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Abstract. Open-Set Recognition (OSR) is a problem with mainly prac-
tical applications. However, recent evaluations have largely focused on
small-scale data and tuning thresholds over the test set, which disre-
gard the real-world operational needs of parameter selection. Thus, we
revisit the original goals of OSR and propose a new evaluation metric,
Operational Open-Set Accuracy (OOSA), which requires predicting an
operationally relevant threshold from a validation set with known and a
surrogate set with unknown samples, and then applying this threshold
during testing. With this new measure in mind, we develop a large-scale
evaluation protocol suited for operational scenarios. Additionally, we
introduce the novel PostMax algorithm that performs post-processing
refinement of the logit of the maximal class. This refinement involves
normalizing logits by deep feature magnitudes and utilizing an extreme-
value-based generalized Pareto distribution to map them into proper
probabilities. We evaluate multiple pre-trained deep networks, including
leading transformer and convolution-based architectures, on different
selections of large-scale surrogate and test sets. Our experiments demon-
strate that PostMax advances the state of the art in open-set recognition,
showing statistically significant improvements in our novel OOSA metric
as well as in previously used metrics such as AUROC, FPR95, and others.

1 Introduction

The original Open-Set Recognition (OSR) formulation [1,38,39] gained attention
due to the flaws in existing recognition systems when handling inputs from outside
the training classes. These systems lack control over inputs, and any unknown
sample that is not rejected leads to a misclassification, thereby reducing accuracy.
Therefore, early open-set work [1, 3, 35] introduced protocols tailored to emulate
real-world systems, allowing for a proper evaluation of open-set performance.

For a decade, researchers explored techniques that enhanced OSR performance
[1,5,7,10,11,20,25,27,28,35,39,55,57]. While contributing novel ideas, recent works
have diverged from the original goals of OSR. Instead of leveraging large-scale data
as in early research on open-set deep networks [1], recent OSR evaluations have
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Fig. 1: PostMax Pipeline. During train (a), post-processed maximum logits of
correctly classified train samples are normalized by feature magnitude ℓ; the set is
then used in a Maximum Likelihood Estimation (MLE) to obtain Generalized Pareto
Distribution (GPD) [33] with parameters µ, σ, and ξ. During validation (b), we use a
validation and a surrogate set where the cumulative distribution of the GPD (Ψ) gives
the probability of the normalized max logit being from the train distribution and predict
an operational threshold. During operation (c), we deploy each method’s threshold and
apply it to determine OSR and compute Operational Open Set Accuracy (OOSA). For
evaluation we compare against Maximum Softmax Probability (MSP) [16,44], Maximum
Logit (MaxLogit) [15,44], Nearest Neighbor Guidance (NNGuide) [32], and SCALE [50].
Operational Open-Set Accuracy (OOSA) performance is (⋆) and (⋄) is the optimal
Open-Set Accuracy (OSA) for an oracle that knows the final test set (shown to highlight
differences from OOSA). AUROC scores are shown for comparison.

focused on small-scale datasets with few classes, with only a few notable exceptions
[30,35,44]. Moreover, the prevalent reliance on metrics such as the Area Under the
Receiver Operating Characteristics (AUROC) curve for performance evaluation
has led to inopportune assessments since such metrics do not offer a realistic
perspective on OSR. Fig. 1 illustrates an example where AUROC scores exhibit
one ranking, yet in an operational setting, there is a slight difference. Inherently,
common measures overlook the real-world operational needs of threshold selection.
Some may argue for their use with a dedicated validation set; however, it is not
clear how one would extract a threshold from these metrics and deploy it at
test time. This is problematic as methods have largely ignored a fundamental
practice of machine learning systems – having separate training, validation, and
test sets to ensure that models generalize, avoid overfitting, and provide unbiased
evaluation and reliable performance prediction on new data.

Initial aspirations behind OSR aimed to enhance real systems [4]. Imagine
an engineer tasked with implementing an OSR algorithm into their system.
As they analyze results from various algorithms through tables and plots to
inform decisions, a formidable challenge emerges. While AUROC and similar
metrics assess a model’s discriminative capability across all possible classification
thresholds, they do not guide the engineer toward an optimal threshold for
decision-making. There is a pressing need for a metric that enables confident and
statistically rigorous evaluations with anticipated data, while also demonstrating
robustness against varying numbers of unknowns. When deploying an open-
set system, engineers must, at a minimum, consider two factors: (1) how an
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approach scales with operational data, and (2) how to choose an operating
point that balances their desired known classification accuracy and unknown
rejection. These considerations underscore the importance of achieving overall
accuracy with a predicted operational threshold. Therefore, we introduce a new
metric called Operational Open-Set Accuracy (OOSA), illustrated in Fig. 1,
which facilitates algorithm and operational threshold selection. To ensure real-
world applicability, we implement a large-scale evaluation protocol with proper
training/validation/test splits. We determine a threshold on the validation set
and deploy it during testing on unseen unknowns. Additionally, for completeness,
fairness, and robustness, we evaluate state-of-the-art algorithms on ImageNet-
scale open-set recognition using common metrics (AUROC, FPR95, AUOSCR [6],
and OpenAUC [46]), many of which are detailed in the supplemental.

