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Abstract. By leveraging the text-to-image diffusion prior, score distil-
lation can synthesize 3D contents without paired text-3D training data.
Instead of spending hours of online optimization per text prompt, re-
cent studies have been focused on learning a text-to-3D generative net-
work for amortizing multiple text-3D relations, which can synthesize 3D
contents in seconds. However, existing score distillation methods are
hard to scale up to a large amount of text prompts due to the dif-
ficulties in aligning pretrained diffusion prior with the distribution of
rendered images from various text prompts. Current state-of-the-arts
such as Variational Score Distillation finetune the pretrained diffusion
model to minimize the noise prediction error so as to align the distribu-
tions, which are however unstable to train and will impair the model’s
comprehension capability to numerous text prompts. Based on the ob-
servation that the diffusion models tend to have lower noise prediction
errors at earlier timesteps, we propose Asynchronous Score Distillation
(ASD), which minimizes the noise prediction error by shifting the diffu-
sion timestep to earlier ones. ASD is stable to train and can scale up to
100k prompts. It reduces the noise prediction error without changing the
weights of pre-trained diffusion model, thus keeping its strong compre-
hension capability to prompts. We conduct extensive experiments using
different text-to-3D architectures, including Hyper-iNGP and 3DConv-
Net. The results demonstrate ASD’s effectiveness in stable 3D generator
training, high-quality 3D content synthesis, and its superior prompt-
consistency, especially under large prompt corpus. Code is available at
https://github.com/theEricMa/ScaleDreamer.
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1 Introduction

Text-to-3D aims to generate realistic 3D contents from the given textual de-
scriptions [40], which is particularly useful in many applications such as virtual
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reality [61] and game design [23]. The main challenge of this task, however, lies in
how to generate high-quality 3D contents conditioned on the abstract and diverse
textual descriptions. Many existing text-to-3D methods [11,12,26–29,32,35,37,
40, 42, 58, 59, 75] are optimization-based ones, which distill the guidance from
the powerful pretrained text-to-image diffusion models [5,11,26,32,42,44,73] via
score distillation [40,59,62,72]. In general, these methods employ the KL diver-
gence to reduce the discrepancy between the distribution of rendered images and
the desired image distribution embedded in the 2D diffusion prior, while they
differ in how to use the pretrained diffusion prior to model the distribution of
rendered images. Extensive efforts have been made to explore prompt-specific
optimization of various 3D representations, including implicit radiance fields [40],
explicit radiance fields [29, 37, 59], DmTets [56, 74] and 3D Gaussians [9]. Typi-
cally, tens of minutes to hours are needed to optimize a single 3D representation
for one prompt to achieve the desired result.

Compared to the aforementioned optimization-based text-to-3D methods,
learning-based methods [6, 21, 31, 36, 43, 54, 65] can largely reduce the compu-
tational cost by training a text-conditioned 3D generative network. With the
availability of 3D object collections [10, 63, 71], a deep network can be trained
in a supervised manner so that 3D outputs can be generated in several seconds.
Unfortunately, the size of existing text-3D datasets is far from sufficient com-
pared to text-image datasets [45], limiting the text-to-3D generation performance
of trained models. Inspired by the optimization-based text-to-3D methods that
use pretrained 2D diffusion models, efforts have been made to train text-to-3D
networks by using 2D diffusion models as supervisors [33, 41, 65] without us-
ing text-3D pairs. For example, a text-conditioned 3D hyper-network is trained
in ATT3D [33] via Score Distillation Sampling (SDS) [40]. Nevertheless, this
method suffers from numerical instability, which has been observed in subse-
quent studies [41,65] that apply SDS to different 3D generator networks.

Despite the success of score distillation in optimization-based text-to-3D gen-
eration [40, 59, 72], its application to learning-based text-to-3D frameworks is
rather limited because of the unstable training or unsatisfactory results. We ar-
gue that the primary challenge lies in how to efficiently and effectively leverage
the pretrained 2D diffusion prior to represent the distribution of images ren-
dered by the 3D generator. For example, SDS [40] forces the rendered images
to adhere to the Dirac distribution, which causes numerical instability in 3D
generator training [33, 65]. Variational Score Distillation (VSD) [59] finetunes
the 2D diffusion prior for distribution alignment via minimizing the noise pre-
diction error. However, the finetuning changes the pretrained diffusion network
and hurts its comprehension capability to numerous text prompts, leading to
mode collapse when the size of text prompts is extended.

