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Abstract. We present GVSEG, a general video segmentation framework
for addressing four different video segmentation tasks (i.e., instance,
semantic, panoptic, and exemplar-guided) while maintaining an identical
architectural design. Currently, there is a trend towards developing general
video segmentation solutions that can be applied across multiple tasks.
This streamlines research endeavors and simplifies deployment. However,
such a highly homogenized framework in current design, where each
element maintains uniformity, could overlook the inherent diversity among
different tasks and lead to suboptimal performance. To tackle this, GVSEG:
i) provides a holistic disentanglement and modeling for segment targets,
thoroughly examining them from the perspective of appearance, position,
and shape, and on this basis, ii) reformulates the query initialization,
matching and sampling strategies in alignment with the task-specific
requirement. These architecture-agnostic innovations empower GVSEG
to effectively address each unique task by accommodating the specific
properties that characterize them. Extensive experiments on seven gold-
standard benchmark datasets demonstrate that GVSEG surpasses all
existing specialized /general solutions by a significant margin on four
different video segmentation tasks.
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1 Introduction

Identifying target objects and then inferring their spatial locations over time
in a pixel observation constitute fundamental challenges in computer vision [1].
Depending on discriminating unique instances or semantics associated with
targets, exemplary tasks include: exemplar-guided video segmentation (EVS)
that tracks objects with given annotations at the first frame, video instance
segmentation (VIS), video semantic segmentation (VSS), and video panoptic
segmentation (VPS) which entails the delineation of foreground instance tracklets,
while simultaneously assigning semantic labels to each video pixel. Prevalent
work primarily adheres to discrete technical protocols customized for each task,
showcasing promising results [2-21]. Nevertheless, these approaches necessitate
meticulous architectural designs for each unique task, thereby posing challenges
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Fig. 1: (a) We render holistic modeling on segment targets by disentangling them into
appearance, shape and position. (b) By adjusting the involvement of the above three
factors into tracking and segmentation according to task requirement, GVSEG achieves
remarkable improvement compared to prior top-leading general solutions.
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in facilitating research endeavors devoting on one task to another. Recently, there
have been efforts in shifting the above task-specific paradigm to a general solution
that can be applied across multiple distinct tasks [22-26]. However, one concern
naturally arises that such a highly homogenized framework would overlook the
diversity between tasks, potentially leading to suboptimal performance. For
instance, the segmenting and tracking of objects like human prioritize instance
discrimination in VIS but lean towards semantic recognition in VSS. However,
prior general approaches adopt exactly same query initialization, matching and
space-time learning strategies [22,23,26], lacking tailored differentiation within
the algorithm design that caters to the specific properties of individual tasks.
In this work, we present GVSEG, a general video segmentation framework
to address EVS, VIS, VSS, and VPS that can seamlessly accommodate task-
oriented properties into the learning and inference process, while maintaining
an tdentical architectural design. To achieve this, we rethink video segmentation
in two aspects: @ what are the key factors that constitute segment targets (i.e.,
instance, thing, and stuff), and @ how to leverage these key factors to build a
unique sequential observation for each specific task within a general model. To
address @, we delve deeply into the mechanism of how individuals can effectively
discriminate moving instances or background stuff. The most intuitive answer
in this regard is appearance, aligning with current video solutions where binary
masks are classified solely based on visual representations (i.e., appearance) [4,
27-29]. However, human perception extends beyond mere appearance [30-33]. For
instance, we can also recognize moving entities such as cats in low-light conditions
by referring to sketches (i.e., shape), and distinguish distinct instances on the
basis of respective spatial locations (i.e., position), even in fast motion. Therefore,
it is noteworthy that the instances to be segmented usually carry rich cues
encompassing not only appearance but also position and shape characteristics.
In light of the analysis above, we could assert three significant observations
that contribute to the resolution of @: First, it becomes evident that current
solutions downplay the importance of position and consistently ignore shape,
in favor of solely appearance-based discrimination. To tackle this, we derive a
shape-position descriptor for each object, followed by encoding them into the
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cross-frame query matching process to enable the participation of three key
factors in discriminating corresponding instances across the entire video. Second,
it is crucial to acknowledge that the engagement of appearance, position, and
shape cues should be adjusted in accordance with the task requirements. In
current general solutions, all queries are roughly initialized as empty and matched
in the same manner. However, for semantic classes VSS and background stuff in
VPS, there is no instance discrimination and overly emphasize shape/location
cues would harm the generalization of the model to various targets with the same
semantics. Concerning this, we advocate for a tailored query initialization and
object association strategies for each task by adjusting the relative contribution of
three key elements. Third, owing to the absence of disentanglement on segment
targets, the widely used temporal contrastive learning [4, 22, 26, 34] strategy
for object association in current solutions is deemed suboptimal. Concretely,
prior work empirically chooses objects in nearby frames as positive samples,
remaining unaware of why excluding the same instance in distant frames. In
fact, entities moving in long temporal range may display similar appearance,
but undergo strong shape distortion, rendering them unsuitable as positive
samples for instance discrimination. Therefore, we devise a task-oriented sampling
strategy that caters to thing and stuff, where instance examples are selectively
sampled from the entire video by referring to shape similarity and location distance.
This not only makes full use of the pre-defined shape-position descriptors, but
also recollects valuable samples that were arbitrarily discarded in prior work.
In a similar spirit, the stuff examples are gathered from the whole dataset
which renders rich semantic description for each semantic class. Through an
in-depth analysis of the essential elements that compose segmentation targets and
subsequently derive task-oriented insights, our work exhibits several compelling
facets: First, it not only recognizes but also effectively harnesses the unique
nature of each task, enabling seamless accommodation of task-specific properties
into segmentation models. Second, all of our designs are architecture-agnostic,
preserving a uniform structural to efficiently address task diversity. Third,
GVSEG substantially attains remarkable performance on each task. Notably,
it surpasses existing general solutions by 4.6% HOTA on BURST [35], 1.3%
AP on YouTube-VIS 2021 [2], 4.8% AP on Occluded-VIS [36], 1.1% mIoU on
VSPW [37], 4.8% VPQ on VIPSeg [38], establishing new SOTA.