Before incorporating an operational threshold, it is natural to ask about the
distribution of scores above this threshold. This naturally leads to a Peak-over-
Threshold (POT) formulation of the distribution, best modeled via Extreme
Value Theory (EVT). The Pickands–Balkema–De Haan theorem of EVT [33]
yields a Generalized Pareto Distribution (GPD) over normalized scores, as de-
picted in Fig. 1. This GPD-based score transformation provides theoretically
grounded probabilities rather than raw, network-dependent ad-hoc confidence
scores (see supplemental for details). While GPD can be applied directly to
Softmax confidences or logit values, our approach goes further. We introduce a
novel algorithm, PostMax, which applies GPD to post-processed normalized
maximum logits. Here, normalization by the deep feature magnitude enhances
the separation of known and unknown classes. Prior observations and theoretical
explanations [10,13,31,44] suggest that deep feature magnitudes extracted from
inputs that the network was not trained on are generally smaller than those for
known samples. However, our findings show the exact opposite, i.e., that modern
networks trained on the large-scale ILSVRC2012 dataset generally exhibit larger
deep feature magnitudes for unknown samples (details in supplemental). There-
fore, applying GPD to logit values divided by the deep feature magnitude can
enhance OSR beyond the strong baselines of using raw Softmax confidence [16],
maximum logit values [15], overconfidence reduction with features and logits [32],
or scaled logit values [50]. The contributions of this paper are as follows:
– We design a novel evaluation metric, Operational Open-Set Accuracy (OOSA),

that emphasizes real-world usage by predicting an operational threshold on
a validation set (knowns and unknowns surrogate), which is then deployed
during testing on unseen data.

– We introduce a novel algorithm, PostMax, that post-processes maximum
logits by normalizing them by deep feature magnitude and then applies GPD
to provide probabilities. Our code is publicly available.4

– We develop new large-scale evaluation protocols suited for assessing algorithms
in operational scenarios.

– We showcase that PostMax advances the state of the art in large-scale open-set
recognition with statistical significance on OOSA and prior metrics.

4https://github.com/Vastlab/PostMax-OOSA

https://github.com/Vastlab/PostMax-OOSA
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2 Related Work

Improving OSR, distinct from OOD detection, anomaly detection, or novel
category discovery, can be approached in two ways: providing better features
through improved network training, or through post-processing where a pre-
trained network is trained for closed-set tasks and then adapted for OSR. Our
work is rooted in the post-processing approaches.

2.1 Related Problems

A common question regarding open-set is, What about a two-stage system with
OOD followed by classification, does that not solve OSR? This hypothesis is
rejected with an example from one of our operational systems where we have
to recognize objects in novel contexts, e.g ., in snowy or foggy conditions. Such
conditions are OOD with respect to training samples, but they should not be
rejected from an open-set point of view. Out-Of-Distribution (OOD) detection,
though distinct from OSR, has been more consistent in its use of large-scale
experimentation as were used in early OSR work [15,16,32,45,47,50,52,54]. Even
when OOD is restricted to out-of-class, the two-stage system needs to be evaluated
in that context, including a process for selecting an OOD threshold and then
evaluating the resulting classification performance. The OpenOOD Benchmark
[52,54] has implemented various OSR and OOD techniques such as OpenGan [20],
MOS [19], ReAct [41], ViM [45], GEN [23], NNGuide [32], and SCALE [50]. While
we caution the use of OOD algorithms in OSR evaluations/settings, based on
the OpenOOD Benchmark leaderboard, we compare with the state-of-the-art,
NNGuide & SCALE.

2.2 Closed-Set Classifiers

Recently, Vaze et al. [44] argued that closed-set classifiers are sufficient. This
aligns with Hendrycks et al. [15, 16], who demonstrated thresholding on Softmax
confidences or, especially, on logits provide unreasonably good baselines. Our
work shows that such approaches/networks can be improved with normalization.

We evaluate several leading pre-trained architectures trainined on ILSVRC2012-
1K with no additional data. Particularly, Meta’s Vision Transformer Hiera-H [37],
which strips non-essential components making it faster and more accurate dur-
ing training/inference. Also, we use their Masked Autoencoders (MAE) model,
ViT-H [14], which masks random patches of an image and reconstructs the
missing pixels. To show generalization, we also utilize CNNs, including Meta’s
ConvNeXtV2-H [48] and ConvNeXt-L [24] which modernize a standard ResNet.
Other networks are found in the supplemental material.

2.3 Post-processing Approaches

Besides thresholding softmax scores or logits [15, 16, 44], OSR methods take
features and use Weibull-calibrated Support Vector Machines (W-SVM) [38]
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or Extreme Value Machines (EVM) [35] to estimate a probability of unknown.
OpenMax [1] was the first method to add an artificial probability of unknown to
closed-set networks by computing a logit score for the unknown class based on
deep feature similarities to features of known classes. Other approaches include
a small adaptor network [13,42] that adds open-set capabilities [10] to features
extracted from closed-set networks.