To address the above mentioned issues, we propose Asynchronous Score Dis-
tillation (ASD). Like VSD, ASD aims to minimize the noise prediction error.
Different from VSD, ASD does not finetune the pretrained 2D diffusion network;
instead, it achieves the goal by shifting the diffusion timestep. This is based on
the observation that diffusion networks will have smaller noise prediction errors
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in earlier timesteps [67]; therefore, we can shift the timestep to an earlier step to
achieve a similar goal to VSD, i.e., reducing the noise prediction error. In this
way, the diffusion network can be frozen in training and its strong text com-
prehension capability can be well-preserved. The shifted timesteps can be well
sampled from a pre-defined range for most prompts. To evaluate the performance
of ASD, we conduct extensive experiments by using two types of generator archi-
tectures, i.e. Hyper-iNGP [33] and 3DConv-Net [4], across various prompt corpus
sizes. We conduct extensive experiments to evaluate the superiority of ASD to
previous methods, including the stable training of 3D generators, the production
of high-quality 3D outputs, the high content fidelity to input prompts, as well
as its scalability to larger corpus sizes, e.g ., 100k prompts. We also show that
ASD can work with other 2D diffusion models such as MVDream [48], and can
be used to train more 3D generators such as Triplane-Transformer [17].

2 Literature Review

2.1 Text-to-3D with Score Distillation

Text-to-3D takes text description, a.k.a. text prompt y, as input, and outputs
3D representation θ that renders high-fidelity images at any camera view π.
Thanks to the powerful text-to-image diffusion models [32,42,44,48,73], we can
optimize θ to align with y by computing the objective L(x, y) on the rendered
image x = g(θ, π) from camera view π. Through differential rendering, θ can be
updated with the gradient ∇θL(θ, y) = ∂L(x,y)

∂x
∂x
∂θ . This technique is generally

termed as score distillation. Unlike data-driven techniques [6,21,31,43,54], score
distillation approaches [8, 19, 24, 29, 40, 53, 59, 72] can produce high-quality 3D
content without the need for 3D training datasets.

Prompt-Specific Text-to-3D. Existing score distillation methods [40, 59,
72] were originally developed to output a single 3D result θ for a single text
prompt y via online optimization: minθ Eπ,x=g(θ,π)[L(x, y)]. The utilized 3D rep-
resentations, e.g ., NeRF [39,40], DmTet [47,74], and 3D Gaussian [20,30,51,53,
57,70], are not designed to render scenes from varying text prompts. Therefore,
the optimization has to be conducted again for newly provided text prompts.
The optimization process typically costs tens of minutes to hours.

Prompt-Amortized Text-to-3D. To mitigate the computational costs in
prompt-specific methods, recent studies [25, 33, 41, 65] have attempted to use
score distillation to train a text-to-3D generator θ = G(y), aiming to gener-
ate multiple 3D representations from a set of text prompts Sy = {y}. These
methods can generate 3D results from queried text prompt in seconds. As pro-
posed by ATT3D [33], the 3D generator training is performed by minimizing
minG Eπ,y∈Sy,x=g(G(y),π)[L(x, y)] over all text prompts. Unlike data-driven ap-
proaches [17,52,66], score distillation bypasses the scarcity of text-3D data pairs
because the 2D diffusion prior can offer the guidance to align the 3D output
with the input text prompt. However, its application is currently restricted to
training the 3D generator within a limited range of text prompts.
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2.2 Representative Score Distillation Methods

Denote by ϕ the 2D diffusion prior [44,48] and by pϕ (x | y) the text-conditioned
image distribution embedded within ϕ, the objectives of most existing score
distillation methods can be generally concluded as minimizing the objective
L(θ, y) = Eπ,t,ϵ,x=g(θ,π)

[
ω(t)DKL

(
qθt (xt | π) ∥pϕt (xt | yπ)

)]
, where DKL de-

notes KL divergence, qθt (xt | π) denotes the distribution of images x rendered at
camera view π at diffusion timestep t [15], and the same for pϕt (xt | y). ω(t) is a
timestep-dependent weight [40]. yπ denotes the view-dependent strategy [44] or
view-awareness [42,48] to prompt the different camera views [40]. To minimize
this objective, the gradient w.r.t. θ can be calculated as per [59]:

∇θL(θ, y)=Eπ,t,ϵ

ω(t)
−σt∇xt

log pϕt (xt |yπ)︸ ︷︷ ︸
ϵϕ(xt;t,yπ)

−
(
−σt∇xt

log qθt (xt |π)
)︸ ︷︷ ︸

ϵθ(xt;t,π,y)

∂x

∂θ

, (1)

where the first term −σt∇xt log p
ϕ
t (xt | yπ) corresponds to the score function [50]

of the desired image distribution, and it can be achieved by predicting the noise
ϵ ∼ N (0, I) in the noisy image xt = αtx + σtϵ using the pretrained 2D diffu-
sion model ϵϕ (xt; t, y

π) [44, 48]. Existing score distillation methods [40, 59, 72]
mainly differ in how to model −σt∇xt log q

θ
t (xt | π), which corresponds to the

score function of the distribution of rendered images qθ (x | π). We denote this
term in Eq. 1 as ϵθ (xt; t, π, y) in the following context, since it represents a dif-
fusion model that corresponds to θ. A summary of the objectives of major score
distillation methods is shown in Tab. 1.

