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A Details on PCA Visualization

Our PCA visualization in Figures 1 and 3 follows the procedure in [8]. Given the
feature map of an image, containing H ×W patch tokens, we first extract the
three leading principal components of these tokens. Each token will become a
dim-3 vector after the PCA. Then we scale each component to the range 0−255
and interpret them as the RGB channels. The tokens are reshaped to resolution
H ×W , and we get the resulting PCA visualization.

B Visualization of Clamping Singular Values

As a sanity check in Section 2, we clamp the singular value of the weights of linear
layers in DINOv2 to a smaller value. The PCA visualization is shown in Figure 5.
For each linear layer, we decompose the weight matrix using SVD (for example,
W = USV T ) and then clamp the singular values S to be less than a threshold
γ and get S̃. At last, we replace the weight matrix with US̃V . In Figure 5, we
compared with γ = 2.0, 1.5, and 1.3, respectively. We can see that as γ decreases,
the norms of defective patches also decrease, and the number of defective tokens
becomes less. However, when gamma is too small, the semantics of the feature
maps seem corrupted. So we would prefer learned optimal singular values rather
than trimming them according to some manually designed thresholds.

C Visualization of Learning Target

We visualize the learning target defined by Equation (7) in the last row of Fig-
ure 6. The feature maps of the 9th, 19th, 29th, and 39th layers for the villa
image are illustrated. For demonstrative purposes, we show the learning targets
for all pixels, which are visually smooth. However, in real fine-tuning, only pixels
that are detected as defective contribute to the loss. The corresponding singular
defects using mask threshold µ = 4 are shown in the third row in Figure 6.
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Fig. 5: Visualization after clamping the singular values of linear layers. The results of
the two images are illustrated. The first and third columns are the PCA visualization
of the feature map in the last layer. The second and fourth columns are the violin plots
of the norm of the corresponding tokens.

D Visualization of Angles Between νi and Patch Tokens

In Figure 2d, the violin plot of the angles between the theoretical singular defect
directions νi for layer-i and the patch tokens of the villa image are illustrated. To
show that the isolated, anomalous points in the violin plot are indeed defective
tokens, we present the corresponding PCA visualizations and the heatmap of
angles in the first and second rows of Figure 6. In the angles heatmap, darker
pixels mean that the angles between νi and the patch tokens are smaller.

E Visualization of the Learned Singular Values

We show the difference between the learned singular values and the original
singular values in Figure 7. We observe that the differences are more striking
for layers 5–25, and changes in other layers are modest. Generally speaking, the
learned singular values are smaller than the original values.
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Fig. 6: The violin plot is the visualization of angles between the theoretical singular
defect direction νi and patch tokens. The first row below the violin plot is the PCA
visualization of patch tokens in the 9th, 19th, 29th, and 39th layers. The second row
is the heat map of the angle between νi and patch tokens. The darker the color, the
smaller the angles. The third row is the defective tokens detected by logits defined
in Equation (5). The last three rows are the learning target under the temperature
hyper-parameter τ = 0.01, 0.1, 1. We use τ = 0.1 in our experiments.
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(a) Diff of Singular Values of A2 in the Attention Block

(b) Diff of Singular Values of A3 in the Attention Block

Fig. 7: Difference between the learned singular values and the original singular values.
Changes in the remaining singular values are relatively small compared to the leading
ones. So, only the first three leading singular values are shown to avoid cluttering the
figure. The x-axis is the layer index.

Fig. 8: The violin plot of angles between a random direction and the patch tokens of
the villa image. The x-axis is the layer index.
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F Visualization of Angles between Random Direction
and Patch Tokens

To complement Figure 2, we show the violin plot of angles between a random
direction and the patch tokens of the villa image in Figure 8. We can see that
the pattern of the violin plot using a random direction is drastically different
from the violin plots in Figure 2, which uses the leading left singular vectors.
This shows that a random direction cannot be used to detect defective tokens.

G Detailed Configurations of Experiments

G.1 STEGO

Dataset We follow STEGO [5] to process the datasets, specifically, 27 classes
of Cityscapes [2], and 3 classes of Potsdam-3 [6] are evaluated. We resize the
images to 392 × 392 with center crop in training and 560 × 560 in testing. The
training images are five-cropped.

Hyper-parameter We extended the STEGO’s official codebase to support
DINOv2 backbones. We use the hyper-parameters in STEGO’s official repository,
except for the backbone- and dataset-sensitive parameters, which are listed in
Table 7. The hyper-parameters of STEGO used in the results of Table 1 are
listed in Table 7.

G.2 CAUSE

Dataset We follow CAUSE [7] to process the datasets, specifically, 27 classes
of Cityscapes, and 21 classes of PASCAL-VOC [4] are evaluated. Both training
and testing resolution are 322× 322.

Hyper-parameter We use the official codebase in CAUSE and adopt the de-
fault settings for all our experiments. specifically, we use the setting of CAUSE-
TR.

Table 7: Hyper-parameters of STEGO.

Dataset Backbone
neg inter
weight

pos inter
weight

pos intra
weight

neg inter
shift

pos inter
shift

pos intra
shift

Cityscapes DINOv2 0.90 0.60 1.00 0.30 0.20 0.45
Cityscapes DINOv2-Register 0.80 0.65 0.90 0.30 0.20 0.45
Cityscapes DINOv2-SINDER 0.80 0.65 0.90 0.30 0.45 0.60
Potsdam-3 DINOv2 0.90 0.60 1.00 0.30 0.20 0.45
Potsdam-3 DINOv2-Register 0.90 0.60 1.00 0.30 0.20 0.45
Potsdam-3 DINOv2-SINDER 0.90 0.60 1.00 0.40 0.45 0.45
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G.3 Classification KNN

We use the KNN implementation in the official codebase of DINOv2. The ImageNet-
1K [3] dataset is used. The KNN performance on the validation set has been
reported in Table 3. Specifically, K = 10, 20, 100, 200 are tested and the setting
with the best top1 was reported.

G.4 Classification Linear Probe

We follow the linear probe implementation in the official codebase of DINOv2.
The ImageNet-1K dataset is used. The linear probe performance on the valida-
tion set is reported in Table 3. The linear layer was trained for 10 epochs under
learning rates of 1e-5, 2e-5, 5e-5, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01,
0.02, 0.05, and 0.1, respectively, and the setting with the best top1 was reported.

G.5 Supervised Segmentation

We follow the evaluation protocol for supervised segmentation in DINOv2 and
implement the training and testing using mmsegmentation [1]. Specifically, a
linear layer is trained to predict classes from patch tokens. In the Linear setting,
both training and testing images are resized to 512 × 512. For the Multiscale
setting, they are rescaled to 640× 640. Moreover, for the Multiscale setting, the
patch tokens of the last four layers are concatenated, and the multiscale test-time
augmentation was used in testing. For both ADE20k [9] and VOC2012, 40,000
iterations were trained.
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