2 Related Work

Exemplar-guided Video Segmentation (EVS). Given the hint which can be
mask, bounding box, or point at one video frame, EVS aims to propagate the
mask-level predictions to subsequent frames[25,35]. Therefore, the standard video
object segmentation (VOS) task can be viewed as a specific instance of EVS —
mask-guided video segmentation. Recent promising solutions for the mask-guided
task mainly implemented in a matching-based manner which classifies pixels in
current frame according to the feature similarities of target objects in reference
frames [18, 20, 21, 39-42, 42-54]. To solve the bounding box and point-guided
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tasks, current solutions typically have to regress a pseudo ground-truth mask via
pre-processing [25,35]. In contrast, GVSEG simply adapts various kinds of hints
by initializing object queries from features within regions delineated by hints.

Video Instance Segmentation (VIS). Extending beyond detecting and seg-
menting instances within images, VIS further engages in the active tracking
of individual objects across video frames. According to the process of video
sequences, existing solutions for VIS fall into three categories [28]: online, semi-
online, and offline. The online methods take each frame as inputs and associate
instances through hand-designed rules [2,55-57], integrating learnable matching
algorithms [58-63], or deploying query matching frameworks [4,27, 34, 64—66]. The
semi-online solutions typically divide long videos into clips and model the repre-
sentations of instances by leveraging rich spatio-temporal information [23,67-69].
Conversely, offline methods predict the instance sequence for an entire video in
a single step [3,5,6,63,70,71] which require a growing amount of GPU memory
as the video length extends, limiting their application in real-world scenarios.
Video Semantic Segmentation (VSS). Building upon the principle of semantic
segmentation [72-79], VSS extends this concept to video sequences, so as to capture
the evolution of scenes and objects over time. Existing solutions can generally be
classified into two main paradigms. The motion-based approaches [80-84] employ
optical flow to model dynamic scenes. Though workable in certain scenarios, they
rely heavily on the accuracy of flow maps and are prone to error accumulation [1].
On the other hand, the attention-based methods take advantage of the atten-
tion mechanism [8—-10] or Transformer [85,86] to aggregate temporal cues. This
contributes to improved coherence among predictions of individual frames.

Video Panoptic Segmentation (VPS). With the emergence of seminal
work [11], there has been a research trend [13, 87-92] dedicated to unifying
video instance and semantic segmentation. Though showing the promise of general
video segmentation, the early work[13,87,88] utilizes task-specific heads to handle
instance and semantic segmentation separately, and assembles the panoptic predic-
tions through post-processing. Recent algorithms typically leverage unified queries
for the detection and tracking of both thing and stuff objects[89-92]. However,
they demonstrate sub-optimal performance compared to task-specified solutions,
emphasizing the urgency for the development of more powerful solutions.