The objective of Score Distillation Sampling (SDS) [40] is ∇θLSDS(θ, y) ≜
Eπ,t,ϵ

[
ω(t) (ϵϕ (xt; t, y

π)− ϵ) ∂x
∂θ

]
, which approximates the term ϵθ (xt; t, π, y)

in Eq. 1 as the ground-truth noise ϵ. That is, SDS assumes that qθ (x | π) ad-
heres to a Dirac distribution δ (x− g (θ, π)) [59], which is characterized by a
non-zero density at the singular point of x = g(θ, π) and zero density every-
where else. However, updating θ under the Dirac distribution might be trouble-
some [59]. We may need to set the CFG (Classifier Free Guidance) [16] as high
as 100 for model convergence, which will produce excessively large gradients and
lead to unstable optimization. This problem is alleviated by Classifier Score
Distillation (CSD) [72], which uses the classifier component [16] in SDS as
the objective: ∇θLCSD(θ, y) ≜ Eπ,t,ϵ

[
ω(t) (ϵϕ (xt; t, y

π)− ϵϕ (xt; t))
∂x
∂θ

]
. CSD

can be regraded as straightforwardly using the unconditional term of the dif-
fusion prior ϵϕ (xt; t) to represent ϵθ (xt; t, π, y) in Eq. 1. Unfortunately, in the
case of prompt-amortized training, this term may not provide effective gradi-
ent, because ϵϕ (xt; t) is unconditional to the provided text-prompts. In con-
trast, Variational Score Distillation (VSD) [59] models ϵθ (xt; t, π, y) with
another text-aware diffusion model ϵϕ′ (xt; t, π, y), leading to ∇θLVSD(θ, y) ≜
Eπ,t,ϵ

[
ω(t) (ϵϕ (xt; t, y

π)− ϵϕ′ (xt; t, π, y))
∂x
∂θ

]
, where ϵϕ′ (xt; t, π, y) is achieved

by finetuning the pretrained 2D diffusion prior ϵϕ (xt; t, y
π) to align with the

rendered image distribution qθ(x | π) via parameter efficient adaptation [18]. In
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Method Gradient of L(x, y) w.r.t. x = g (θ, π)

SDS [40] Et,ϵ [ω(t) (ϵϕ (xt; t, y
π)− ϵ)]

CSD [72] Et,ϵ [ω(t) (ϵϕ (xt; t, y
π)− ϵϕ (xt, t))]

VSD [59] Et,ϵ [ω(t) (ϵϕ (xt; t, y
π)− ϵϕ′ (xt; t, π, y))]

ASD (Ours) Et,ϵ [ω(t) (ϵϕ (xt; t, y
π)− ϵϕ (xt+∆t; t+∆t, yπ))]

Table 1: Objectives of representative score distillation methods. ASD introduces ∆t
alongside t to align with the rendered image distribution qθ(x | π).

practice, this is conducted by alternatively optimizing θ and finetuning ϕ with
the noise prediction objective ∥ϵϕ (xt; t, y)− ϵ∥22 [15] such that:

Eπ,t,ϵ

[
∥ϵϕ′ (xt; t, π, y)− ϵ∥22

]
≤ Eπ,t,ϵ

[
∥ϵϕ (xt; t, y

π)− ϵ∥22
]
. (2)

The above equation reveals that a better alignment with the distribution
of qθ(x | π) can be achieved by a more accurate noise prediction.

While VSD achieves state-of-the-art results in prompt-specific text-to-3D [14,
59], it changes the diffusion prior’s parameters by alternately optimizing θ and
finetuning ϕ. This forms a bi-level optimization, known to be problematic in
generative adversarial training [55], and may be troublesome for training prompt-
amortized text-to-3D models, because the change of pre-trained diffusion model
might impairs its comprehension capability on a wide range of text-prompts. In
specific, the pre-trained 2D diffusion model may have to sacrifice its generation
capability in order to align with the distribution of rendered images, making it
fail to produce good gradient for training the 3D generator.

3 Asynchronous Score Distillation (ASD)

3.1 Objective of ASD

From the above discussions in Sec. 2.2, it can be seen that one key issue in
VSD is to minimize the noise prediction error so that the model output can be
aligned with the desired distribution of rendered images. VSD achieves this goal
via finetuning the pre-trained 2D diffusion model, which however sacrifices its
comprehension capability on text prompts. One interesting question is: can we
minimize the noise prediction error without changing the pre-trained diffusion
network weights? Fortunately, we find that this is possible and in this section
we present a new objective function to achieve this goal.