2.4 Learning-based Approaches

Most methods use negative aka. known unknown samples in training, which
represent samples of no interest to the classifier and should be classified as
unknown, with a few exemptions such as replacing the final Softmax classifier with
a set of binary classifiers [40,43]. While some use real negative samples [10,13,30],
the majority of research tries to artificially create them. For example, combinations
of knowns [57], added noise to knowns [47], or Generative Adversarial Networks
(GANs) [11,20]. In our approach, we avoid the use of any negative samples.

2.5 Evaluation Techniques

Evaluating OSR correctly in a real-world setting is difficult and current measures
do not satisfy operational requirements. For example, the widely used AUROC
metric [5,7,27,28,44,51] only looks at the binary decision of known vs . unknown,
but ignores the task of assigning the correct class for known samples. Such metrics
are often combined with closed-set classification accuracy in order to evaluate
OSR. These evaluations are reasonable, but provide no information under realistic
scenarios, i.e., an operational threshold classifying samples as known or unknown.

Another metric often employed is the macro-averaged F1 score [1, 27,35,53],
which treats unknown as a separate class. This measure has many counter-intuitive
properties that make it difficult to interpret the results. For example, a different
threshold is required for each class so a sample could be classified as several
known classes and unknown (at the same time). Thus, incorrect classification of
unknown samples can easily be overlooked.

Recently, Dhamija et al. [10] introduced the Open-Set Classification Rate
(OSCR) curve. This curve handles knowns and unknowns separately, evaluating
the Correct Classification Rate (CCR) at various thresholds corresponding to
specific False Positive Rates (FPR). While valuable for high-risk applications like
open-set face recognition, its practicality in general OSR tasks is questionable. In
scenarios where a threshold is chosen based on a specific FPR, the curve utilizes
unknowns from the test set, raising doubts about its applicability to unseen
classes. Moreover, the curve faces the challenge of not providing a single value for
comparing different methods. Additionally, the proposed metrics, Area Under the
OSCR (AUOSCR) [6] and Open Area Under the ROC Curve (OpenAUC) [46],
do not provide an intuition on how to select an operating threshold.
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ILSVRC2012 val (990)

Textures (Predicted as: 990)

iNaturalist (Predicted as: 990)

Places (Predicted as: 990)

21K-P Easy (Predicted as: 990)

21K-P Hard (Predicted as: 990)

Mean L2 Norm: 3.48 

Mean L2 Norm: 5.50

Mean L2 Norm: 5.42

Mean L2 Norm: 5.41

Mean L2 Norm: 5.26

Mean L2 Norm: 5.92

Mean Normalized Logit: 2.64

Mean Normalized Logit: 1.49

Mean Normalized Logit: 1.84

Mean Normalized Logit: 1.78

Mean Normalized Logit: 1.79

Mean Normalized Logit: 1.63

Fig. 2: Motivation for Normalization. We illustrate why PostMax divides by the
feature magnitude norm before applying GPD. The comparison above shows squared
deep feature values extracted from a pre-trained ILSVRC2012-1K Transformer (ViT-
H [14]). We sorted the deep features of 20 randomly sampled images from class 990
based on increasing mean square magnitude. Next, we applied this sorted order to the
features of 20 images misclassified as class 990 from each unknown dataset. Unknowns
exhibit high feature values (bright colors) in regions where known sample activations are
low. These large, uncorrelated responses accumulate to give it a high score for the class
but also result in unknown dataset features having, on average, larger L2 norms than
those of the correct class, depicted in the magnitude histogram on the right. Therefore,
dividing by magnitude enhances separation.

3 Approach

Several approaches advocate selecting the maximum class and then applying
thresholding to certain scores, e.g ., Softmax [16] or logits [15], to address OSR.
While such thresholding proves effective in some recognition tasks [44], its rele-
vance often extends only to establishing a ranked order of classes for individual
samples. We focus on leveraging information from the features themselves and
the formal distribution of these maxima. The result is PostMax, an effective
approach with theoretically grounded probabilities to address OSR through (1)
normalization and (2) score distribution.

3.1 Normalization & GPD

From Fig. 2, unknown samples activate high dimensions in the feature space, which
goes against our intuition that deep networks would only learn features necessary
to classify known classes and disregard those belonging to other uninteresting
ones. We attribute these findings to high logit values and Softmax scores, where
positions with high feature magnitudes align with larger weights of certain classes,
even when an input exhibits a large feature magnitude and the high-scoring class
has a small or negative weight. The observed effect may depend on the network’s
loss function and the training dataset; in small-scale datasets such as MNIST
or CIFAR, which only differentiate between 10 classes, the opposite has been
observed [10, 18, 31, 44]. Further details regarding the normalizations in these
works and how they differ from our findings are provided in the supplemental.

As we classify samples based on their “maximum score” threshold, a key
question arises: Does this score belong to the training distribution of maximum
scores? Statistical Extreme Value Theory (EVT) provides a grounded approach to
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Algorithm 1 PostMax Fitting. This implements the probability distribution
estimation of the proposed PostMax algorithm.