General Video Segmentation (GVS). In order to address the limitations of
task-specific models that lack the flexibility to generalize across different tasks
and result in redundant research efforts, GVS aims at an all-inclusive solution
for multiple video segmentation tasks. A limited number of studies [22-26, 93, 94]
have ventured in this direction. However, [22,23,93] exhibits inferior performance
compared to dedicated, task-specific methods. [25] achieves remarkable results
but requires extensive pre-training on various large-scale, pixel-level annotated
datasets. Inspired by these pioneers, GVSEG i) delves deeper into the segment
targets across tasks, offering a disentanglement and modeling for them, ii)
harnesses insights gained from i) to adapt task-oriented property without any
modification to network architecture or training objectives, and iii) contributes
to a robust solution that outperforms all existing specialized /general models.
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Query-Based Segmentation. Image segmentation has witnessed substantial
progress with top-performing approaches primarily falling into the query-based
paradigm. Such paradigm directly models targets by introducing a set of learnable
embeddings as queries to search for objects of interest and subsequently decode
masks from image features. Inspired by DETR [95], the latest research [93,96-99]
takes this paradigm a step further by harnessing the Transformer architecture.
This trend also spills over into video segmentation with recent solutions [22,23,
25,26,93] all building upon their image segmentation counterparts. In contrast to
prior work that focused solely on object appearance, GVSEG provides a holistic
modeling of targets by encoding the relative position and shape cues into queries.
This is particularly valuable for the tracking of instance objects. As a result, the
query matching process can harness appearance, shape, and position information,
enhancing object association across frames.

3 Methodology

Problem Statement. Video segmentation seeks to partition a video clip V €

RTHWX3 containing T frames of size H x W into K non-overlap tubes linked
along the time axis:

{Yihisy = {(My, ) Himas 1)
where each tube mask M, € {0, 1}7*#>W is labeled with a category ¢, €{1,--- ,C}.

The value of K varies across tasks: in VSS, it is consistent with the number of
predefined semantic categories; in EVS and VIS, it is adjusted in response to the
instance count; and in VPS, it is the sum of stuff categories and thing entities.
Tracking by Query Matching. Inspired by the success of query-based object
detectors, [4,22,34] propose to associate instances based on the query embeddings.
Specifically, given a set of N randomly initialized queries {q%}_,, we can derive
the object-centric representation {g’,})_; for frame V' by:

{@n)nsy = DEWVY), {an ), (2)

where £ and D are the Transformer encoder and decoder. Here ¢!, refines rich
appearance representation for a specific object. The tracking is done by applying
Hungarian Matching on the affinity matrix S;; = cosine(df,cjﬁ-“) computed
between ¢! and (j;‘H of two successive frame V* and V**T1. As such, instances

exhibiting identical attributes across the video sequence are linked automatically.

3.1 GVSEG: Task-Oriented Property Accommodation Framework

GVSEG seeks to advance general video segmentation through controllable em-
phasis on instance discrimination and semantic comprehension according to task
requirements. Concretely, we first devise a new shape-position descriptor to accu-
rately reveal the shape and location of targets. Then, by adjusting the engagement
of above shape-position descriptor during cross-frame query matching, we could
realize controllable association for instance and background stuff, respectively.
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Fig. 2: Illustration of shape-position descriptor (§3.1).

Finally, we give an analysis on the limitation of current temporal contrastive
learning and devise a task-oriented sampling strategy to tackle encountered issues.
Shape-Position Descriptor. Inspired by shape context [100], a shape-position
descriptor is constructed to represent the spatial distribution and shape of target
objects. First, it describes shape cues by encoding the relative geometric rela-
tionships of points in object contours relative to the object center. As shown in
Fig. 2, given the contour G € {0, 1}>W of a target object which can be easily
derived from masks, a set P with M anchor points (i.e., v]) are evenly sampled:

PZ{pm:(x,y)\G(x,y):L1§m§M}. (3)

Above anchor points are transformed into polar coordinates with the central
point p, of targets (i.e., %) as the reference point. The polar coordinate is a
histogram divided into a grid of u x v bins with u angle divisions and v radius
divisions. Next we calculate the number of anchor points falling within each bin:

ey i {ﬁ i o — i < 49 and |, — 7] <Ar } W
= 0 otherwise

where A0, Ar, and (éi,fj) are the angle span, radius span, and center point
of each bin, (0,,,7,) is the polar coordinate of anchor point p,,, dmodel is the
embedding dimension of model. As such, H expresses the spatial configuration
of contour G relative to center point (i.e., p,) in a compact and robust way. As
depicted in Fig. 2, instances with different shapes (i.e., target A and B) present
varying distributions of H which demonstrates the capability to encode the shape
cues of target objects. Moreover, we equip H with the ability to account for
the relative spatial location of target objects by setting H, ; = —1/v/dmodel if
the center point of a bin (i.e., 7¢) falls outside of masks. Therefore, instances
with similar shapes but different locations (i.e., target B and C) would yield
similar distribution of positive values, but distinct distribution of negative values,
effectively evolving above shape descriptor into a shape-position descriptor.