Recall that diffusion models solve the stochastic differential equation [50] via
reversing the noise added along different stages, a.k.a. diffusion timestep t ∈
{Tmax, . . . , Tmin} via xt = αtx+σtϵ [15]. The influence of the noise ϵ ∼ N (0, I)
on the image x is incrementally reduced as the process progresses from the initial
timestep Tmax to the final timestep Tmin, which is controlled by the scalars αt

and σt. Consequently, the diffusion model’s noise prediction accuracy will vary
with the timestep t, at which the identical noise ϵ is added. To evaluate this,
we consider a diffusion model with fixed image x, noise ϵ and condition y, but
varied timestep t. We denote such a diffusion model as ϵ(t) and explore how its
prediction error, denoted by e(t)=∥ϵ(t)− ϵ∥22, changes with t.
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The model ϵ(t) can be a pre-trained 2D diffusion model (such as Stable
Diffusion [44]). We denote by ϵPT (t) such a model, and investigate the behaviour
of its noise prediction error, denoted by ePT (t). In Fig. 1, we plot the curve (i.e.,
the blue colored curve) of ePT (t) versus t. We use a corpus with 15 text prompts
from Magic3D [40] to draw this curve. For each prompt y, we generate 16 images
with VSD [59]. Then for each image x, we apply one instance of Gaussian noise ϵ
and conduct a single diffusion step with 100 distinct timesteps. The average noise
reconstruction error is then calculated for these timesteps across all prompts and
images. We can see from the curve of ePT (t) that earlier diffusion timesteps (e.g .,
timestep 600) will have lower noise prediction error than later timesteps (e.g .,
timestep 200). Such a trend holds for almost every image sample x and noise
sample ϵ because the well-trained diffusion model is frozen in our case. Since the
noise prediction error declines from Tmin (i.e., late diffusion timestep) to Tmax

(i.e., early diffusion timestep), we can conclude that for a given timestep t and
a timestep shift 0 ≤ ∆t ≤ Tmax − t, the following inequality holds:

Eπ,t,ϵ

[
∥ϵϕ (xt+∆t; t+∆t, yπ)− ϵ∥22

]
≤ Eπ,t,ϵ

[
∥ϵϕ (xt; t, y

π)− ϵ∥22
]
, (3)

which implies that more accurate noise predictions can be achieved at
earlier diffusion timesteps.

The above property of diffusion models has also been observed by Yang
et al . [68], who indicated that as the timestep shifts from Tmax towards Tmin,
the variance in noise prediction increases, as evidenced by the rising Lipschitz
constants, which suggests an increased instability in noise prediction and larger
noise prediction errors. Such a behavior can be observed in both ϵ-prediction and
v-prediction models, as well as in 2D and 3D diffusion models (please refer to
supplementary material for details). This can be intuitively explained as follows.
When t → Tmax, xt = αtx+σtϵ → ϵ, then it is easier to achieve ϵϕ (xt; t, y

π) ≈ ϵ
because the model can manage to copy the input as the output.

The similarity between Eq. 3 and the fine-tuning objective of VSD in Eq. 2
inspires us to investigate whether simply shifting earlier the timestep could fulfill
the fine-tuning requirements of VSD without modifying the pre-trained 2D dif-
fusion network parameters. Specifically, we employ the pretrained 2D diffusion
model with shifted timestep to approximate the diffusion model of rendered im-
ages in Eq. 1 as ϵθ (xt; t, π, y) ≜ ϵϕ (xt+∆t; t+∆t, yπ), resulting in the following
Asynchronous Score Distillation (ASD) objective function:

∇θLASD(θ, y) ≜ Eπ,t,ϵ

[
ω(t) (ϵϕ (xt; t, y

π)− ϵϕ (xt+∆t; t+∆t, yπ))
∂x

∂θ

]
. (4)

We can see that rather than iteratively fine-tuning the diffusion network as in
VSD, ASD achieves similar goal by shifting the timestep t with an interval ∆t
in each step, which is much more efficient. One key variable introduced in ASD
is the timestep shift ∆t, which will be discussed in the next subsection.
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Fig. 1: Illustration of the noise prediction error of the pre-trained 2D diffusion model
ϵPT (t) and that of the fine-tuned 2D diffusion model ϵFT (t). We can see that the curve
of eFT (t) is positioned under that of ePT (t), and we can shift the timestep of ϵPT (t)
to ϵPT (t+∆t) to approximate the noise prediction error of ϵFT (t).

