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Appendix

In this supplemental file, we provide the following materials:

– Sec. A.1: more illustrations of noise prediction error ϵFT (t) by different dif-
fusion models ϵ(t) (referring to Sec. 3.1 and Fig. 1 in the main paper);

– Sec. A.2: more 2D toy experiments of different methods (referring to Sec.
3.2 and Fig. 2 in the main paper);

– Sec. A.3: more details of 3D generator architectures (referring to Sec. 3.2
and Fig. 3 in the main paper);

– Sec. A.4: more corpus details (referring to Sec. 4.1 in the main paper);
– Sec. A.5: more implementation details (referring to Sec. 4.2 in the main

paper);
– Sec. A.6: more results with MVDream as the 2D diffusion prior. Including

the prompt-specifc generation and prompt-amortized training (referring to
Sec. 4.2 and Sec. 4.3 in the main paper);

– Sec. A.7: the discussion and comparison with datadriven methods (referring
to Sec. 4.2 in the main paper);

A.1 More Illustrations of Noise Prediction Error

In this section, we provide more illustrations of the noise prediction error by
various pre-trained diffusion models, including the 2D ϵ-prediction model [2,29]
and the v-prediction model [1, 30], and the 3D diffusion model [6]. We plot the
the noise prediction error against timesteps in Fig. 1. For each text prompt
displayed at the top of the sub-figures, we use it as the condition to generate 16
samples. We then introduce a single instance of Gaussian noise to each sample
and execute one diffusion step at 100 different timesteps. The DDPM [9] is used
as the noise scheduler, as done in VSD [38]. The average noise reconstruction
error is then calculated over the timesteps and the 16 data samples.

2D ϵ-prediction diffusion model. The ϵ-prediction model is widely adopted
in the field of text-to-3D synthesis [17,28,33,38,41]. In our tests, we employ the
commonly used SD-v2.1-base model [2]. The noise prediction error curves for
four prompts sourced from Magic3D [18] are presented in Fig. 1(a), from which
we see a clear decrease of noise prediction error with the timestep going from
Tmin to Tmax.

2D v-prediction diffusion model. The v-prediction model, introduced by
Salimans et al . [30], accelerates the generation process by predicting velocity
rather than noise. We test this model using the well-known SD-v2.1 [1] with
4 prompts sourced from Magic3D [18]. To calculate the noise prediction error,
we convert the velocity predictions into noise predictions [30]. As depicted in
Fig. 1(b), the v-prediction model also exhibits reduced prediction errors as the
timestep goes from Tmin to Tmax.

3D diffusion model. Apart from the above 2D diffusion models, we also
conduct experiments on a 3D diffusion model DiffTF [6], which is a 3D gener-
ator trained on 3D object datasets [40]. It is configured with ϵ-prediction and
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Fig. 1: The behavior of noise prediction error of different diffusion models, including
(a) 2D ϵ-prediction [2] diffusion model, (b) 2D v-prediction [1] diffusion model, and (c)
3D diffusion model. Zoom in for a better view.

performs the diffusion process on tri-plane [7]. As shown in Fig. 1(c), its noise
prediction error e(t) also reduces as timestep t increases, which is similar to 2D
diffusion models. In particular, e(t) drops rapidly before t = 200. This is mainly
caused by the much smaller scale (e.g ., 6k 3D objects) of the 3D dataset [8]
compared with the 2D datasets [32] (e.g ., 2B text-image pairs). Therefore, the
network tends to overfit the 3D data with smaller prediction error.

A.2 More 2D Toy Experiments

To further validate the effectiveness of the introduced timestep interval ∆t in
our ASD, we provide more 2D toy experiments in Fig. 2, covering a wild range
of subjects, i.e., plants, objects, animals, and scenes.

From Fig. 2, we can see that SDS [26] and CSD [47] do not perform very
well. SDS generates high-saturation results because of the large CFG [10], while
CSD shows noisy and blurred patterns so that the subjects are difficult to iden-
tify. VSD generates good quality results by fine-tuning the 2D diffusion model.
However, as we discussed in the main paper, it hurts the 2D diffusion model’s
comprehension capability to numerous text prompts, leading to mode collapse
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Fig. 2: 2D toy experiments by SDS [26], CSD [10], VSD [38] and our ASD with different
settings of ∆t.

when the size of text prompts is extended. Without changing the diffusion prior,
our proposed ASD can achieve the same high quality results as VSD.

