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1 Evaluation Metrics Cont.

Discussed in main Section 4.1 (Details).
For completeness, fairness, and robustness, we also assessed methods using

recent metrics designed for open-set scenarios: Area Under the Open-Set Clas-
sification Rate (OSCR) curve (AUOSCR) [2] in Tab. 1 and Open Area Under
the ROC Curve (OpenAUC) [23] in Tab. 2. As explained in the main paper, nei-
ther metric offers a threshold to evaluate operational performance. Nevertheless,
PreMax still outperforms all methods on both metrics/architectures.

Table 1: AUOSCR Results. The mean AUOSCR (↑) of all methods. To compute,
we test each method on five different ILSVRC2012 val [19] splits (each 10K images)
as knowns and specified unknowns. Standard deviation is omitted as it is < 0.01 for
all methods/unknowns. OSR is performed on extractions from two state-of-the-art
pre-trained architectures on ILSVRC2012-1K - (1) Transformer Hiera-H [20] (2) CNN
ConvNeXtV2-H [24]. The best scores are in bold.

Unknowns
(# imgs)

AUOSCR ↑
Hiera-H [20] ConvNeXtV2-H [24]

PreMax
(Ours)

MSC
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

PreMax
(Ours)

MSC
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

iNaturalist [10] (10K) 0.85 0.82 0.78 0.79 0.72 0.83 0.81 0.79 0.76 0.77
NINCO [1] (∼ 5.8K) 0.78 0.76 0.71 0.62 0.64 0.77 0.75 0.73 0.64 0.71
OpenImage-O [22] (∼ 17.6K) 0.84 0.79 0.72 0.78 0.63 0.83 0.79 0.77 0.72 0.75
Places [27] (10K) 0.80 0.75 0.68 0.76 0.59 0.79 0.76 0.71 0.73 0.67
SUN [25] (10K) 0.80 0.76 0.70 0.76 0.63 0.79 0.76 0.72 0.73 0.69
Textures [4] (∼ 5.1K) 0.83 0.79 0.76 0.67 0.73 0.80 0.78 0.78 0.65 0.77
21K-P Easy [21] (50K) 0.77 0.72 0.65 0.72 0.58 0.76 0.72 0.68 0.69 0.64
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Table 2: OpenAUC Results. The mean OpenAUC (↑) of all methods. To compute,
we test each method on five different ILSVRC2012 val [19] splits (each 10K images)
as knowns and specified unknowns. Standard deviation is omitted as it is < 0.01 for
all methods/unknowns. OSR is performed on extractions from two state-of-the-art
pre-trained architectures on ILSVRC2012-1K - (1) Transformer Hiera-H [20] (2) CNN
ConvNeXtV2-H [24]. The best scores are in bold.

Unknowns
(# imgs)

OpenAUC ↑
Hiera-H [20] ConvNeXtV2-H [24]

PreMax
(Ours)

MSC
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

PreMax
(Ours)

MSC
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

iNaturalist [10] (10K) 0.98 0.95 0.91 0.92 0.85 0.97 0.95 0.93 0.90 0.91
NINCO [1] (∼ 5.8K) 0.91 0.89 0.84 0.75 0.77 0.91 0.89 0.87 0.78 0.85
OpenImage-O [22] (∼ 17.6K) 0.97 0.92 0.85 0.91 0.76 0.96 0.93 0.91 0.86 0.89
Places [27] (10K) 0.93 0.89 0.81 0.89 0.72 0.93 0.89 0.85 0.87 0.81
SUN [25] (10K) 0.93 0.89 0.83 0.89 0.76 0.93 0.90 0.86 0.87 0.82
Textures [4] (∼ 5.1K) 0.96 0.92 0.90 0.80 0.86 0.94 0.92 0.92 0.79 0.91
21K-P Easy [21] (50K) 0.91 0.85 0.78 0.85 0.71 0.90 0.86 0.81 0.83 0.78
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(a) OpenImage-O [22]
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Fig. 1: Open-Set Accuracy Curves. The Open-Set Accuracy curves of all methods
on two unknown datasets from Table 1 in the main paper. OSR is performed on
extractions from the same pre-trained architectures – state-of-the-art Hiera-H and
ConvNeXtV2-H. ⋆ signifies the peak performance (OOSA) of each method.
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(a) NINCO [1]
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Fig. 2: ROC Curves. The Receiver Operating Characteristic curves of all methods on
two unknown datasets from Table 2 in the main paper. OSR is performed on extractions
from the same pre-trained architectures – state-of-the-art Hiera-H and ConvNeXtV2-H.

2 Ablation Study Cont.

Discussed in main Section 4.3 (Ablation Study).