3.2 The Setting of Timestep Shift ∆t

Before discussing how to set the timestep shift ∆t, let’s plot another curve, i.e.,
the noise prediction error of ϵθ (xt; t, π, y) w.r.t. timestep t. Actually, in the pro-
cess of generating x with VSD, we will have the fine-tuned model ϵϕ′ (xt; t, π, y)
as the by-product, which is used to represent ϵθ (xt; t, π, y) in Eq. 1. Therefore,
with fixed x, ϵ and y, the noise prediction error of the fine-tuned diffusion model,
denoted by ϵFT (t), can be calculated as eFT (t)= ∥ϵϕ′(t)− ϵ∥22.

The curve of eFT (t) w.r.t. t (i.e., the yellow curve) is plotted in Fig. 1 by
using the same data as in plotting ePT (t). We can see that the curve of eFT (t)
is positioned under ePT (t) because eFT (t) is obtained by the fine-tuned diffu-
sion model ϵFT . However, as mentioned in Sec. 2.2, this fine-tuning changes the
weights of pre-trained diffusion model and might damage its ability in compre-
hending text-image pairs. Therefore, we propose to fix the pre-trained model
ϵPT (t) but shift it to ϵPT (t+∆t) to approximate the desired ϵFT (t). Referring
to Fig. 1, we could shift ϵPT (t) to an earlier timestep to achieve this goal. For
example, at timestep t0 and with a time shift ∆t0 > 0, we can use ϵPT (t0+∆t0)
to approximate the noise prediction error of ϵFT (t0).

On the other hand, the magnitude of ∆t will vary with t. Let’s come to
another timestep t1 in Fig. 1, where t1 is earlier than t0. Because the decreasing
speeds of both ePT and eFT will be reduced with t going to Tmax, the magnitude
of ∆t1 will be increased to approximate eFT (t1). In other words, the magnitude
of ∆t should grow when t goes from Tmin to Tmax. We heuristically set this
relationship as ∆t = η(t − Tmin), where η ∈ [0, 1] is a hyper-parameter that
controls the length of shift range. Finally, it should be pointed out that the curves
in Fig. 1 will vary a little for different training iterations, rendered images x and
text prompts y. Therefore, ∆t should fall into some range S(t). In practice, we
set ∆t ∼ S(t) = U [0, η(t− Tmin)], which follows a uniform distribution within 0
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Fig. 2: Left and middle: 2D toy examples by SDS [40], CSD [72], VSD [59] and our
proposed ASD. Right: Gradient norms generated by different methods.

Algorithm 1 Asynchronous Score Distillation (ASD)
Input: 3D representation θ; Text prompt y; Hyperparamter η; 2D diffusion prior ϵϕ

1 while not converged do
2 Sample a camera pose π
3 Render an image x = g(θ, π)
4 Sample a timestep t ∼ U [Tmin, Tmax], Gaussian noise ϵ ∼ N (0, I)
5 Sample a timestep shift ∆t ∼ S(t) = U [0, η (t− Tmin)]
6 xt ← αtx+ σtϵ, xt+∆t ← αt+∆tx+ σt+∆tϵ

7 Update θ with ∆θ ← ω(t) (ϵϕ (xt; t, y
π)− ϵϕ (xt+∆t; t+∆t, yπ)) ∂x

∂θ

8 end

and η(t − Tmin). The pseudo-code of ASD is summarized in Alg. 1, which can
be applied to both prompt-specific and prompt-amortized text-to-3D tasks.

2D toy experiments. To verify the proposed timestep shift strategy, we
follow the paradigm in [59] to test SDS, CSD, VSD and our ASD on 2D toy
examples. The left column of Fig. 2 shows the results of SDS, CSD, VSD, and the
middle column shows the results of ASD with different sampling strategies of ∆t.
One can see that the proposed sampling strategy ∆t ∼ S(t) = U [0, η (t− Tmin)]
yields similar results to VSD [59]. Besides, we show the gradient norm produced
by these score distillation methods in the right column of Fig. 2. One can see
that the range of gradient norm produced by ASD is similar to that of VSD.
However, the gradient norm of SDS is more than 10 times larger than ASD and
VSD because it needs to set CFG=100 for convergence [40,59,72]. Such a large
gradient may result in training instability. We append more 2D results in the
supplementary material to further validate our proposed sampling strategy.