Require: Dtrain, FV(x), L(x)
M ← {}
for each (x, t) ∈ Dtrain do

if argmaxL(x) = t then
ℓ← maxL(x)

∥FV(x)∥
M ←M ∪ {ℓ}

end if
end for
µ, σ, ξ ← scipy.stats.genpareto.fit(M)

answering this question. Unlike ad-hoc Softmax confidences, transforming logits
into real probabilities allows probabilities to be more interpretable compared to
Softmax, probabilities do not need to sum up to one (images may contain multiple
objects), and EVT models probabilities on are based on thousands/millions of
samples rather than the current sample. Given that thresholdling maximum
logits or Softmax scores serves as a reasonable baseline [15,32,44], applying EVT
to this problem is both theoretically justified and intuitive. Note, prior OSR
research [1, 26,35,38] utilizes the Fisher–Tippett–Gnedenko EVT [12], resulting
in a Weibull distribution. However, practical effectiveness was limited due to
challenges in parameter selection affecting EVT modeling. In contrast, we employ
the Generalized Pareto Distribution (GPD) derived from the Peak-over-threshold
(POT) approach [33], which models extreme values above a threshold.

3.2 PostMax

Using these intuitions and observations, we define our Postnormalization of
Maxima (PostMax) algorithm. We aim to find a general distribution Ψ of logit
values that is valid for all of our known classes c ∈ {1, . . . , C}. As observed in
Fig. 2, modeling raw logit values might not be fruitful since unknown samples
have generally higher activation of deep features, which often leads to high logit
values. For a sample, we utilize normalized logit values by dividing the original
logit values by their deep feature magnitude via (1).

Based on POT EVT [33], we understand that if we consider all maximum
values above a threshold (such as the smallest correct logit observed during
training), the resulting distribution follows a Generalized Pareto Distribution
(GPD). Let Dtrain = {(xi, ti)} be the collection of all samples xi with their
respective ground-truth target label ti in the training set. Let FV(x) be the
function returning the feature vector of a sample x. Let L(x) be the function
returning the logit vector of a sample. We collect the normalized logits from the
target class for all correctly classified training samples, which are then used to
model a Generalized Pareto Distribution Ψµ,σ,ξ. Details can be found in Alg. 1.

At inference for test sample x we use FV(x) and L(x) to extract the deep
features and logits of x and then for class c assign probability pc(x) using the
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normalized logit value:

ℓc =
L(x)[c]

∥FV(x)∥
pc(x) = Ψµ,σ,ξ(ℓc) (1)

where Ψµ,σ,ξ(ℓ) is the cumulative distribution of the GPD with location µ, scale σ
and shape ξ computed via Alg. 1. If we just want the top class (as all experiments),
we compute the class with the max logit and apply the above to that logit.

Note that we do not utilize any unknowns or negatives in this process, nor
do we explicitly model a probability of unknowns. Instead, we threshold based
on the cumulative GPD probability of known classes, computing the maximum
value of normalized logits.

3.3 Operational Open-Set Accuracy

By designing the OpenAUC metric, Wang et al. [46] proposed four different
conditions that a good open-set evaluation metric should fulfill, which we rephrase:
P1 The metric needs to check that known samples are classified correctly with

high probability.
P2 The metric needs to evaluate if unknown samples are assigned to known

classes with low probability.
P3 The metric should be insensitive to a score threshold.
P4 The metric should be a single number.
We totally agree with P1, P2 and P4. However, we reject P3 because it means
that the metric cannot be used to select a classifier that works well in a specific
operational setting, which requires obtaining an operational threshold. In our view,
a useful open-set algorithm must include that step. Therefore, we reformulate
condition P3’ to be operationally relevant:
P3’ The metric should indicate an operational threshold that is optimal under

specified circumstances and can be applied to unseen data and unseen
unknown classes.

These four conditions (P1, P2, P3’, P4) exclude all existing open-set evalu-
ation metrics; we need a new metric to satisfy them. As discussed in Sec. 2.5,
metrics such as AUROC, AUOSCR, and OpenAUC simply average over all possi-
ble operational thresholds, while F1 and normalized accuracy fail to use a single
threshold [46]. On the other hand, the Open-Set Classification Rate (OSCR)
curve [10] does not provide a single value for comparison, which makes it hard
to compare different algorithms. Therefore, we introduce Operational Open-Set
Accuracy (OOSA), which is inspired by OSCR but fulfills all four conditions.

From an engineer’s view, the real question is how well a specific method can
perform under the presence of both known and unknown samples in their data.
Most applications of open-set classification are not security-sensitive, so there is
no need to have very low False Positive Rates (FPR) as typically evaluated in
the OSCR [10,30].