2.1 Varying α

We also explore the impact of varying the application-dependent α from Eq. 2 in
the main paper. In high-risk applications, operators may prioritize a high rejection
rate over correct classification to ensure the exclusion of harmful samples (α =
0.17). In low-risk applications, accuracy maximization becomes a higher priority
(α = 0.50). Therefore, in Tab. 3, we varied α to analyze different operational
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Table 3: Varying α. The mean and standard deviation of Operational Open-Set
Accuracy (OOSA) (↑) across all datasets (5 ILSVRC2012 val [19] splits and vari-
ous unknowns). OSR performed is on extractions from a pre-trained architecture on
ILSVRC2012-1K - (1) Transformer Hiera-H [20]. The best performance is in bold.

α
PostMax

(Ours)
MSP
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

0.67 0.77 ± .10 0.74 ± .07 0.68 ± .10 0.69 ± .11 0.61 ± .12
0.50 0.79 ± .07 0.76 ± .05 0.71 ± .07 0.70 ± .09 0.65 ± .08
0.29 0.76 ± .04 0.73 ± .04 0.53 ± .16 0.66 ± .07 0.53 ± .16
0.20 0.69 ± .07 0.53 ± .16 0.53 ± .16 0.62 ± .09 0.53 ± .16
0.17 0.66 ± .09 0.53 ± .16 0.53 ± .16 0.60 ± .10 0.53 ± .16

requirements. Note, varying α effectively evaluates methods on different thresholds.
Compared to other methods, PostMax demonstrates a higher average OOSA,
lower variance, and greater stability across different thresholds.

2.2 Additional Architectures

To further showcase robustness, we present two other architectures: Meta’s
ViT-H [7] and ConvNeXt-L [13]. The experimental details are the same as
the experiments in the main paper. From Tab. 4, it is clear PostMax maintains
performance against MSP [9,21], MaxLogit [8,21], NNGuide [16], and SCALE [26]
in Operational Open-Set Accuracy (OOSA) across other architectures.

Table 4: Additional Architecture Results. The mean OOSA (↑) of all methods.
To compute, we validate methods on ImageNetV2 [17] (10K images) as knowns and
20% of our surrogate 21K-P Hard [21] (9.8K images) as unknowns and predict an
operational threshold. Then, we deploy each method’s threshold and test on five different
ILSVRC2012 val [19] splits (each 10K images) and specified unknowns. Standard
deviation is omitted as it is < 0.005 for all methods/unknowns. OSR is performed on
extractions from two pre-trained architectures on ILSVRC2012-1K - (1) Transformer
ViT-H [7] (2) CNN ConvNeXt-L [13]. The best scores are in bold.

Unknowns
(# images)

OOSA ↑
ViT-H [7] ConvNeXt-L [13]

PostMax
(Ours)

MSC
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

PostMax
(Ours)

MSC
[9, 21]

MaxLogit
[8, 21]

NNGuide
[16]

SCALE
[26]

iNaturalist [10] (10K) 0.826 0.794 0.788 0.636 0.748 0.794 0.773 0.740 0.583 0.683
NINCO [1] (∼ 5.8K) 0.732 0.717 0.711 0.552 0.671 0.698 0.701 0.682 0.447 0.638
OpenImage-O [22] (∼ 17.6K) 0.861 0.809 0.755 0.661 0.706 0.830 0.791 0.728 0.662 0.664
Places [27] (10K) 0.780 0.741 0.695 0.699 0.640 0.756 0.725 0.654 0.621 0.588
SUN [25] (10K) 0.792 0.749 0.717 0.696 0.672 0.771 0.734 0.674 0.623 0.617
Textures [4] (∼ 5.1K) 0.761 0.727 0.742 0.544 0.718 0.722 0.706 0.693 0.450 0.659
21K-P Easy [21] (50K) 0.810 0.770 0.675 0.543 0.626 0.794 0.739 0.624 0.794 0.552
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Fig. 3: Normalization Ablation. The Open-Set Accuracy curve of PostMax with
L1, L2, and L∞ on Hiera-H [20] with ILSVRC2012 [19] val as knowns and Textures [4]
as unknowns.

2.3 PostMax Norm

In Fig. 3 we show PostMax performance is invariant regardless of different
normalizations. We showcase this on the state-of-the-art Hiera-H [20].

3 Normalizations

Discussed in main Section 3.2 (Feature Norms).
In [6], it is argued that unknowns have smaller norms, and similar observations

are made in [11, 15, 21]—in other words, deep feature magnitudes of unknown
samples tend to be smaller than those of knowns. However, these studies were
confined to a few classes, while our findings indicate the opposite for modern
ImageNet-scale networks. If, for a particular network, a preliminary test reveals
that unknowns have smaller norms, our normalization method’s division could
be substituted with multiplication or another operation that increases with the
magnitude.

We hypothesize that the smaller magnitudes observed in datasets with fewer
classes may be due to the lower likelihood of random features combining to
produce a significant response in the final network. In contrast, larger networks
with more classes often experience confusion with unknowns due to many small
features adding up to sufficient magnitude to stimulate class responses.

While the study in [3] observes an increase in norm values for unknowns, it
pertains to the norms of backpropagated gradients. In contrast, our observations
concern the norms of forward pass features. Additionally, while [15] presents
intriguing theorems on feature norms, these are based on assumptions that may
not hold true for larger networks or a higher number of classes.
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4 Datasets Cont.

