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Abstract. Vision Transformer models trained on large-scale datasets,
although effective, often exhibit artifacts in the patch token they extract.
While such defects can be alleviated by re-training the entire model with
additional classification tokens, the underlying reasons for the presence
of these tokens remain unclear. In this paper, we conduct a thorough
investigation of this phenomenon, combining theoretical analysis with
empirical observations. Our findings reveal that these artifacts originate
from the pre-trained network itself, specifically stemming from the lead-
ing left singular vector of the network’s weights. Furthermore, to miti-
gate these defects, we propose a novel fine-tuning smooth regularization
that rectifies structural deficiencies using only a small dataset, thereby
avoiding the need for complete re-training. We validate our method on
various downstream tasks, including unsupervised segmentation, classi-
fication, supervised segmentation, and depth estimation, demonstrating
its effectiveness in improving model performance. Codes and checkpoints
are available at https://github.com/haoqiwang/sinder.

Keywords: DINOv2 · Singular Defect · Unsupervised Segmentation

1 Introduction

Self-supervised learning (SSL) has emerged as a highly effective method for net-
work pre-training [18], producing features beneficial across a wide spectrum of
downstream tasks. SSL significantly accelerates large-scale training for vision
models, exemplified by recent advancements such as DINOv2 [18]. While SSL
models excel in image classification tasks, their use for comprehensive image
understanding, e.g., segmentation, is significantly challenged by the presence of
defective patch tokens, as depicted in Figure 1. These anomalies materialize as
high-norm tokens in the feature maps of vision transformers. Despite research
efforts to understand this phenomenon [7], explanations remain in their infancy.
Current observations indicate that these flawed patches offer minimal local infor-
mation, suggesting a tendency for large and deep vision transformers to recycle
redundant patch tokens to store more useful information. To this day, the only
approach to addressing this issue [7] requires re-training the network from scratch
with additional register tokens on vast amounts of data, which is typically pro-
hibitive and offers limited explanations of the underlying phenomenon.
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In this paper, we aim to bridge the understanding gap of these defects by pro-
viding mathematical explanations. In contrast to previous work attributing the
defects to the image classification token, we discover that these defects inherently
exist and share high similarity across the entire dataset. To further explore and
develop theoretical foundations, we linearize the weights of each network block.
Our analysis reveals a strong correlation between the defects in each layer and
the corresponding leading left singular vector of the linearized operations. We
thus term this phenomenon singular defects. Importantly, our analysis evidences
that such singular defects depend solely on the pre-trained network weights, and
not on the inputs.

To mitigate these singular defects, we propose a method based on fine-tuning
the singular values of linear layers in the network. Specifically, we impose a
smoothness regularization on the detected defective tokens to rectify them and
restrict the number of learnable parameters to as few as possible to retain the
original feature quality. Our approach can fine-tune pre-trained large-scale mod-
els using only a small dataset without the need for labeled data. Our experimen-
tal results demonstrate that our method effectively rectifies these defects and
enhances performance in semantic segmentation tasks, particularly in the un-
supervised setting, while maintaining performance in classification tasks. Com-
pared to the existing solution of [7], which requires retraining networks on private
LVD-142M data [18], our method offers advantages in terms of reduced carbon
emissions, memory footprint, and time consumption. Considering the limited
availability of proprietary large-scale datasets, our approach offers a viable and
economical-friendly solution for deploying large-scale models.

In a nutshell, our contributions can be summarized as follows:

– We unveil the correlation between the leading left singular vector and the di-
rection of defects, enabling us to theoretically predict the direction of defects
for each layer.

– We introduce a data-efficient fine-tuning technique to address the singular
defects of DINOv2 without necessitating access to large-scale datasets.

– We conduct extensive experiments to study the properties of the defects
and show that our proposed solution not only retains the feature quality for
downstream classification tasks but also improves the pixel-level prediction
tasks such as unsupervised segmentation.