Shape- and Position-Aware (SPA) Query Matching. Given the above
analysis, a set of shape-position descriptors { H k}f:l could be derived from each
object k within the mask. We then aim to facilitate the awareness of shape-position
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Fig. 3: (a) Task-oriented queries initialization. (b) Task-oriented object association
tailored w.r.t. thing and stuff objects. (¢) Shape- and position-aware query matching.

cues for object association between frames, by integrating such descriptors into
the query matching process. To achieve this, as shown in Fig. 3 (c), we draw
inspiration from the absolute position encoding (APE) which is widely adopted
in Transformer [101]. Specifically, during mask decoding, N query embeddings
{q,}}_, is interacting with the backbone feature F to retrieve object-centric
feature in each decoder layer by:

q' = CrossAttn(q' "', F), q' =SelfAttn(q',q) (5)

Where [ is the layer index. Typically, a Hungarian Matching matrix 1° € {0, 1} V<K
between N predictions generated from query embeddings and K ground truth
objects can be derived from each decoding layer. Following the principle of APE,
where the position encodings P is integrated into q: q <+ q + P, we assign
{H,}E | to K elements in g that corresponds to the object described in ground
truth by referring to 1'~! produced from prior decoding layer: ¢! < ¢' + 1= - H
before conducting SelfAttn. Note the K elements in {Hj}i ; are flattened
and bilinearly interpolated to size dpodel, and then stacked together to get
H ¢ REXdmodaet Tn this way, the query embeddings can i) well attend to and
discriminate corresponding objects by injecting the descriptors into SelfAttn,
and ii) be aware to shape-position cues after mask decoding (i.e., ¢ in Eq. 2).
To further reinforce the consideration to shape and position of targets in g, we
compile H into the affinity-based query matching between two adjacent frames:

Siy—cosine(d! + HY, " + H'™), (6)

As such, each query embedding is seamlessly incorporated with the unique
attributes of corresponding objects, thereby endowing them with a heightened
sensitivity to specific targets when matching with other frames afterward.

Task-Oriented Query Initialization & Object Association. To orient the
model towards specific tasks, existing work usually employs dedicated queries
(i.e., stuff /thing query) for semantic/instance segmentation [90,102], and process
them parallel by modifying the model into a two-path architecture. In contrast,
GVSEG smartly addresses this challenge by dynamically adjusting the involvement
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of three key constitutes, i.e., appearance, shape, and position within the
query initialization (i.e., Fig.3 (a)) and object association (i.e., Fig.3 (b)).

e EVS underscores the utilization of given hints to guide the segmentation of
subsequent frames. To flexibly unleash the potential of different kinds of hints
under the track by query matching paradigm, we propose to initialize the query
embeddings from backbone features sampled within hinted regions. Specifically,
for the point-guided task which provides a single point py = (x,y) to indicate the
target object, the backbone feature at corresponding location can be sampled by:

fr = Sample(F, pk)v (7)

where the implementation of sample follows PointRent [103]. Then, the query
embedding is initialized with fi: g = FFN(f%) to fulfill the guidance ability of
given exemplars where FFN is a feed-forward network. For the mask and box
guided tasks, we sample multiple f; and average them to get the feature that
comprehensively describes target objects. Finally, SPA query matching is applied
to enhance instance discrimination during the object association between frames.
e VIS emphasizes the tracking of instances which usually exhibits unique at-
tributes for discrimination. To encode these instance-specific properties (e.g.,
location, appearance) into query embeddings, we follow [104] to initialize q €
RN*P from the backbone features. Concretely, we partition the backbone features
into S x S grids and flatten them, resulting in {Fl}f:XlS We then randomly select
N elements from this set for the initialization of queries and obtain {g;}¥ ;:

[qo; - - +; qn] = FFN(F). (8)

As such, queries could involve appearance and location cues for diverse instances
present in the frame. Similarly to EVS, we apply SPA query matching for object
association to enable more precise instance discrimination across the entire video.
e VSS prioritizes semantic understanding of each class. Therefore, to enhance
the thorough grasp of semantics, we continuously collect the query embeddings
corresponding to each semantic class during training. More precisely, given N
queries g € RV*P | we gather K entities from them based on the bipartite matching
results 1€ {0, 1}2 between predictions generated from g and ground truth:

g=106qcRMP, (9)

Here @ encodes the semantic-specific properties for each class, and we momen-
tously update it in each training step to approximate the global representation
of semantic classes over the entire dataset. During inference, we initialize object
queries for each frame from . Note we do not apply SPA query matching for
VSS, as shape and location cues would harm semantic-level tracking.

e VPS integrates both instance-discrimination for foreground thing classes and
semantic interpretation for background stuff categories. We thus combine the
query initialization and association strategies used in VIS and VSS, to facilitate
the effective recognition and tracking for thing and stuff classes, respectively.
Task-Oriented Temporal Contrastive Learning. The performance of current
track by query matching-based solutions depends significantly on the temporal
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Fig. 4: Tllustration of task-oriented temporal contrastive learning (§3.1). Prior
work considers solely instance objects, and samples are restricted within neighbor frames.
In UVSEQ, instance & thing samples are collected from the whole video according to
shape and location similarity, while semantic & stuff samples are gathered from the
entire training set to capture diver shapes and appearances of each semantic class.