We also ablate the setting of ∆t in this experiment. We see that if we set
∆t = 0, it leads to a noisy pattern similar to CSD. By setting it as a fixed
interval, e.g ., ∆t = ηTmax, it would result in poor texture or geometry, such as
the panda in Fig. 2. By setting ∆t relevant to t as ∆t = η(t− Tmin), the results
can be much improved. Finally, the results are further enhanced by randomly
sampling ∆t via ∆t ∼ U [0, η (t− Tmin)]. The detailed explanations can be found
in Sec. 3.2 of the main paper.

A.3 More 3D Generator Architecture Details

Hyper-iNGP. We replicate the hypernetwork design from ATT3D [21], inte-
grating it with iNGP [25] to achieve prompt-amortized text-to-3D synthesis. As
illustrated in Fig. 3, the hypernetwork projects text prompt embeddings into the
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Fig. 3: The network architecture and rendering scheme of Hyper-iNGP(left), 3DConv-
net(middle) and Triplane-Transformer (right)

weights of linear layers. The HashGrid representation [25] encodes sample points
independently, which are then transformed by the hypernetwork-parameterized
linear layers into prompt-specific color c and density σ. Following ATT3D [21],
another hypernetwork is implemented to create a prompt-specific background.
The ray direction is encoded into a separate HashGrid, which is then projected
to the background color cbg, facilitating the creation of high-resolution back-
grounds. The spectral normalization [24] can be optionally turned on to stabilize
the training with SDS [26].

3DConv-net. As illustrated in Fig. 3, our 3DConv-net mirrors the Style-
GAN2 model [14], using modulated convolutions to upscale features directed by
the latent code w, which is conditioned on Gaussian noise z ∼ N (0, 1) and the
text prompt embedding as in text-driven 2D GANs [31]. Transitioning from 2D
to 3D, we substitute StyleGAN2’s components with their 3D alternatives, mod-
ulated by w. The network up-samples a 43 dimensional voxel to 1283 dimension.
For quicker convergence, we add 3D bias within blocks for processing voxels
with the dimension from 83 to 643. Rendering is accomplished by interpolating
voxel features to determine the color and density of each point along the rays.
A background module is incorporated as well.

Triple-Transformer. Recently, the Transformer [37] architecture has gained
popularity in 3D generation tasks for its scalability, especially in data-driven
methods [12, 15, 20, 36, 39, 43–45, 49]. However, it has not been applied in re-
cent score-distillation-based methods yet [16, 27, 42]. In this paper, we conduct
experiments to explore the performance of Transformer architecture in score-
distillation-based text-to-3D generation. As shown in Fig. 3, we employ 12 Trans-
former layers, each comprising self-attention, cross-attention, and feed-forward
networks. The text prompt is first processed by the CLIP text encoder and
then fed into the cross-attention to set the condition. The query embeddings
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Fig. 4: Qualitative comparison between SDS* and ASD on prompt-specific text-to-3D
generation, with iNGP as 3D representation and MVDream as 2D diffusion prior.

are passed through these layers, and then reshaped and up-sampled to form a
triplane, which is an efficient 3D representation [7].

Rendering. For prompt-specific optimization, we use the volume rendering
in NeRF [38] and keep the configuration in prior arts [38]. For prompt-amortized
training, we implement VolSDF [46], which uses 64 sample points for coarse
sampling and 256 sample points for fine sampling [23]. We found that keeping
the mean absolute deviation fixed to be 30 can achieve good results. We render
64× 64 resolution for 3DConv-net and 256× 256 for Hyper-iNGP in the whole
training period.

A.4 More Details about Corpus

In this work, we utilize five corpora to assess our ASD for prompt-based text-to-
3D generation. Apart from MG15 [18], DF415 [26], AT2520 [21] and DL17k [16],
we also provide the CP100k corpus. CP100k consists of 100k corpus for training
and 1k corpus for test, which are sampled from Cap3D [22].

A.5 More Implementation Details

Prompt-specific Text-to-3D. Our code is based on the open-source Text-to-
3D codebase [3]. We follow the configuration in ProlificDreamer [4] in specifying
the parameters, including the training iterations, optimizer, batch-size and learn-
ing rate. All experiments are conducted on one Nvidia V100 GPU.