2 Motivation

A prominent characteristic of the defective patch tokens in the last layer is
their high norm, a phenomenon that was also observed in previous work [7]. We
illustrate the norms of the patch tokens of several images in Figure 1. The norm
of the defective tokens is much larger than that of normal tokens. For example,
on 500 randomly selected natural images from the validation set of ImageNet-1K,
their average norms are 434.0 vs. 57.6, respectively.
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Fig. 1: Visualization of singular defects in the feature map of the last layer of DINOv2.
The images are resized to have height 896 when input into the networks. The color of
the PCA visualization comes from the three principal components of the patch tokens.

The second characteristic of defective patch tokens is that their directions
are largely image-independent. Firstly, the feature directions of the defective
patch tokens within each image are almost the same. This can be intuitively
seen from Figure 1, whose second column depicts a PCA representation of the
tokens. High-norm tokens in the same image have the same color, indicating that
their directions are close to each other. To quantify this, we compute the average
pair-wise angles between the defects within each of the 500 images. Their mean
is 3.1 degrees. By contrast, the statistics of the average pair-wise angles between
all patch tokens within each image is 72.8 degrees.

Secondly, the defective patch tokens are almost the same across different
images. To see this, we calculate the average defective tokens for each image
and then compute the average pair-wise angles between them. The mean is 5.5
degrees. This confirms that the defect direction in the last layer is in essence input
image agnostic. This observation differs from that in [7], where high-norm tokens
were claimed to contain image-wise global information. Based on our statistics,
these high-norm tokens primarily contain no input information, regardless of
local or global. It thus seems natural to ask, can the defect directions be directly
inferred from the pre-trained weights without knowing the input image?

These two observations of defects remind us of the power method [24] in
linear algebra, where a vector is recursively multiplied by a square matrix; the
vector converges to the leading eigenvector, regardless of its initial direction,
and its norm explodes if the largest eigenvalue is larger than 1. This motivates
us to approach the problem of defects from the perspective of singular value
decomposition, which will be the central topic of Section 3.

As a sanity check, we clamp the singular values of the weights of all the
linear layers in DINOv2 to a smaller value and found that the high-norm defects
are reduced (visualizations can be found in the Appendix). Encouraged by this,
in Section 4, we design a regularization strategy to limit the magnitude of the
singular values and thus the defective patch tokens.
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3 Singular Defect Direction

Now we delve into the origin of singular defects, focusing on the DINOv2 giant
model. The DINOv2 giant is a Vision Transformer (ViT) model comprising 40
transformer layers, each containing an Attention Block and an MLP Block. These
blocks act as residuals, with an identity path connecting their input and output.
Our objective is to analyze the influence of each block on the defective tokens
and to predict defective token directions theoretically solely from the pre-trained
weights of the network, in an input-agnostic manner.

To evaluate the quality of our theoretical predictions, we manually extract
the defect directions of 500 images from the ImageNet validation set. For each
layer, we compute the average defect direction across these images, termed the
empirical defect direction. Since evident defects on feature maps only manifest
after the 15th layer, we focus solely on gathering defect directions from the 15th
layer onwards. A good theoretical estimation of the defect direction is expected
to closely align with this empirical defect direction.

It’s worth noting that to facilitate tractability in our analysis, we consider the
simplified scenario where there is only one input token. Under this assumption,
the transformer layer can be approximated by linear transformations, as we will
demonstrate below, rendering theoretical analysis feasible. Although the analysis
is conducted in a simplified setting, we confirmed that the theoretical predictions
of the singular defects are accurate.

3.1 Linear Approximation of an Attention Block

For an input token x ∈ RD, the computation of the Attention Block is

x layer norm multi-head attention layer scale output.

Under the single-token assumption, we will show that we can approximate these
operations as linear transformations. Let us first study the layer norm. This op-
eration is non-linear because of the division by the standard deviation. However,
if we ignore this rescaling, the rest is linear and can be written as A1(A0x)+ b1,
where A0 = I − 1

D1D×D is the centering, A1 = diag(w) is the diagonal matrix
of scaling parameters, and b1 contains the bias parameters.