contrastive learning (TCL) between frames. Given a key frame, prior methods[22,
26, 34] typically select reference frames from the temporal neighborhood, while
ignoring all other frames. This leads to limited positive/negative samples for
effective contrastive learning which relies on a substantial quantity of samples to
achieve optimal performance. To maximize the usage of these discarded samples,
we devise a smart sampling strategy that caters to individual tasks and addresses
the challenge of accurately distinguishing the positive ones from them (i.e.,
Fig.4). Specifically, for tasks leaning towards instance discrimination (i.e., VIS,
EVS and thing in VPS), it is essential to note that not all identical instances
in the same video are suitable as positive samples. This is due to the strong
variations in shape and spatial location among instances, which can disrupt
the local consistency between the same instance at nearby frames that usually
manifest similar shape and position. To tackle this, in contrast to existing work
arbitrarily discards samples in distant frames, we sample examples across the
whole video by measuring the shape and location similarity. The variation of
shape-position descriptors (i.e., AH) belonging to the same instance but at frame
V* and V" is computed via:

IH=" — HYla

AH =
[H* |2

(10)

We set a threshold 7 = 0.2 and consider the query embedding associated with
H!™ as a positive example if AH is smaller than 7; otherwise, it is deemed
negative. As such, we involve distant frames into the reference set which enriches
the diversity of samples and bolsters the robustness of TCL. On the other hand,
for VSS and background stuff classes in VPS, samples are relaxed to select from
the whole training set, as larger mount of entities with diverse appearance, shape,
and location will improve the grasp of semantics. To implement this, we maintain
a first-in-first-out queue Q that contains Ng queries for each pre-defined semantic
class. Elements in Q@ will engage in TCL and be updated with new samples at each
training step. We set Ng to a relatively small number (e.g., 100), which incurs
negotiable cost in training time but considerable improvement in performance.
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Table 1: Quantitative results for VPS on VIPSeg[38] and KITTI-STEP [12] (§4.1),
and VSS on VSPW [37] (§4.2).

Method | Backbone General VIPSeg val KITTI-STEP val VSPW val
’ ’ Solution[VPQ VPQ™ VPQ®" STQ|VPQ STQ AQ SQ |mIoU mVCs mVCis
VPSNet [11] R-50 X 14.0 14.0 14.2  20.8]0.43 0.56 0.52 0.61 - - -
Mask-Prop [11]| R-50 X - - - - 0.67 0.63 0.71
MotionLab [12] R-50 X - - - - 10.40 0.58 0.51 0.67
SiamTrack [13] R-50 X 172 173 17.3 21.1 - - - - - -
TCB [37]| R-101 X - - - - | 375 869 821
DVIS [94]| R-50 X 13.2  43.6 12.8  42.8
Mask2Former [93]| R-50 v - - - - - - - - 1384 875 825
TubeFormer [23]| R-50 v 26.9 - - 38.6|0.51 0.70 0.64 0.76| - - -
Video K-Net [22]| R-50 v 26.1 - - 315|046 0.71 0.70 0.71] 379 87.0 82.1
TarVIS [25]| R-50 v 33.5 392 285 43.1| - 0.70 0.70 0.69| - - -
DEVA [105]| R-50 v 38.3 - - 415] - - - - - - -
Tube-Link [26]| R-50 v 39.2 - - 39.5[0.51 0.68 0.67 0.69| 43.4 89.2 854
GvSEG| R-50 v 44.0 44.4 42.4 44.9/0.53 0.71 0.69 0.71|44.5 90.5 86.4
CFFM [10]| MiT-B5 X - - - - - 19.3 90.8 87.1
MRCFA [86]| MiT-B2 X - - - 19.9 90.9 874
DVIS [94]| Swin-L X 57.6 59.9 55.5 55H.3| - - - - - - -
Video K-Net [22]| Swin-B v - - - - - - - - | 572 90.1 878
TarVIST [25]| Swin-L v 48.0 582 39.0 52.9| - - - - - - -
DEVA [105]| SwinL | « [522 - S22l - - - |- -
Tube-Link [26]| Swin-B v 50.4 - - 49.4]0.56 0.72 0.69 0.74| 62.3 91.4 89.3
GVSEG| Swin-B v 55.3 57.2 52.3 52.4/0.58 0.740.73 0.74/63.2 91.8 89.4
GVSEG| Swin-L v 57.9 59.7 56.1 55.6| - - - - |65.5 93.8 91.6

3.2 Implementation Details

Network Configuration. GVSEG is a semi-online video segmentation framework
built upon the tracking by query matching paradigm [4]. It comprises an image-
level segmenter to extract frame-level queries, and an object associator to match
query embeddings across frames. The image-level segmenter is implemented as
Mask2Former [93] with both ResNet-50 [106] and Swin-L [107] as the backbone.
Given the most recent work typically adopts clip-level inputs for richer temporal
cues [5,26,28], in alignment with this trend, GVSEG takes a clip containing three
frames as input each time. The size of points set P derived from object contour is
fixed to 200 to make the shape-position descriptor effectively characterize objects
of varying scales. We employ u = 36 angle divisions and v = 12 radius divisions
to capture point distribution in finer granularity.