Prompt-amortized Text-to-3D. The experiments for prompt-amortized
text-to-3D are conducted on 8 Nvidia A6000 GPUs, with a per-GPU batch size
of 1. Training on MG15, DF417, AT2520, DL17k and CP100k requires 50k, 100k,
50k, 200k and 300k iterations, respectively.

2D Diffusion Guidance. For 2D experiments, utilizing the diffusion model [2]
with T = 1000 timesteps, we adhere to the existing protocol [4] by setting
Tmin = 20 and Tmax = 980. In the 3D experiments, we adopt the approaches
in [38] and [33], where Tmax is progressively reduced from 980 to 500 to enhance
the quality of generation outputs. We start with a higher Tmin and decrease it
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Fig. 5: Qualitative comparison among SDS* [33] and our ASD on DL17k corpus with
Triplane-Transformer as 3D generator and MVDream as 2D diffusion prior.

Sim↑ R@1↑

SDS* 0.200 0.159

ASD
∆t = η(t− Tmin) η = 0.1 0.205 0.231

∆t ∼ U [0, η(t− Tmin)]
η = 0 0.213 0.293
η = 0.1 0.219 0.294

Table 1: Comparison with SDS* and ablation study on ASD using MVDream as the
2D diffusion model.

linearly from 500 to 20, which helps to mitigate the Janus issue, as adopted
in [5]. Additionally, when Stable Diffusion is used as the 2D diffusion model, we
employ the Perp-neg strategy [5] to further address the Janus problem.

A.6 Results with MVDream

As a score distillation method, ASD is open to the choice of 2D diffusion mod-
els. In this section, we evaluate ASD’s compatibility with another representative
2D diffusion model, MVDream [33]. To conduct score distillation, MVDream
takes four views as input for rendering, and explicitly uses the camera poses
as prompts. We conduct comparison and ablation study in prompt-specific op-
timization with iNGP as the 3D representation, as well as prompt-amortized
text-to-3D with Triplane-Transformer as the 3D generator.

Results with iNGP as 3D Representation. MVDream officially imple-
ments a modified SDS method by incorporating the CFG re-scale technique [19]
to alleviate large gradient norms caused by SDS. We refer to this modified SDS as
SDS*. We qualitatively compare the performance of SDS* and ASD on prompt-
specific text-to-3D. The results are shown in Fig. 4. It can be seen that SDS*
produces abnormal geometry with solid matter covering most of the 3D space,
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Fig. 6: The visual comparison with data-driven methods LGM [34] and Shape-E [13].

and it generates grayish textures. In contrast, ASD generates more natural ge-
ometry and textures.

Results with Triplane-Transformer as 3D Generator. We then employ
MVDream for prompt-amortized text-to-3D by using Triplane-Transformer as
the 3D generator. In addition to the comparison with SDS*, we ablate ASD
without timestep shift to further solidify our proposed asynchronous timesteps.
The experiments are conducted on DL17k corpus. As shown in Fig. 5, SDS*
tends to produce small geometries. By using ASD with a deterministic timestep
shift, i.e. ∆t = η (t− Tmin), the results are improved yet still unsatisfactory.
Without any timestep shift in ASD, i.e., η = 0, the 3D results have some floating
patterns. This happens because without a timestep shift, the model fails to align
the distribution of rendered images with the prior distribution of pre-trained
diffusion model. By using a random timestep shift ∆t ∼ U [0, η (t− Tmin)] and
the magnitude of η = 0.1 in ASD, the results are significantly improved, which
is also reflected in the metrics shown in Tab. 1.

A.7 Discussions with Data-Driven Methods

Our proposed method differs from existing data-driven methods [11,13,34,35,48]
in that we do not require any 3D dataset to train the 3D generator. If the test
text prompts fall into the training distribution, these supervised data-driven
methods may generate better quality outputs than our unsupervised method.
However, by leveraging the strong prior information in pre-trained 2D diffusion
models, our method has better generalization capability to the test prompts. By
using our 3DConv-net trained on DF415 corpus as an example, we compare our
results with open-sourced data-driven 3D generators LGM [34] and Shape-E [13].
Fig. 6 shows the qualitative comparison on some text prompt inputs, which are
are out of the training distribution. We can see that LGM and Shape-E output
poor results. In contrast, ASD can still work well by exploiting the powerful
diffusion priors in pre-trained 2D models.
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