For the multi-head attention, as we analyze for a single token case, the
softmax over a singleton is a constant 1. Hence, we only need to consider the
value parameters. Let the weights concatenated over all value heads be A2 ∈
RD×D, the concatenated biases from all heads be b2 ∈ RD, and the weights and
biases of the output projection be A3 and b3, respectively, then the multi-head
attention can be written as A3(A2x+ b2) + b3.

Finally, we rewrite the layer scale as A4x, where A4 = diag(w) is the
diagonal matrix of scaling parameters.

Combining the above operations, the Attention Block can be approximated
as a series of linear transformations,

Attention(x) ≈ A4(A3(A2(A1(A0x) + b1) + b2) + b3) := Ax+ b. (1)
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(a) Attention Block with Identity I + A (b) MLP Block with Identity I + C

(c) Layer: Attention and MLP Block E (d) Composed multiple layers G

Fig. 2: Angle between theoretical and empirical defect directions. Blue lines
are the angle between the empirical defect direction and the leading left singular vector
of I + A, I + C, E, G, respectively. Angles between the leading left singular vectors
and all the patch tokens in each layer are shown as violin plots. The x-axis is the layer
index, and the y-axis is the acute angle in degrees. The villa image in Figure 1 is used.

Drawing inspiration from the power method, we relate the empirical defect
directions with the leading left singular vector corresponding to the largest sin-
gular value of I +A. In Figure 2a, we depict the angles between the leading left
singular vector and the empirical defective tokens for each layer as a blue line.
It is evident that after layer 19, these angles converge, with values consistently
below 40 degrees. Additionally, we present the angles between the leading left
singular vector and all patch tokens of an image as violin plots. The defective
tokens are identifiable as isolated points within the violin plots (more visual-
izations in the Appendix). These findings suggest that the angles between the
leading left singular vector and the patch tokens serve as a reliable metric for
detecting defective tokens.

3.2 Linear Approximation of an MLP Block

The computation graph for an MLP Block is

x layer norm mlp layer scale output,

where layer norm and layer scale can be processed in the same manner
as in the Attention Block. However, the mlp layer is non-linear, expressed as
C3(silu(W1x+h1)⊙ (W2x+h2))+d3, where ⊙ is the element-wise product, C3,
W1, W2 are weights, and h1, h2, d3 are the biases. We approximate the mlp using
least squares. Specifically, we sample 100,000 random inputs X ∈ RD×100,000 and
compute their outputs Y = silu(W1X + h1)⊙ (W2X + h2) ∈ RM×100,000, where
M is the output dimension of W1. We solve the least-square problem C2X = Y ,
and obtain the linear approximation with matrix C2 ∈ RM×D.
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Ultimately, we can approximate the MLP Block as

MLP(x) ≈ C4(C3(C2(C1(C0x) + d1)) + d3) := Cx+ d, (2)

where C0 = I − 1
D1D×D is the centering of the layer norm, C1 is the diagonal

matrix of the layer norm scaling weights, d1 is the bias of the layer norm, and
C4 is the diagonal matrix of the layer scale scaling weights. The angles be-
tween the leading left singular vector of I+C and the empirical defect directions
are shown in Figure 2b.

3.3 Combining Attention and MLP Blocks

Based on our previous approximations, we can combine the linearized Attention
Block and MLP Block as follows,

Layer(x) ≈ x+Ax+ b+ C(x+Ax+ b) + d := Ex+ f, (3)

where the identity path is incorporated. We plot the effect of the leading left
singular vector of E in Figure 2c, which resembles both Figure 2a and Figure 2b.

3.4 Predicting Defective Token Direction for Each Layer

We can further improve the prediction of defect direction by composing the linear
approximations from layer 0 to layer i, where the matrix multiplied with x is

Gi := EiEi−1 · · ·E0. (4)

The result of the leading left singular vector of Gi is shown in Figure 2d. We
find that after layer 20, the leading left singular vectors are very close to the
empirical defect directions, and from layers 15 to 19, the result is also better
than previous attempts. Thus, we define the leading left singular vector of Gi as
the theoretical singular defect direction3 for layer i. Figure 2d demonstrates that
we can accurately predict the empirical defect direction by the singular defect
direction. So we had referred to this type of defective tokens as singular defects.