Training. Following the standard protocols [5,23,26,48,108] in video segmentation,
the maximum training iteration is set to 10K for OVIS/VSPW /VIPSeg/KITTI
and 15K for YouTube-VOS;g/YouTube-VISy; with a mini-batch size of 16. The
AdamW optimizer with initial learning rate 0.001 is adopted. More details
regarding training and testing can be found in Supplementary Material.

4 Experiment

4.1 Results for Video Panoptic Segmentation

Dataset. VIPSeg [38] provides 2,806/323 videos in train/test splits which
covers 232 real-world scenarios and 58,/66 thing/stuff classes. KITTI-STEP [12]
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Table 2: Quantitative results for VIS on OVIS[36] and YouTube-VISy; [2] (§4.3).

Method | Backbone General Occluded-VIS val Youtube-VIS2; val

Solution| AP APso AP75 AR:1 ARio| AP AP;50 AP75 AR:1 ARio
SipMask [55] R-50 102 24.7 78 79 158 |31.7 52,5 34.0 30.8 37.8
InsPro [27] R-50 - - - - - 37.6 58.7 0.9 327 414
SeqFormer [6] R-50 - - - - - 10.5 62.4 43.7 36.1 48.1
VITA [5] R-50 19.6 41.2 174 11.7 26.0 |45.7 67.4 49.5 40.9 53.6
MinVIS [4] R-50 25.0 45.5 24.0 13.9 29.7 |44.2 66.0 48.1 39.2 51.7
IDOL [34] R-50 30.2 51.3 30.0 15.0 37.5[43.9 68.0 49.6 38.0 50.9
MDQE [66] R-50 33.0 57.4 322 154 38.4 |44.5 67.1 487 37.9 49.8

DVIS [94] R-50 34.1 59.8 32.3 15.9 41.1 - - - - -
GenVIS [28] R-50 34.5 59.4 35.0 16.6 383 |47.1 67.5 51.5 41.6 54.7
TCOVIS [109] R-50 35.3 60.7 36.6 15.7 39.5(49.5 71.2 53.8 41.3 55.9
CTVIS [110] R-50 35.5 60.8 34.9 16.1 41.9 |50.1 73.7 54.7 41.8 59.5
TubeFormer [23] R-50 - - 41.2 60.4 44.7 40.4 54.0

14.2 339 [43.3 649 471 39.3 52.7
31.1 525 304 159 399|483 69.6 53.2 40.5 55.9
29.5 51.5 30.2 155 34.5|47.9 70.0 50.2 423 55.2
35.9 50.7 38.0 16.6 40.1 |49.6 72.0 53.1 42.7 56.7
454 69.2 478 189 49.0 |59.6 80.9 65.8 48.7 65.0
16.7 709 49.5 19.1 50.8 |61.3 829 68.0 48.6 65.1
16.9 71.5 47.5 19.1 52.1 [61.2 84.0 68.8 48.0 65.8
- - - - 54.5 754 60.5 45.5 61.4
43.2 67.8 44.6 18.0 50.4 |[60.2 81.4 67.6 47.6 64.8
- - - - 58.4 79.4 64.3 47.5 63.6
49.7 74.9 52.0 18.9 54.5|60.7 82.9 69.7 47.5 65.7

CAROQ [24]| R-50
TarVIS [25] R-50
Tube-Link [26]| R-50
GvSEG| R-50
GenVIS [28]| Swin-L
TCOVIS [109]| Swin-L
CTVIS [110]| Swin-L
CAROQ [24]| Swin-L
TarVIS [25]| Swin-L
Tube-Link [26]| Swin-L
GVSEG| Swin-L

N N N e A N N N N e
[N}
ot
o
e~
3
©
[N}
ot
i

is an urban street-view dataset with 12/9 videos for train/val. It includes 19
semantic classes, with two of them (pedestrians and cars) having tracking IDs.

Performance. As illustrated by Table 1, GVSEG achieves dominant results
on VIPSeg [38], presenting an improvement up to 4.8%/5.4% in terms of
VPQ/STQ over the SOTA [26] with ResNet-50 as backbone. This reinforces our
belief that accommodating task-oriented property into general video segmentation
is imperative. Such an assertion gets further support on KITTI-STEP [12] that
GVSEG outperforms all existing solutions by significant margins in STQ and AQ),
which focus more on the coherent association of identical objects.