Usually, an engineer has a rough estimate of how many known and unknown
samples the system will observe – so they are rather interested in the total accuracy
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the system will achieve and which kind of operational threshold will lead to this
performance. To provide both, we exploit the FPR and CCR calculations used
in OSCR [10] to define the Unknown Rejection Rate (URR) and the Open-Set
Accuracy (OSA), both of which rely on the operational threshold θ and only
make use of the probabilities of known classes Pc(x):

CCR(θ) =

∣∣{x | x ∈ Dc ∧ argmaxc Pc(x) = ĉ ∧ Pc(x) ≥ θ}
∣∣

|Dc|

URR(θ) =

∣∣{x | x ∈ Da ∧maxc Pc(x) < θ}
∣∣

|Da|
(2)

OSA(θ) = α · CCR(θ) + (1− α) ·URR(θ)

where Dc is the collection of all known test samples with class labels ĉ, while
Da collects all unknown test samples [10]. Please note that URR(θ) = 1−FPR(θ)
provides a positive view on the unknown samples, i.e., it calculates how many of
them are correctly rejected under threshold θ. OSA includes a weighted average
over CCR and URR to provide a holistic view of the expected total accuracy,
where the application-dependent α can be used to provide a stronger focus on
correctly classifying known or unknown samples. When both types of samples
should be treated similarly, α = |Dc|

|Dc|+|Da| can be selected, which we do in most
of our experiments. In that case, OSA can be thought of as evaluating a C class
classifier using C + 1 class accuracy where the unknown class C + 1 is classified
when the maximal probability does not exceed our operational threshold θ.

When plotting OSA over URR, by varying the operational threshold, we
arrive at the plots seen in Fig. 1. This plot is not monotonic, but rather provides
a peak where the OSA is maximized. The maximum value can be used to select
a threshold θ∗ on a given set of scores S effectively:

θ∗ = argmax
θ∈S

OSAS(θ)

S =
{
Pĉ(x) | x ∈ Dc

}
∪
{
max

c
Pc(x) | x ∈ Da

} (3)

Here, S is the collection of all maximum scores for known and unknown samples.
When applying this calculation on the test set Stest, we will find the optimal
threshold θ∗test, indicated by ⋄ in Fig. 1. However, since test set samples are
unknown in operational settings, we make use of the validation set Dval of known
samples as Dc and an additional surrogate set Dsur of unknown samples to
replace Da in (3) for obtaining the operational threshold θ∗sur, which we will then
apply to the test set: OSAStest

(θ∗sur), which is indicated by ⋆ in Fig. 1. How to
optimally select this surrogate set is discussed below.

4 Experiments

Although a few OSR methods have explored large-scale datasets [1, 30, 35, 44],
many recent techniques [5–7,10,11,20,25,27,28,55,57] still lack comprehensive
large-scale evaluations. The performance on small-scale data such as MNIST [22],
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Table 1: Operational Open-Set Accuracy (OOSA). The mean OOSA (↑) of
all methods. To compute, we validate methods on ImageNetV2 [34] (10K images)
as knowns and 20% of our surrogate 21K-P Hard [44] (9.8K images) as unknowns
and predict an operational threshold. Then, we deploy each method’s threshold and
test on five different ILSVRC2012 val [36] splits (each 10K images) and specified
unknowns. Standard deviation is omitted as it is < 0.005 for all methods/unknowns.
OSR is performed on extractions from two state-of-the-art pre-trained architectures on
ILSVRC2012 - (1) Transformer Hiera-H [37] (2) CNN ConvNeXtV2-H [48]. The best
scores are in bold.

Unknowns
(# images)

OOSA ↑
Hiera-H [37] ConvNeXtV2-H [48]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

iNaturalist [17] (10K) 0.825 0.815 0.780 0.782 0.727 0.812 0.796 0.786 0.713 0.772
NINCO [2] (∼ 5.8K) 0.740 0.739 0.707 0.625 0.667 0.732 0.723 0.718 0.597 0.705
OpenImage-O [45] (∼ 17.6K) 0.864 0.814 0.745 0.796 0.663 0.849 0.820 0.792 0.745 0.767
Places [56] (10K) 0.785 0.754 0.691 0.745 0.625 0.779 0.749 0.710 0.693 0.676
SUN [49] (10K) 0.795 0.758 0.709 0.749 0.651 0.783 0.751 0.721 0.693 0.690
Textures [8] (∼ 5.1K) 0.764 0.756 0.736 0.660 0.715 0.744 0.736 0.740 0.601 0.740
21K-P Easy [44] (50K) 0.818 0.740 0.662 0.744 0.568 0.813 0.763 0.691 0.783 0.633

CIFAR [21], or SVHN [29] does not reflect operational scenarios and lacks
generalizability due to small image crops and a limited number of classes [30].

An open-set protocol is essential and necessitates a large-scale setting for the
proper evaluation of real-world scenarios [30,44]. Additionally, it is paramount to
employ proper machine-learning methodology, including a validation set (and a
surrogate set) for operational threshold selection. Thus, we evaluate the robustness
and generalization of PostMax on multiple large-scale datasets and splits with
realistic and high-quality images. We also leverage the recently introduced large-
scale ImageNet open-set splits [44]. Lastly, we conduct ablations to understand
the performance impact of our approach.