Note that the definition of singular defect direction originates solely from the
pre-trained network weights; it does not depend on the input image in inference.

4 Repairing Singular Defects

Having identified the connection between the singular defect direction and the
empirical defect direction, we next aim to repair the singular defects of the
network with minimum modifications to the network parameters. A key require-
ment of such repairs is that they should maintain the feature quality of the
original network. Without the defective tokens, we expect a spatially smooth
3 We do not differentiate between a singular defect direction and its negative direction.
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and coherent feature map, thus leading to stronger performance for dense pre-
diction downstream tasks. We identify two key aspects that contribute to this
goal. First, imposing smooth regularization suffices to ensure the resulting net-
work produces spatially smooth and coherent feature maps. Second, to maintain
the feature quality, the algorithm should modify as few parameters as possible,
refraining from overtraining the network.

Based on these observations, we design an algorithm called Singular Defect
Repairing (SINDER, Algorithm 1). In essence, SINDER aims to repair the first
defective layer encountered in the forward pass using a smooth regularization, by
modifying a few parameters. We describe the corresponding loss in Section 4.1
and discuss the importance of limiting the number of learnable parameters in
Section 4.2.

Algorithm 1 Singular Defect Repairing (SINDER)
Input: A pre-trained network, a finetune dataset, termination threshold ρ = 25%,

M = 500, skip threshold σ = 3, mask threshold µ = 4, learnable layers λ = 10
1: Compute singular defect direction νi for each layer i of the pre-trained network
2: while more than ρ of recent M images are not clear do
3: Sample an image
4: for all layers i do
5: Find defective tokens of layer i using νi ▷ See Equation (5)
6: if the number of defective tokens is less than σ then
7: continue ▷ Skip the current layer
8: end if
9: Compute loss using Equation (8)

10: Backward and update the parameters from layer i− λ to layer i
11: break ▷ Skip remaining layers
12: end for
13: end while

4.1 Loss Design

The core idea underlying our method is to first identify the defective tokens and
then apply a spatial smoothness prior to regularizing them. Let the patch tokens
of a layer be xt, t = 1, . . . , T , where T = H×W is the number of tokens, and let
the singular defect direction of the ith layer of the network be νi. We identify
the defective tokens as follows. First, define the logit lt as the absolute value of
the inner product between the normalized patch token and νi, i.e.,

lt =

∣∣∣∣ xt

∥xt∥
· νi

∣∣∣∣ . (5)

Then, we take the set of defective tokens D to be those that deviate from the
mean logit by more than the mask threshold µ = 4 times the standard deviation.
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For a defective token xt ∈ D, we define its learning target based on the
weighted average of its 3×3 spatially neighboring tokens Nt. Let token xt′ ∈ Nt

be a neighboring token of xt. Then, we compute the coefficient

ctt′ =
exp(−lt′/τ)∑

s∈Nt
exp(−ls/τ)

, (6)

where τ is a temperature hyperparameter. Additionally, we multiply ctt′ with
a 3 × 3 Gaussian kernel and re-normalize the resulting coefficients. This step
assigns greater weight to closer neighbors compared to farther ones. Finally, we
utilize the resulting coefficients, denoted as c̃tt′ , to linearly combine the 3 × 3
neighboring tokens into the learning target of each defective token xt as

x̃t =
∑
t′∈Nt

c̃tt′xt′ . (7)

We define our loss function L as the average distance between the defective
tokens and their respective learning targets, which can be expressed as

L =
1

|D|
∑
t∈D

∥x− x̃t∥. (8)

If the number of defects for every layer is less than the skip threshold σ, then
we call this image clear.