4.2 Results for Video Semantic Segmentation

Dataset. VSPW [37] has 2, 806/343 in-the-wild videos with 198, 224 /24, 502 frames
for train/val, and provides pixel-level annotations for 124 semantic categories.
Performance. As shown in Table 1, based on ResNet-50, GVSEG outperforms all
competitors and achieves 44.5% mloU. In particular, the 90.5%/86.4% scores
in terms of mVCs/mVCyg are comparable to MRCFA [86] which utilizes Swin-B
as the backbone and yields much higher mIoU. This suggests that, benefited by
task-oriented temporal contrast learning, GVSEG can produce more consistent
prediction across frames. When integrated with Swin-B, GVSEG demonstrates
0.9% gains over Tube-Link [26], confirming the superiority of our approach.



12 M. Chen et al.

Table 3: Quantitative results for EVS on YouTube-VOS;s[111], and BURST[35] (§4.4).
General | YouTube-VOS;15 val (Mask-guide) | BURST val (Point-guide
Method | Backbone | g | YIRS YOS vai (Chassnide) Brrol vep (Poniguce)
Box Tracker [112] R-50 X - - - - - 12.7 31.7 7.9
STCN [48] R-50 X 83.0 819 86.5 77.9 857 | 24.4 14.0 19.5
XMem [49] R-50 X 85.7 84.6 89.3 80.2 88.7 | 32.3 17.5 28.6
UNINEXT [113] R-50 v 77.0 76.8 81.0 70.8 79.4 - - -
TarVIS [25] R-50 v 79.2 79.7 842 729 79.9 30.9 43.2 27.8
GVSEG R-50 v 81.5 80.9 86.0 754 83.7 35.9 49.6 32.7
UNINEXT [113{] ConvNeXt-L v 781 79.1 835 710 78.9 - - -
TarVIS [25] Swin-L v 82.1 823 86.5 76.1 83.5 37.5 51.7 34.0
GVSEG Swin-L v 84.3 82.7 87.9 78.5 87.1 40.9 55.5 36.3

4.3 Results for Video Instance Segmentation

Dataset. Occluded VIS [36] is specifically designed to tackle the challenging
scenario of object occlusions. It consists of 607/140 long videos with up to 292
frames for train/val and spans 25 object categories with a high density of
instances. YouTube-VISg; [2] comprises 2,985/421 high resolution videos for
train/val. It extensively covers 40 object classes with 8,171 unique instances.
Performance. From Table 2 we can observe that GVSEG provides a considerable
performance gain over existing methods on Occluded-VIS [36]. Notably, it outper-
forms the prior specalized/general solution SOTA CTVIS [110]/TarVIS [25] by
0.4%/4.8% in terms of mAP with ResNet-50 as the backbone. When adopting
Swin-L, GVSEG showcases far better performance, achieving up to 49.7% mAP
which earns an impressive 2.8% improvement against CTVIS. Moreover, we
report performance on YouTube-VISy; [2]. As seen, GVSEG surpasses the main
rival (i.e., TarVIS), by 1.3%/0.5% with ResNet-50/Swin-L as backbone.

4.4 Results for Exemplar-guided Video Segmentation

Dataset. YouTube-VOS;g [111] includes 3, 471/474 videos for train/val. The
videos are sampled at 30 FPS and annotated per 5 frames with multiple objects.
BURST [35] contains 500/993/1, 421 videos for train/val/test. It provides
mask /point /bounding box as exemplars and averages over 1000 frames per video.
Performance. To make a fair comparison with existing work which usually tests
on BURST without training, we train GVSEG on YouTube-VOS;g and randomly
adopt mask or point exemplars as the guidance. Then the performance is evaluated
with mask exemplar on YouTube-VOS;5 and point exemplar on BURST. As
shown in Table 3, GVSEG yields satisfactory performance on YouTube-VOSsg,
i.e., surpassing the general counterpart (i.e., TarVIS [25]) by 2.83%/2.2% in
terms of G score with ResNet-50/Swin-L as the backbone. We also provide the
point-guided segmentation results on BURST. As seen, GVSEG surpasses current
solutions by a large margin across all metrics. For instance, When compared with
task-specialized approaches (e.g., XMem [49]), our approach still earns 3.6%
improvement. Note existing work has to adopt an additional offline model for
mask prediction with given points, while our method natively supports points as
the exemplar, contributing to the superiority in both efficiency and effectiveness.
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Fig. 5: Visual comparison results on VIPSeg-VPS [38], YouTube-VISz; [2], VSPW-
VSS[37] and YouTube-VOS;s [111] (§4.5).

4.5 Qualitative Results

In Fig.5, we visualize the comparisons of GVSEG against the top-leading methods
on four different tasks (i.e., VPS, VIS, VSS, and EVS). As seen, GVSEG gives
more precise and consistent predictions in challenging scenarios.