Text-to-3D Synthesis with ASD. As a score distillation method, ASD is
open to the selection of 3D generator architectures [4,17,22,33,39]. The general
pipeline of ASD for text-to-3D synthesis is shown in Fig. 3. It takes a rendered
image as input and diffuses it in two timesteps t and t+∆t. The noise prediction
difference is used as the gradient to optimize the 3D representation of generator.
In this work, in addition to prompt-specific generation, as done in most existing
score distillation works [16, 28, 40, 59, 64], we focus more on prompt-amortized
text-to-3D and conduct thorough experiments to evaluate the effectiveness of
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Fig. 3: Overview of Asynchronous Score Distillation (ASD). As illustrated in the left
sub-figure, ASD can be employed for prompt-specific generation by optimizing 3D
representations for each prompt, as well as for prompt-amortized generation by training
a text-to-3D generator. The right sub-figure depicts how ASD uses the difference in
noise predictions at asynchronous timesteps to update the 3D network parameters.

ASD with representative 3D generator architectures, including Hyper-iNGP
and 3DConv-net, by using Stable Diffusion as the 2D diffusion model. Hyper-
iNGP is adopted by ATT3D [33], which integrates a prompt-agnostic hash-grid
spatial encoding [39] with prompt-conditioned decoding layers to output color
and density. 3DConv-net [4] is a 3D generator that maps the provided condition
to voxel using 3D convolution. They are chosen in our experiments because they
represent two groups of 3D generators that inject the condition through implicit
mapping function [3,21] or explicit space representation [7,17,46,49]. The results
are shown in Sec. 4. We also conduct experiments to demonstrate that ASD can
work with other 2D diffusion models such as MVDream [48], and can be used to
train other 3D generator architectures such as Triplane-Transformer [17]. More
details of these experiments can be found in the supplementary material.

4 Experiments

4.1 Experimental Settings

Comparison Methods. We compare ASD with state-of-the-art score distilla-
tion methods, including SDS [40], CSD [72] and VSD [59]. We adhere to their
official codes for training prompt-amortized text-to-3D networks. For example,
the CFG [16] values for SDS, CSD and VSD are configured to 100, 1, and 7.5,
respectively. In addition, we compare with existing prompt-amortized method
ATT3D [33] (whose code is not released yet) by replicating its reported results.

Implementation Details. We employ VolSDF [69] to render images from
the 3D generators. For Stable Diffusion, we employ SD-v2.1-base [1] for all score
distillation methods for fair comparison. As configured in VSD [59], we set the
CFG value as 7.5 for the pre-trained diffusion model in ASD, and 1 for the dif-
fusion model of rendered images. The resolution of rendered images by Hyper-
iNGP is set to 256 × 256, while that of 3DConv-net and Triplane-Transformer
is set to 64× 64 for GPU memory considerations. Other details are in the sup-
plementary material.

Prompt Corpus. To thoroughly evalutate the capability of ASD in prompt-
amortized text-to-3D synthesis, we employ multiple datasets encompassing a
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range of text prompt quantities. MG15 includes 15 prompts from Magic3D [29];
DF415 comprises 415 prompts from DreamFusion [40]; and AT2520 contains
2520 compositional prompts of animals from ATT3D [33]. DL17k contains 17k
compositional prompts of human with daily activities, proposed by [25]. While
AT2520 and DL17k provide a larger number of prompts than DF415, the prompt
diversity of them is relatively low due to the predefined templates.

To test ASD’s performance with an even larger scale of prompts, we intro-
duce a novel prompt corpus named CP100k. This corpus consists of 100,000 text
prompts filtered from the image descriptions collected by Cap3D [34], which was
developed to test text-to-image model performance. To the best of our knowl-
edge, it is the first time to evaluate score distillation methods on such a scale of
text prompts. Meanwhile, it should be clarified that this work is focused on ex-
amining the score distillation performance rather than prompt generalization, so
the test prompts share the same distribution as training prompts. More details
of the prompt corpus are in supplementary material.

Evaluation Metrics. We render 120 surrounding view images as the 3D
synthesis result from each prompt. Similar to previous text-to-3D works [25,33,
33,40], we compute the CLIP recall, i.e., the classification accuracy by applying
CLIP model to the rendered images to predict the correct text prompt, as one
performance metric, denoted by "R@1". Additionally, we calculate the CLIP
text-image similarity between generated images and input prompts as another
metric [54,60], denoted by "Sim".

4.2 Evaluation Results

Results with iNGP/Hyper-iNGP as 3D Representation. The iNGP [39]
architecture is designed for prompt-specific text-to-3D generation. Hyper-iNGP
has the same spatial encoding as iNGP except that the weights of the decoding
layer depend on the text prompt. To eliminate the effect caused by architecture
difference as much as possible, we adopt iNGP for prompt-specific text-to-3D
tasks, and Hyper-iNGP for prompt-amortized tasks. Our experiments are carried
out on the MG15 dataset. For prompt-specific tasks, we optimize an individual
iNGP [39] for each MG15 prompt; while for the prompt-amortized tasks, we
train a single Hyper-iNGP [33] across all MG15 prompts. We also compare our
results with ATT3D [33], which is among the first to apply Hyper-iNGP to
prompt-amortized text-to-3D tasks. ATT3D employs SDS for training and uses
soft-shading [40] (denoted as * in Tab. 2) for rendering.