4.2 Limiting the Number of Learnable Parameters

Given the fact that we fine-tune the model with significantly fewer images com-
pared to the original training set, it becomes imperative to control the number
of trainable parameters to avoid compromising the model’s generalization abil-
ity in downstream tasks. Our observation of a profound connection between the
leading left singular vector of network operations and the empirical defect direc-
tions serves as the foundation for our approach. Based on the intuition from the
power method, the high norm of defects is related to the corresponding leading
singular value. We thus propose to constrain learning to singular values only.
Specifically, we decompose the weight of every linear layer in DINOv2 as USV T

using SVD and freeze the parameters U and V during fine-tuning. This greatly
reduces the number of learnable parameters.

Furthermore, our experiments reveal that further restricting the number of
learnable parameters benefits feature quality preservation. Consequently, we opt
to completely freeze most layers during fine-tuning. As illustrated in line 10 of
Algorithm 1, only the 10 layers preceding the first defective layer are trainable in
each iteration. The effectiveness of this approach will be validated in Section 5.5.

5 Experiments

In this section, we first demonstrate the improvement resulting from our ap-
proach in the downstream task of unsupervised segmentation (Section 5.1). We
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Table 1: Results on unsupervised segmentation using STEGO. Backbones are frozen.
The unsupervised results are shown in the Cluster columns. The Linear probe results
are supervised and used for reference only.

Backbone for
STEGO

Cityscapes Potsdam-3

Cluster Linear Cluster Linear

mIoU Acc mIoU Acc mIoU Acc mIoU Acc

DINOv2 19.38 72.54 43.00 91.69 67.01 80.52 76.47 86.72
DINOv2-Register 18.62 67.00 43.97 91.66 61.03 75.69 80.03 88.97
DINOv2-SINDER 21.77 77.39 43.06 92.05 70.26 82.40 77.39 87.31

use two representative unsupervised segmentation methods, STEGO [14] and
CAUSE [17]. The results of unsupervised segmentation demonstrate the impor-
tance of the repaired spatially smooth feature map in dense downstream tasks.
Then, we verify that our repaired DINOv2 retains feature quality. To this end, we
test classification performance on ImageNet-1K [8], which ensures the quality of
the cls_token (Section 5.2), as well as supervised segmentation on ADE20k [27]
and VOC2012 [10] and depth estimation on NYUd [20], which ensures the qual-
ity of the patch tokens (Section 5.3). Finally, we study our design choices and
hyperparameter settings (Section 5.5).

In these experiments, we compare 3 models: The official release of DINOv2
giant, the DINOv2 giant model trained with registers [7], and our repaired DI-
NOv2 giant model based on the original DINOv2 without registers.

Training Setting. We randomly select 30k images from the training set of
ImageNet-1K to fine-tune for one epoch. We use SGD with momentum 0.9 and
weight decay 0. The batch size is 1, and the learning rate is 0.005. All input
images are center-cropped and resized to 518× 518. The training procedure fol-
lows Algorithm 1, which takes about six hours on a V100 GPU for fine-tuning.
We limit the number of learnable layers to λ = 10 in each iteration. The loss
Equation (8) is computed on the first layer that has no less than σ = 3 de-
fects. Training stops if, during the latest M = 500 iterations, no loss was pro-
duced in more than 1− ρ = 75% of the iterations. The resulting network check-
point is benchmarked on various datasets such as Cityscapes [6], Potsdam-3 [16],
VOC2012 [10], ADE20k [27], etc. in the following sections.

5.1 Unsupervised Segmentation

As shown by the PCA visualization in Figure 1, the advantage of the repair is
a spatially smooth feature map. Speculatively, our repaired DINOv2 can thus
benefit dense prediction tasks such as unsupervised segmentation because the
new feature map has clearer boundaries and more coherent semantics. To verify
this intuition, we compare our repaired DINOv2 with the original DINOv2 and
DINOv2-Register using two representative unsupervised segmentation methods,
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Table 2: Results on unsupervised segmentation using CAUSE. Backbones are frozen.