4.6 Diagnostic Experiment

For more detailed analysis, we conduct a set of ablative studies on VIPSeg-
VPS [38] with ResNet-50 as the backbone.

Key Component Analysis. We investigate the improvements brought by
each component of GVSEG in Table 4a where ‘SPA’ indicates ‘shape-position
aware’. First, it can be observed that SPA query matching brings a considerable
improvement over the Baseline, i.e., 1.8%/1.2% concerning VPQ and STQ. This
verifies our modeling of segment targets by disentangling them into appearance,
shape, and position. Moreover, the adoption of task-oriented strategies for query
initialization, object association, and temporal contrastive learning (TCL) elevates
the results to a new level. Finally, we combine all these designs together which
results in GVSEG and obtains the optimal performance. This confirms the
compatibility of each component and the effectiveness of our whole algorithm.
Matching Threshold & Queue Length. The results with different threshold
7 and queue length Ng utilized in task-oriented TCL are reported in Table 4b.
Though larger size of samples in the queue contributes to higher scores, we remain
Ng to 100 which gives nearly no impact in training speed and memory usage.
Histogram Size. In Table 4c, we investigate the impact of the number of bins
within the polar-style histogram for building position-shape descriptor. As seen,
there is minor change in performance if uxwv is large enough (e.g., > 200) to
capture the fine-grained variation in shape and location.

Task-Oriented Object Association. We probe the impact of integrating
distinct cues into object association in Table 4d. By comparing Row #2 to #1
we can observe that considering shape and position can boost the performance
for thing objects. In stark contrast, the inclusion of these cues causes negative
impacts and yields less favorable results for stuff objects (i.e., Row #3 vs. #1).
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Table 4: A set of ablative studies on VIPSeg-VPS [38] val with ResNet-50 [106] as
the backbone (§4.6). The adopted settings are marked in red.

Component VPQ 1 STQ 1 T Ng VPQ 1 STQ 1 Angle u Radius v | VPQ T STQ 1
Baseline 36.0 37.3 B 707.17 N 7170[1 | 7473.? o :1}? o 12 6 43.1 43.8
+ SPA query matching 378  38.5 0.2 100 44.0 44.9 24 ] 12 ] 436 443
+ Task-oriented init.&asso.| 40.1 ~ 40.7 S 02 200 | 441 451 36 12 44.0 449
+ Task-oriented TCL 412 42.0 0.3 100 43.6 44.4 Co36 1 18 | 439 450
GVSEG 44.0 44.9 0.3 200 43.7 44.6 48 12 44.0 44.8
(a) Component analysis (b) Task-oriented TCL (c) Shape-position descriptor
Thing Stuff . Thing Stuff -
# [

" | Appear. Shape & Pos. | Appear. Shape & Pos. VPQT STQT 7 [Frame Video | Frame Dataset VPQT STQT
L e 21 41 1 v /] 40.1  40.7
2 v v v 44.0 44.9 2 v v 42.4 43.3
3 v v 4 41.7 42.8 3L v s :/ 77777777 430 439
4 v v v v 42.9 43.4 4 v v 44.0 44.9

(d) Task-oriented query association (e) Task-oriented example sampling

This proves the necessity and urgency to cater to the task-oriented property
which emphasizes more on instance discrimination or semantic understanding.

Task-Oriented Example Sampling. To determine the contribution of our
devised example sampling strategy utilized in TCL, we examine the performance
w.r.t. thing and stuff categories in Table 4e where ‘Frame’ refers to selecting
samples from nearby frames, ‘Video’ indicates gathering samples across the entire
video based on shape-position descriptor for instance discrimination, and ‘Dataset’
means storing samples in a queue to enhance the comprehension of semantics.
As seen, both ‘Video’ and ‘Dataset’ level sampling for thing and stuff classes
boost the scores significantly. This verifies our core insight that current sampling
strategy in TCL is sub-optimal, and we can improve it by rendering a more
holistic modeling on segment targets to select richer and more suitable samples.

5 Conclusion

We present GVSEG, the first general video segmentation solution that accom-
modates task-oriented properties into model learning. To achieve this, we first
render a holistic investigation on segment targets by disentangling them into
three essential constitutes: appearance, shape, and position. Then, by adjusting
the involvement of these three key elements in query initialization and object
association, we realize customizable prioritization of instance discrimination
or semantic understanding to address different tasks. Moreover, task-oriented
temporal contrastive learning is proposed to accumulate a diverse range of infor-
mative samples that considers both local consistency and semantic understanding
properties for tracking instances and semantic/background classes, respectively.
In this manner, GVSEG offers tailored consideration for each individual task and
consistently obtains top-leading results in four video segmentation tasks.
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