4.1 Details

Architectures. We use state-of-the-art pre-trained models on ILSVRC2012 [36]
with standard 224×224 image crops - Meta’s Hiera-H [37] and ConvNeXtV2-
H [48]. Meta fine-tuned these models with no additional/external data. Note, we
do not perform additional training or fine-tuning.

Datasets. For knowns, we utilize the large-scale ImageNet [9] subset ILSVRC2012
[36]. This dataset provides an advantage due to the extensive variety of avail-
able pre-trained architectures, enabling us to compare with more diverse deep
networks. Our PostMax model is trained on the ILSVRC2012 train split, which
contains ∼ 1.28M images and 1K classes (PostMax training requires no ad-
ditional negative/unknown data). For validation, we employ ImageNetV2 [34],
which contains 10K images. For testing, we split ILSVRC2012 val into five equal
splits of 10K images each.

For unknowns, we use iNaturalist [17], NINCO [2], OpenImage-O [45], Places
[56], SUN [49], Textures [8], and ImageNet-21K-P Open-Set splits [44]. The vision



Operational Open-Set Recognition and PostMax Refinement 11

Table 2: Common Metrics. The mean AUROC (↑) and FPR95 (↓) of all methods. To
compute, we test each method on five different ILSVRC2012 val [36] splits (each 10K
images) as knowns and specified unknowns. Standard deviation is omitted as it is < 0.01
for all methods/unknowns. OSR is performed on extractions from two state-of-the-art
pre-trained architectures on ILSVRC2012-1K - (1) Transformer Hiera-H [37] (2) CNN
ConvNeXtV2-H [48]. The best scores are in bold.

Unknowns
(# images)

AUROC ↑ / FPR95 ↓
Hiera-H [37] ConvNeXtV2-H [48]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

iNaturalist [17] (10K) .96 / .21 .92 / .37 .88 / .36 .90 / .50 .81 / .51 .95 / .26 .91 / .42 .90 / .37 .86 / .58 .88 / .44
NINCO [2] (∼ 5.8K) .87 / .58 .83 / .62 .79 / .61 .69 / .78 .73 / .67 .86 / .56 .83 / .64 .82 / .60 .71 / .81 .80 / .62
OpenImage-O [45] (∼ 17.6K) .95 / .25 .88 / .49 .80 / .49 .88 / .45 .72 / .61 .94 / .29 .88 / .49 .87 / .44 .81 / .70 .85 / .47
Places [56] (10K) .89 / .49 .83 / .60 .75 / .61 .85 / .55 .67 / .71 .89 / .50 .84 / .62 .79 / .60 .82 / .64 .76 / .64
SUN [49] (10K) .90 / .46 .84 / .57 .78 / .57 .85 / .56 .71 / .66 .89 / .47 .84 / .59 .81 / .57 .83 / .60 .77 / .61
Textures [8] (∼ 5.1K) .93 / .32 .88 / .47 .86 / .42 .74 / .86 .83 / .46 .91 / .34 .87 / .49 .88 / .40 .73 / .85 .88 / .38
21K-P Easy [44] (50K) .86 / .50 .79 / .64 .72 / .64 .80 / .68 .65 / .73 .85 / .51 .79 / .65 .75 / .64 .78 / .72 .72 / .68

community [15, 16, 32, 44, 45, 50, 52, 54] has utilized these datasets as they present
unique challenges not seen in small-scale settings. For validation, to predict an
operational threshold, we utilize 20% of ImageNet-21K-P Hard (9.8K images)
as our surrogate unknowns. For testing, NINCO, OpenImage-O, Textures, and
ImageNet-21K-P Easy are entirely used, while others sample 10K images from
a manual selection of classes. Further descriptions of all datasets and splits are
provided in the supplemental.

Evaluation Metrics. To align with existing literature, we utilized common
metrics in Tab. 2, namely, Area Under the Receiver Operating Curve (AUROC)
and False Positive Rate at a fixed True Positive Rate of 95% (FPR95). Additional
metrics like Area Under Open-Set Classification Rate (AUOSCR) [6] and Open
Area Under ROC Curve (OpenAUC) [46] are provided in the supplemental.
Alongside these, we introduce Operational Open-Set Accuracy (OOSA) in Tab. 1,
where we predict an operational threshold on a validation and a surrogate set
and deploy it at test time. This measure, described in detail in Sec. 3.3, serves as
a more realistic alternative to existing measures. When evaluating OSR methods
in real-world scenarios, other measures are insufficient as they do not provide an
operating point for deployment and are usually only evaluated with a test set.

4.2 Results

Our main results are presented in Tab. 1 and 2, where we report performance
on each unknown dataset mentioned in Sec. 4.1. We compare our approach with
two commonly seen methods, Maximum Softmax Probability (MSP) [16,44] and
Maximum Logit (MaxLogit) [15, 44], along with the recently introduced Nearest
Neighbor Guidance (NNGuide) [32] and SCALE [50]. We omit comparisons with
older techniques such as OpenMax [1] and EVM [35] as they are much worse.
According to the OpenOOD [52,54] Benchmark leaderboard5 for ImageNet-1K,

5https://zjysteven.github.io/OpenOOD

https://zjysteven.github.io/OpenOOD
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Table 3: Different Validation - Knowns & Unknowns Surrogate. The Op-
erational Open-Set Accuracy (OOSA) (↑) of all methods on a different validation set.
To compute, we validate methods on ILSVRC2012 val [36] (50K images) as knowns
and 21K-P Easy [44] (50K images) as unknowns surrogate and predict an operational
threshold. Then, we deploy each method’s threshold and test on ImageNetV2 [34]
(10K images) and specified unknowns. OSR is performed again on extractions from
Hiera-H [37] and ConvNeXtV2-H [48]. The best scores are in bold.