Backbone for
CAUSE

Cityscapes VOC2012

Without CRF With CRF Without CRF With CRF

mIoU mAP Acc mIoU mAP Acc mIoU mAP Acc mIoU mAP Acc

DINOv2 31.4 45.2 85.2 31.5 57.6 89.8 55.8 71.3 91.7 57.5 79.0 93.1
DINOv2-Register 33.3 51.2 87.6 35.3 71.6 90.7 48.9 74.8 90.9 51.1 78.8 92.0
DINOv2-SINDER 35.6 54.6 88.4 35.9 72.9 90.7 62.9 85.6 93.6 63.8 88.3 94.1

Table 3: Results on ImageNet-1K classification. Backbones are frozen.

Backbone
KNN Linear

Top1 Top5 Top1 Top5

DINOv2 83.53 94.01 86.53 97.65
DINOv2-Register 83.69 93.12 87.10 97.95
DINOv2-SINDER 83.51 94.15 86.29 97.61

namely, STEGO and CAUSE. We follow the training settings and the processing
of benchmark datasets in their respective papers. Detailed hyper-parameters and
configurations can be found in the Appendix. From Table 1, we observe that,
compared with DINOv2, our DINOv2-SINDER improves the mIoU of STEGO
on Cityscapes [6] by +2.39%, and on Potsdam-3 [16] by +3.25% in the unsuper-
vised cluster setting. The performance of the supervised linear setting is used
for reference only. From Table 2, we observe that, compared with DINOv2, our
DINOv2-SINDER improves the mIoU of CAUSE on Cityscapes by +4.2% and
+4.4% in the without/with CRF settings, respectively. On the VOC2012 [10]
dataset, the improvements are +7.1% and +6.3%, respectively. The tables also
show that our DINOv2-SINDER outperforms the DINOv2-Register. These re-
sults confirm that our proposed SINDER is effective on the dense downstream
task of unsupervised segmentation.

5.2 Classification

We test the classification performance of our repaired DINOv2-SINDER on
ImageNet-1K. We follow the evaluation protocol of [18]. Specifically, we test
KNN and linear probe on frozen backbones. The top-1 and top-5 accuracies of
the three compared models are provided in Table 3. The top-1 and top-5 accu-
racies of DINOv2-SINDER are on par with the original DINOv2, for both KNN
and linear probe. Compared with DINOv2-Register, the top-1 accuracy of KNN
is -0.18% lower, but the top-5 accuracy of KNN is +1.03% higher. The top-1
and top-5 accuracies for the linear probe are -0.81% and -0.34% lower than the
DINOv2-Register, which is similar to those of the original DINOv2. Note that
DINOv2-Register requires full retraining from scratch, whereas our fine-tuning
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Table 4: Results on supervised segmentation. Backbones are frozen.

Backbone

ADE20k VOC2012

Linear Multiscale Linear Multiscale

mIoU aAcc mIoU aAcc mIoU aAcc mIoU aAcc

DINOv2 48.83 81.46 53.24 84.00 83.05 96.17 86.01 97.01
DINOv2-Register 49.03 81.09 53.62 83.90 83.27 96.15 86.54 97.12
DINOv2-SINDER 51.11 82.70 54.78 84.75 84.63 96.57 86.94 97.25

Table 5: Results on NYUd depth estimation. Backbones are frozen.

Backbone Linear 1 Linear 4 DPT

DINOv2 0.370 0.309 0.242
DINOv2-Register 0.367 0.302 0.234
DINOv2-SINDER 0.337 0.294 0.249

uses substantially fewer resources. This comparison validates that our fine-tuned
model maintains the feature quality of the cls_token.