Discussed in main Section 4.1 (Details).

Works in Open-Set Recognition (OSR) and Out-Of-Distribution (OOD) de-
tection commonly use the same dataset for validation and testing. Consequently,
thresholds and parameters in algorithms are often tuned based on the test set.
However, such an approach deviates from real-world operational usage. During
testing, unknowns should not have been encountered during validation. It is
paramount for engineers to utilize an unknown set that is representative of what
their system expects to encounter, which we term unknowns surrogate. The sur-
rogate set should act as a substitute for expected unknowns, providing engineers
with the capability to predict operational performance.

ILSVRC2012 [19]. The dataset consists of 1K object categories encountered
in the real world and is commonly used as a large-scale benchmark for computer
vision research. It is based on the original ImageNet database [5], which was
organized according to the WordNet hierarchy [14] with over 14M annotated
images. The train split, comprising ∼ 1.2M images, is exclusively used for knowns
during training. The val split, containing 50K images, is exclusively used for
knowns during testing. Note, while ILSVRC2012 has a test split, it lacks the
labels necessary for performance evaluation. We aimed to compute the mean and
standard deviation during testing, so we divided the val set into five equal subsets,
each consisting of 10K images. Importantly, each subset still encompasses 1K
classes.

ImageNetV2 [17]. The dataset comprises three distinct 10K images splits,
sampling the same categories as ILSVRC2012 [19]. These splits were meticulously
curated with the aim of closely replicating the distribution of the original val
set. Each split employs a unique sampling strategy implemented by Amazon
Mechanical Turk workers. Notably, during validation, we selected TopImages
(10K images) as our knowns, given its highest selection frequency among the
workers.

ImageNet-21K-P Open-Set splits [21]. Recently, the large-scale ImageNet-
21K-P - Winter21 [18] dataset released, a subset of the ImageNet database [5] that
removed small classes, resulting in approximately 11K categories. Thus, Vaze et
al. [21] leveraged the subset and constructed two sets of 1000 classes. The curation
process was based on the sorted total semantic distance between ImageNet-21K-P
- Winter21 and ILSVRC2012, providing a measure of open-set difficulty. The easier
(larger semantic novelty) split resulted in Easy (50K images), while the more
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difficult (smaller semantic novelty) resulted in Hard (49K images). Importantly,
neither split contains any overlap with ILSVRC2012. During validation, we use
20% of ImageNet-21K-P Hard (9.8K images) as surrogate unknowns, while the
Easy split is entirely reserved for unknowns during testing. Our decision to use
Hard as surrogate unknowns was driven by its difficulty.

iNaturalist [10]. The dataset comprises over 859K images encompassing more
than 5K different species of plants and animals. It distinguishes itself from other
vision datasets by being unbiased and more representative of real-world scenarios.
We exclusively consider 110 classes that do not overlap with ILSVRC2012 [19],
sampling 10K images from these classes for use as unknowns during testing.

NINCO [1]. Bitterwolf et al. [1] discovered that recent large-scale datasets
exhibit categorical contamination, where labels coincide with a class or act as a
subset of a class, as well as incidental contamination, where objects are found in
the background or are an aspect of another class. In response, they curated the
No ImageNet Class Objects (NINCO) dataset, which comprises 5, 879 images
from 64 object categories. Each image was individually checked to ensure it does
not contain any objects found in [19]. We utilize the entire dataset as unknowns
during testing.

OpenImage-O [22]. Inspired by the shortcomings of existing datasets, particu-
larly the unreliability of creating datasets through tag queries or the absence of
human inspection to confirm validity, Wang et al. [22] curated the OpenImage-O
dataset. This dataset comprises 17, 632 images and is a subset of the Open Images
Dataset V3 [12] test set. The manually annotated subset boasts a large-scale and
naturally diverse distribution. We employ the entire dataset as unknowns during
testing.

Places [27]. The database comprises over 10M images captured from 434 scenes,
each carefully selected to represent 98% of the various types of places humans
might encounter worldwide. Throughout experimentation, the curators focus
exclusively on the Places365-Standard subset. From this subset, only 50 classes,
distinct from those in ILSVRC2012 [19], are considered. We then sample 10K
images from these classes to serve as unknowns during testing.

SUN [25]. The scene understanding database comprises over 130K images
collected from 899 environments, each offering a snapshot of diverse and rich
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daily encounters. In the course of experimentation, the curators narrowed their
focus to only 397 classes. Among these, we specifically selected 50 classes that do
not overlap with ILSVRC2012 [19]. From this subset, we sampled 10K images to
serve as unknowns during testing.

Textures [4]. The dataset comprises 5, 640 images, each representing one of 47
texture attributes. Captured in the wild, these images aim to provide the best
representation for recognizing describable texture attributes. Recently, Wang
et al. [22] removed four categories (bubbly, honeycombed, cobwebbed, spiralled)
that overlapped with ILSVRC2012. The resulting 5, 160 images are exclusively
employed as unknowns during testing.
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