most infor-
mative views — wiew 1 and wview 4. Notably, our verb recognition accuracy is
on par with combining all 8 RGB views, though the latter incurs at least 5x
more FLOPs despite using the efficient TSM model. Additionally, using hand
pose in combination with an RGB view (‘Single View + Pose’) outperforms di-
rectly using the egocentric videos (‘Single View + FEgocentric’) from which the
hand poses are derived. While fusing multiple RGB views improves accuracy
by ensembling multiple complementary predictions, the computational overhead
increases significantly. In contrast, our model processes hand pose and single-
view RGB frames, enhancing efficiency by leveraging the less redundant and
low-dimensional pose data.

Cross-view Generalization. 3D hand pose offers a unique opportunity for
cross-view generalization because of its universality across different viewpoints.
To evaluate the effectiveness of our method for unseen views, we train our
model with frame-wise RGB features from view 4 and test it on wview 1. We
train TSM [40] as a baseline video model on both RGB views separately. As
our method includes 3D hand poses obtained from the egocentric views, we in-
clude the egocentric videos in the TSM baselines for a fair comparison. As seen
from Tab. [3] our method, trained on view 4, generalizes well on unseen view 1,
outperforming the TSM model that was directly trained on view 1.

5.5 Egocentric Action Recognition

Recognizing actions in egocentric videos is challenging due to camera motion and
the occlusion of interacting objects by the hands. Additionally, in the case of As-
sembly101 51|, the egocentric cameras are similar to Oculus Quest VR headsets,
which provide monochrome low-resolution frames. As a result, action recognition
performance is significantly lower than fixed RGB views, as found in [51]. We
address this challenging scenario with our proposed multimodal architecture and
achieve state-of-the-art performance in egocentric action recognition on Assem-
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Table 4: Egocentric action recognition in Table 5: Keypoint ablation
Assembly101 [51]. TSM features from [51] are ~ for verb recognition in Assem-
used as RGB frame features. bly101 [51]
Method Action Verb Object . Global Verb
#Joints  p ference Accurac (%)
TSM egocentric (fuse 4 views) 33.80 59.00 46.50 y %
21 X 64.17
Egocentric (e3) + Pose 36.07 65.52 45.82 21 v 64.90
Egocentric (e4) + Pose 35.56 65.79 45.20 1 v 64.77
Egocentric (e3+e4) + Pose 38.05 66.32 47.86 6 v 63.70

Table 6: Micro-action length ablation Table 7: Ablating unimodal

for verb recognition in Assembly101 [51] temporal aggregation for verb
#Frames 1 15 30 60 120 recognition in Assembly101 [51]
Verb Temp. Agg. TCN LSTM Transformer

59.12  63.70 63.68 63.51 62.29

Accuracy (%) Verb Acc. (%) 62.95  63.34 63.70

bly101. For this experiment, we used frame-wise TSM features provided by [51].
As depicted in Tab. our model, using a single egocentric view (e3 or e4)
outperforms the fusion of four egocentric views as reported in [51]. Moreover,
fusing e3 and e4 significantly enhances our model, resulting in a 4.25% increase
in action accuracy over the baseline.

5.6 Ablation Studies

Keypoints. Not all joints of the hands are equally informative for understand-
ing hand actions. For instance, fingertips exhibit greater mobility compared to
the inner joints. Moreover, from an egocentric viewpoint, certain joints are more
prone to self-occlusion than others. In Tab. [§] we present the impact of incor-
porating varying numbers of joints on verb recognition within the Assembly101
dataset [51]. For the case of 6 joints, we consider only the wrist joint along with
the five fingertips. To expand to 11 joints, we incorporate all the joints along the
index and the thumb, which are least affected by self-occlusion. We also show
the effect of including the Global Wrist Token, which acts as a reference to the
global motion of the hands while encoding micro-actions.

Micro-action length. As the resized input comprises a fixed number of pose
frames, enlarging the window size for a micro-action decreases the number of
micro-actions to aggregate, and vice-versa. In Tab. [6] we vary the micro-action
length for verb recognition in the Assemblyl01 [51] using 6 joints per hand as
input, 7.e. fingertips and wrist joint. The input pose clip is temporally resized to
T’ = 120 before breaking into micro-actions. Lengths 1 and 120 represent two
extreme versions with frame-based and trajectory-based encoding, respectively,
while the others conform to our micro-action-based formulation.
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Table 8: Ablating tokenization and different losses for action recognition

Multimodal Feature Verb & Object Action Accuracy (%)

Tokenizer Ant. Loss Loss Assembly101 [51]| H20 [34]
X X X 38.98 85.95
v X X 40.19 88.84
v v X 40.24 89.26
X X v 40.56 90.50
v v v 41.06 93.39

Temporal Aggregation. After extracting micro-action features, aggregation
for action recognition can be done with any sequence model. In Tab. [7 we
evaluate the effectiveness of different temporal aggregation methods for verb
recognition in the Assembly101 dataset |51]. Here, we use 6 joints per hand as
input, i.e., the fingertips and the wrist joint.

Loss components. To assess the individual contributions of different compo-
nents, we begin with a basic configuration. We then systematically introduce
each element to understand its impact on the overall performance as observed
in Tab. Incorporating modality interaction between RGB and pose at the
micro-action level through a multimodal tokenizer enhances action accuracy.
The introduction of auxiliary losses also has a positive impact, resulting in an
overall improvement of 2.08% for Assembly101 [51] and 7.44% for H20 [34].

6 Conclusion

With the growing interest in AR/VR and wearables, hand pose estimation has
rapidly advanced, and holds promise as a compact and domain-independent
modality to complement the visual input. To address the underexplored domain
of using 3D hand pose as a modality for hand-object interaction recognition,
we introduce HandFormer, a novel multimodal transformer that leverages dense
sequences of 3D hand poses with sparsely sampled RGB frames to achieve state-
of-the-art action recognition performance. Our model also reduces computational
requirements, offering immediate significance across various low-resource appli-
cations in mobile devices.

Limitations. Our method relies on the availability of hand poses, which, if
extracted from the visual modality with pose estimation tools [27,[28], can en-
counter out-of-view scenarios and produce noisy poses. Our experiments reveal
that these estimated poses can still achieve good accuracy, yet further research
can be conducted to explicitly address this phenomenon. We also assume that
a uniform sampling of RGB frames from each micro-action should provide good
representations for understanding the semantic context. However, not all frames
are equally important in understanding the action. In such a case, adaptive frame
sampling methods can be employed, which we leave for future work.
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