5.3 Supervised Segmentation

To verify that the feature quality of the patch tokens is at least equally good,
we perform supervised segmentation on ADE20k and VOC2012 using the linear
probe with frozen backbones. Two training settings are tested. The linear set-
ting only uses the last feature map, while the multi-scale setting uses the feature
maps of the last four layers. The results are provided in Table 4. Compared with
the original DINOv2, our repaired version improves the mIoU by +2.28% and
+1.54%, respectively, for the linear and multi-scale settings on ADE20k, and
+1.58% and +0.93% on VOC2012. This shows the superiority of our method.
Compared with DINOv2-Register, our DINOv2-SINDER improves the mIoU by
+2.08% and +1.16% on ADE20k for the linear and multi-scale settings respec-
tively, and +1.36% and +0.40% on VOC2012. This is surprising considering that
DINOv2-Register has mitigated the high-norm defects at the cost of full retrain-
ing. Although DINOv2-Register is not as performant as our DINOv2-SINDER,
it is still better than DINOv2. This comparison demonstrates that our method
not only retains the quality of the patch tokens but also improves the dense
prediction downstream task in the supervised setting.

5.4 Depth Estimation

We evaluate the patch features using depth estimation on the NYU Depth v2
dataset, following the testing protocol in [18]. There are three settings. (1)
Linear 1 uses the last layer feature map from the frozen backbone and con-
catenates the cls_token to patch tokens. The feature map is bilinear resized to
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Table 6: Constrained parameter fine-tuning with gradually stronger constraints.

Setting
KNN (ImageNet) Seg. (ADE20k)

Top1 Top5 mIoU aAcc

Singular Value and Bias 6.64 16.03 13.77 61.91
Singular Value except QK 80.12 92.82 45.53 80.62
Singular Value except QK in 15 Layers 82.81 92.88 49.85 82.51
Singular Value except QK in 10 Layers 83.51 94.15 51.11 82.70
Singular Value except QK in 5 Layers 83.53 93.15 50.61 82.65

the original resolution of the input image. The depth range is uniformly divided
into 256 bins and a linear layer predicts which bin the pixel should belong to. (2)
Linear 4 is similar to Linear 1, except that it concatenates the tokens from
layers 9, 19, 29, 39. (3) DPT uses the DPT decoder on features of the frozen back-
bone. Regression losses are used in the setting. The results are shown in Table 5.
We see that SINDER outperforms DINOv2 and DINOv2-Register in the two
linear settings, showing that removing defective tokens has a greater benefit for
simple head structures. For complicated head DPT, the performance is on par
with DINOv2 and slightly worse than DINOv2-Register.

5.5 Ablation Study

Constrained Parameter Fine-tuning. To repair the singular defects while
keeping feature quality, we need to strictly constrain the freedom of parameter
learning. To show the importance of constrained parameter fine-tuning, we com-
pare five settings with gradually stronger constraints. 1. Learning the singular
values of the weight matrices together with the biases of all linear layers. 2. Only
learning the singular values of the weight matrices of the linear layers, except for
the query matrices and K matrices in the attention. 3. Further constraining the
learnable layers in the second setting to 15 layers in each iteration. 4. Constrain-
ing the learnable layers to 10 in each iteration. 5. Constraining the learnable
layers to 5 in each iteration. The results are shown in Table 6. A general trend
is that the fewer learnable parameters, the more the classification accuracy and
segmentation performance are preserved. However, in the extreme case of too
few learnable parameters, there is no room left for improvement in segmentation.
According to this study, we choose the balanced setting of restricting 10 layers.

Dynamic Layer Loss. To decide which layer to apply the loss to, we experi-
mented with different hyper-parameter values for the skip threshold σ and the
logit mask threshold µ. The results are shown in Table 7. A general trend is
that if it is easier to skip layers, then stronger KNN performance is preserved.
However, the improvement in segmentation is then limited. This is because more
skipped layers cause earlier termination according to line 2 of Algorithm 1. For
the mask threshold, we find that the value µ = 4 works well for DINOv2.
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Table 7: Comparison of different values of skip threshold σ and mask threshold µ.