The qualitative and quantitative results are shown in Fig. 4 and Tab. 2,
respectively. We can see that the existing methods suffer from performance
decrease when transiting from prompt-specific to prompt-amortized tasks, as
evidenced by the decreased CLIP similarity and recall in Tab. 2. It is worth
mentioning that training Hyper-net with SDS requires turning on the spec-
tral normalization [38] in the linear layers, otherwise the training will fail due
to numerical instability. This observation is consistent with what reported in
ATT3D [33]. This is because SDS suffers from large gradient norm (please also
refer to Fig. 2 and the discussions therein), which makes Hyper-iNGP hard to
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Fig. 4: Qualitative comparison on prompt-specific (with iNGP as the 3D representa-
tion) and prompt-amortized (with Hyper-iNGP as the 3D generator) text-to-3D results
by SDS [40], CSD [72], VSD [59], ATT3D [33] and our ASD methods.

Reference Method Sim ↑ R@1 ↑ Method Sim ↑ R@1 ↑

ATT3D [33] - - - Hyper-iNGP* + SDS 0.195 0.468

DreamFusion [40] iNGP + SDS 0.288 1.000 Hyper-iNGP + SDS 0.257 0.918
Classifier [16] iNGP + CSD 0.280 0.936 Hyper-iNGP + CSD 0.264 0.972
ProlificDreamer [59] iNGP + VSD 0.276 0.932 Hyper-iNGP + VSD 0.259 0.987
Ours iNGP + ASD 0.289 1.000 Hyper-iNGP + ASD 0.284 1.000

Table 2: Quantitative comparison on prompt-specific (with iNGP as the 3D repre-
sentation) and prompt-amortized (with Hyper-iNGP as the 3D generator) text-to-3D
results by SDS [40], CSD [72], VSD [59], ATT3D [33] and our ASD methods.

converge. As can be seen in Fig. 4, ATT3D results in wrong geometry by using
soft shading and SDS for training. For CSD, we see that it fails to optimize
the full geometry, as shown by the shrunk peacock in both prompt-amortized
and prompt-amortized results. For VSD, it tends to generate content drifts [48],
resulting in repetitive patterns and abnormal geometry. It may fail to gener-
ate reasonable contents in both prompt-specific and prompt-amortized tasks. In
contrast, our proposed ASD works very stable across the two tasks, yielding not
only outstanding quantitative scores but also high quality 3D contents.

Results with 3DConv-net as 3D Generator. The issues of existing score
distillation methods either persist or become more pronounced when replacing
Hyper-iNGP to 3DConv-net as the 3D generator. We find that training SDS with
3DConv-net always fails within several thousand iterations, even using spectral
or other normalization techniques. This issue stems from that deeper network is
more sensitive to large gradients [13] caused by SDS. Therefore, we only compare
the results of other methods in Fig. 5. We see that CSD outputs acceptable
results on AT2520, but its results on DF415, which has more varied prompts,
are consistently smaller than anticipated. Such a phenomenon has been observed
when Hyper-iNGP is used as the generator, which underlines CSD’s inability to
reliably guide the 3D generator to produce geometries aligned with the text
prompts. As for VSD, it leads to rather abnormal results, failing to match the
text prompts. This can be attributed to its fine-tuning of the pre-trained 2D
diffusion model, which severely compromises VSD’s text-image comprehending
ability. In comparison, our proposed ASD, with 3DConv-net as the generator,



12 Z.Ma et al.

Fig. 5: Qualitative comparison among CSD [72], VSD [59] and our ASD (with 3DConv-
net as generator) on AT2520 and DF415 corpuses. SDS is not compared because it
encounters numerical instability in this experiment.

Method DF415 AT2520 CP100k

Sim ↑ R@1 ↑ Sim ↑ R@1 ↑ Sim ↑ R@1 ↑

SDS × × × × × ×
CSD 0.176 0.062 0.279 0.037 0.195 0.108
VSD 0.158 0.002 0.115 0.001 0.103 0.000

ASD (ours) 0.237 0.276 0.285 0.058 0.199 0.117

Table 3: Quantitative comparison on prompt-amortized text-to-3D with 3DConv-net
as generator. Symbol × denotes that the training fails due to numerical instability.

yields improved outcomes, as evidenced by the visual results in Fig. 5 and the
enhanced metric scores in Tab. 3.