Unknowns
(# images)

OOSA ↑
Hiera-H [37] ConvNeXtV2-H [48]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

iNaturalist [17] (10K) 0.863 0.808 0.780 0.808 0.716 0.842 0.806 0.794 0.759 0.763
NINCO [2] (∼ 5.8K) 0.733 0.730 0.704 0.655 0.654 0.759 0.733 0.726 0.643 0.695
OpenImage-O [45] (∼ 17.6K) 0.885 0.810 0.736 0.809 0.649 0.865 0.821 0.786 0.746 0.757
Places [56] (10K) 0.801 0.748 0.684 0.766 0.611 0.795 0.753 0.708 0.731 0.664
SUN [49] (10K) 0.812 0.752 0.702 0.771 0.635 0.802 0.757 0.722 0.738 0.679
Textures [8] (∼ 5.1K) 0.813 0.746 0.739 0.691 0.706 0.784 0.750 0.757 0.657 0.732
21K-P Hard [44] (49K) 0.634 0.673 0.583 0.535 0.515 0.647 0.672 0.593 0.559 0.566

NNGuide stands out as the leader in the OOD space, closely followed by SCALE.
We caution against relying solely on OOD methods and metrics, as they may
not accurately reflect OSR performance. Note, some OSA and ROC curves are
found in the supplemental.

When utilizing both architectures (Hiera-H & ConvNeXtV2-H) as feature
extractors, PostMax outperforms all other methods in every measure (OOSA,
AUROC, FPR95) on each unknown dataset. PostMax demonstrates superior
performance, emphasizing robustness and generalizability. Effectively, PostMax
achieves an excellent trade-off between classification accuracy and unknown
rejection. Overall, the results suggest that a system operator can seamlessly
integrate PostMax, enhance the performance beyond good closed-set classifiers,
and confidently select the operational threshold that best suits its operation.

Statistical Testing. To underscore the significance of performance differences
between algorithms in our experiments, we prioritized the assessment of statistical
significance. As a result, we performed paired, two-tailed t-tests, with Bonfer-
roni corrections, to compare PostMax with the four methods (MSP, MaxLogit,
NNGuide, and SCALE) using both architectures (Hiera-H and ConvNeXtV2-H)
across 5 fold runs for each metric (OOSA, AUROC, and FPR95). On Hiera-H,
PostMax (1) OOSA scores improvements range from 2.5% to 12.4% with corre-
sponding P-values all less than 1.0E−7, (2) AUROC scores improvements range
from 5.7% to 17.9% with corresponding P-values all less than 1.0E−8, and (3)
FPR95 scores improvements range from 12.7% to 22.5% with corresponding
P-values all less than 1.0E−8. Similarly, on ConvNeXtV2-H, PostMax (1) OOSA
scores improvements range from 2.3% to 10.4%, (2) AUROC scores improve-
ments range from 4.7% to 10.6%, and (3) FPR95 scores improvements range
from 9.6% to 28.1%, where all corresponding P-values are less than 1.0E−8 for
all tests on all three metrics. In summary, the t-tests conducted for PostMax,
considering the combined scores of all metrics across all datasets and architectures,
revealed very statistically significant differences compared to every other method.
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Table 4: Different Testing - Prior Metrics. The AUROC (↑) and FPR95 (↓) of
all methods on different test sets. To compute, we test each method on ImageNetV2 [34]
(10K images) as knowns and specified unknowns. OSR is performed again on extractions
from Hiera-H [37] and ConvNeXtV2-H [48]. The best scores are in bold.

Unknowns
(# images)

AUROC ↑ / FPR95 ↓
Hiera-H [37] ConvNeXtV2-H [48]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

PostMax
(Ours)

MSP
[16, 44]

MaxLogit
[15, 44]

NNGuide
[32]