Setting
KNN (ImageNet) Seg. (ADE20k)

Top1 Top5 mIoU aAcc

Skip Less than σ = 0 83.33 94.12 51.19 82.80
Skip Less than σ = 3 83.51 94.15 51.11 82.70
Skip Less than σ = 5 83.52 93.11 50.71 82.53

Mask Threshold µ = 3.5 83.33 93.10 50.93 82.72
Mask Threshold µ = 4 83.51 94.15 51.11 82.70
Mask Threshold µ = 4.5 83.50 93.09 50.50 82.51

Fig. 3: Visualization of unsupervised segmentation on Cityscapes using STEGO.

6 Related Work

Self-supervised Models. The recent surge in SSL methodologies began with
the application of the contrastive loss [4] or the cosine loss [13] on Siamese convo-
lutional neural networks. Owing to their multi-modality friendly nature, Vision
Transformers (ViTs) [9] are swiftly replacing CNNs as the mainstream backbone.
Leveraging their global attention property, numerous SSL methods have been
proposed for pre-training these networks. For instance, MoCov3 [5] follows the
contrastive setting, MAE [15] reconstructs masked patch tokens, while iBoT [28]
and I-JPEA [1] learn to predict feature vectors of masked or nearby regions.
Despite achieving promising performance across various downstream tasks, DI-
NOv2 [18] advances this direction further by combining the advantages of prior
arts such as iBoT and DINO [3] in the loss, improving the data curation, and
adopting other dedicated engineering efforts. Trained on the large-scale dataset
LVD-142M [18], DINOv2 exhibits impressive performance and robust zero-shot
ability, heralding a new era for training foundational vision models.
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Analyzing Self-supervised Models and Transformers. Given the signif-
icance of SSL in various applications, researchers have dedicated efforts to un-
derstand its mechanisms. Some studies [22,23] interpret contrastive learning by
dissecting the loss function into several interpretable terms, while others analyze
SSL from an augmentation perspective [21,25,26]. Recently, it has been observed
that the object features of iBoT and I-JPEA exhibit coupling [19], thereby im-
peding their ability to distinguish different objects. Similarly, DINOv2 has been
found to possess defective tokens [7], which undermine its performance on dense
prediction downstream tasks. While proposing re-training ViTs with more to-
kens, these studies do not explain the underlying phenomenon.

The pairwise positive relationships between training samples using spectral
methods are investigated in [2]. Notably, they utilize Singular Value Decom-
position (SVD) in their analysis, although the decomposition is applied to the
representation matrix composed of feature maps. Our analysis diverges from
theirs as our SVD is applied to the network parameters rather than the features
themselves. The work of [12] analyzes transformers based on their interpreta-
tion as interacting particle systems. Specifically, they observe the emergence of
clusters over time. However, their analysis is limited to a simplified ideal trans-
former architecture, which disregards the MLP block and multi-head attention.
Moreover, their focus is primarily on the case where Q = K = V = Id, which
is not realistic. The work of [11] assumes a fixed V , which is restrictive as it
does not account for the varying semantics learned across different layers. By
contrast, our analysis directly examines the pre-trained weights, including the
learned parameters of Q, K, and V . Furthermore, we consider the multi-head
structure as well as the MLP block in our analysis.

7 Limitation and Social Impact

This work focuses on repairing existing pre-trained networks. How to avoid sin-
gular defects from training is left for future work. We primarily focus on the
study of DINOv2, and we hope our treatment could motivate more research
on the understanding of more transformer-based networks such as GPTs. Our
method of repairing existing networks requires substantially fewer computation
resources and data consumption, which reduces the carbon emissions and human
labor in curating data, compared to the existing approach of fully retraining.

8 Conclusion

In this paper, we have introduced a principled way to connect the high-norm de-
fective tokens in DINOv2 with the leading left singular vector of the pre-trained
weights. Based on this finding, we propose to repair DINOv2 by fine-tuning using
a smooth prior loss optimized on a restricted number of parameters. Our exper-
iments have shown that our singular defect direction prediction aligns well with
the empirical defect direction, and our repaired DINOv2 improves unsupervised
pixel-level prediction downstream tasks while retaining feature quality.
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