Scalability. In this section, we evaluate the scalability of competing methods
by using as many as 100k prompts in the CP100k dataset with 3DConv-net as
the generator. The results are shown in Fig. 6 and Tab. 3. Due to the issue of
numerical instability, SDS is not involved in this experiment. We can see that
the outcomes of CSD are significantly diminished with uniformly small-sized
shapes across all prompts. There is also a lack of variety since most outputs
exhibit similar patterns. The results of VSD are also degenerated, displaying
almost identical and anomalous outcomes for the text prompts. This resembles
the phenomenon of mode collapse often encountered in bi-level optimization [55],
which also highlights the importance of fixing the 2D diffusion model when
training with such a large number of text prompts. In comparison, ASD is able
to produce much higher quality outcomes across the text prompts, showcasing
its capability in large-scale training with numerous text prompts as inputs.

In addition to the above comparisons, we also evaluate the effectiveness of
ASD when using other 2D diffusion models. We employ MVDream [48] to illus-
trate ASD’s generality to diffusion prior models. Besides, we compare against
data-driven methods to prove that ASD is advantageous in tackling diverse input
of text prompts. Please see supplementary material for detail.

4.3 Ablation Study

In this section, we perform ablation studies to evaluate the settings of timestep
shift ∆t ∼ S(t) = U [0, η (t− Tmin)] from several aspects. The qualitative and
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Fig. 6: The scalability comparison with CSD [72] and VSD [59] on CP100k corpus.

quantitative results are shown in Fig. 7 and Tab. 4, respectively. We provide ex-
tensive ablation studies in the supplementary material to show that the proposed
strategy is also effective when using MVDream as the diffusion model.

Importance of Timestep Shift. We use η = 0 (i.e., no timestep shift)
as a baseline to evaluate the necessity of introducing timestep shift ∆t. From
Fig. 7 and Tab. 4, we see that while it can generate plausible results, the model
is prone to generating shapes that do not make sense, such as the so-called Janus
problem [2]. Examples include a frog with an extra eye, robot face with block-like
features, and a peacock with tails at both the front and back. This is because
the non-shifted diffusion model will align more with the 2D image distribution,
tending to generate redundant contents and unreasonable geometry along the
training. By introducing a timestep shift, our proposed ASD demonstrates ad-
vantages in achieving more coherent and visually pleasing results.

Range of Timestep Shift. By setting η = 0.2, we allow ∆t to be sampled
from a large range. However, this might not be a good choice. In the extreme
case, for any timestep t we can set a large interval ∆t such that t+∆t = Tmax,
then the noise prediction becomes ϵϕ(xt; t, y

π) ≈ ϵ, so that ASD is degraded
to SDS, which cannot perform well under CFG=7.5 [40]. In practice, we find a
larger η tends to result 3D contents with larger size and rounded shapes, e.g .,
the peacock with closer views, or the frog with larger size, as shown in Fig. 7.
Therefore, we set η = 0.1 in all our experiments.

Deterministic or Random Shift. If we set ∆t = η (t− Tmin), it assumes
that the diffusion model of rendered images can be approximated by the pre-
trained one with a fixed and deterministic timestep shift. As shown in Fig. 7 and
Tab. 4, it reduces the chance to generate correct geometry and colors. Randomly
sampling ∆t in a range is more effective, which is adopted in our method.

5 Conclusion and Limitations

In this paper, we presented Asynchronous Score Distillation (ASD), a novel score
distillation method that can assist 2D diffusion prior in training 3D generators
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Fig. 7: The qualitative results of the ablation study on the timestep interval ∆t.

Param Sim ↑ R@1 ↑

∆t = η(t− Tmin)
η = 0.1 0.214 0.178
η = 0.2 0.214 0.180

∆t ∼ U [0, η(t− Tmin)]
η = 0 0.235 0.267
η = 0.1 0.237 0.276
η = 0.2 0.229 0.237

Table 4: The quantitative results of the ablation study on the timestep interval ∆t.

with a scalable size of text prompts. By shifting the diffusion timestep to earlier
stages, our ASD can effectively predict the noise prediction error to align the
diffusion model with the distribution of rendered images, while preserving the
superior text comprehension capability of pre-trained models, thus facilitating
stable training with high-fidelity generation results. Our extensive experiments
revealed that ASD performed consistently well on datasets of various sizes, being
able to manage as much as 100k prompts. Though ASD has shown improvements
over earlier score distillation approaches, there remain some limitations.

For man-made objects that have very regular shapes, such as chairs or air-
planes, the performance of our model will lag behind those data-driven methods,
which benefit from an abundance of relevant data. We foresee opportunities to
combine the advantages of data-driven and score distillation methodologies to
improve text-to-3D capabilities in a more comprehensive manner in the future
research.
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