SCALE
[50]

iNaturalist [17] (10K) .96 / .16 .92 / .37 .88 / .37 .91 / .40 .80 / .55 .95 / .23 .91 / .41 .90 / .37 .87 / .53 .87 / .44
NINCO [2] (∼ 5.8K) .88 / .52 .83 / .61 .77 / .62 .71 / .72 .70 / .71 .87 / .54 .83 / .63 .81 / .60 .73 / .78 .79 / .63
OpenImage-O [45] (∼ 17.6K) .96 / .20 .87 / .48 .79 / .49 .90 / .38 .70 / .64 .94 / .27 .88 / .49 .86 / .43 .82 / .65 .84 / .48
Places [56] (10K) .90 / .44 .83 / .60 .74 / .62 .87 / .48 .65 / .74 .89 / .48 .83 / .61 .78 / .60 .84 / .59 .74 / .64
SUN [49] (10K) .91 / .41 .84 / .57 .77 / .58 .87 / .49 .69 / .70 .90 / .44 .84 / .59 .80 / .57 .84 / .55 .76 / .61
Textures [8] (∼ 5.1K) .94 / .27 .88 / .47 .85 / .42 .77 / .79 .81 / .49 .92 / .32 .87 / .49 .88 / .39 .75 / .82 .87 / .39
21K-P Hard [44] (49K) .77 / .68 .73 / .73 .68 / .73 .68 / .76 .62 / .82 .76 / .72 .74 / .75 .70 / .74 .67 / .82 .67 / .79

4.3 Ablation Study

In Tab. 3 and 4, we investigate the effects of varying the validation datasets
(knowns and unknowns surrogate). We interchanged ImageNetV2 with ILSVRC2012
val for knowns and 21K-P Hard with 21K-P Easy for the unknowns surrogate.
Unlike in Tab. 1, this involves validating on a larger number of knowns and
unknowns, with an easier unknowns surrogate. Performance remained consistent
regardless of the datasets.

Also, we investigated the impact of other architectures as extractors and
interchanged pre-trained models (ILSVRC2012-1K only w/ 224 crops) with Meta’s
ViT-H [14] and ConvNeXt-L [24]. Results showcasing PostMax’s robustness are
in the supplemental.

Lastly, we explored the impact of varying the application-dependent α from
Eq. (2) and the normalization (L2) within PostMax. Details and results are in
the supplemental.

5 Discussion

This paper introduces the new evaluation metric Open-Set Accuracy (OSA) (2);
we framed the evaluation of an open-set problem as predicting a threshold and
then evaluating open-set accuracy at that threshold. This supports an engineer
selecting an algorithm and a threshold to be applied in some Operational setting.

In real-world scenarios, unknown samples can be drawn from an unlimited
variety, unlike known samples, which are assumed to be related to the training
data. Thus, the evaluation must consider the computation of the predictive
threshold on validation data and a separate evaluation on test data. The quality
of the predicted threshold will depend on many factors with the two most
influential being (1) how representative are the surrogate samples of the real
unknowns, and (2) the relative proportion of knowns and unknowns. In Sec. 4.3
and our supplemental, we explore some variations of those factors.

Maybe not surprisingly, if we train with “harder” unknowns, we generally see
better performance. As shown in Tab. 1 and 2, the novel PostMax algorithm is
better on unknowns across two networks (other networks in the supplemental).
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However, as shown in Sec. 4.3, when 21K-P Easy is used as our unknowns
surrogate, PostMax does not exhibit an advantage on 21K-P Hard. In general,
21K-P Hard poses the most significant challenge for all algorithms. Notably, the
sets close visual and semantic similarity to known samples suggests it represents
a fine-grained categorization challenge rather than a typical open-set scenario.

One can adjust the importance of knowns vs. unknowns either by explicitly
weighting them or implicitly through their relative percentages in the data.
Although performance degrades when there is a significant disparity in their
importance during threshold prediction stages, PostMax consistently outperforms
and demonstrates greater stability across all thresholds. Refer to the supplemental
for further details.

Finally, to account for inherent random variations in predictions and tests,
we developed training/validation/test splits, which are available on the GitHub
repo. This protocol enables rigorous experimentation to assess the statistical sig-
nificance of our evaluation. While the paper demonstrates statistically significant
improvements across all results, some ablations in the supplemental do not.

6 Conclusion

This paper contributes to OSR research by shifting focus from common metrics
on small-scale experiments to more realistic scenarios and datasets, thereby
fostering more practically relevant research. We revisited and revised the criteria
for effective open-set metrics as suggested by Wang et al. [46], making them
more applicable to real-world scenarios. Our proposed Operational Open-Set
Accuracy (OOSA), which incorporates known and unknown samples, offers a
comprehensive metric and facilitates the selection of the most effective method
and operating threshold for system operators.

Our investigation of deep feature magnitudes of unknown samples from
various ILSVRC2012 pre-trained networks yielded surprising findings. Contrary
to smaller-scale studies [10, 31], we observed that these magnitudes are often
larger for unknown than for known samples. This observation was consistent
across multiple networks and types of unknown samples. Thus, we introduced
our novel PostMax algorithm, refining normalized logit values from closed-set
architectures into real probabilities of class inclusion using a Generalized Pareto
Distribution (GPD). This distribution method offers advantages over previous
extreme-value-based techniques, including negating the need to select a tail
size and minimizing the influence of outliers. Also, it eliminates the need to
define negative training samples as representatives of unknown classes, a common
approach in much of the OSR literature that has not yielded a sufficient solution.

While a good closed-set classifier is an important place to start [44], our novel
PostMax algorithm shows that one can do better than “all you need” and that
for operational usage, one needs to predict a threshold to use. With this paper,
we empower engineers to operationalize their usage of OSR.
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