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A Implementation Details

We employ Mask2Former [1] as a query-based detector and initialize our pa-
rameters with its official COCO [8] weights. During training, we utilize both
COCO pseudo videos, generated through rotation and crop augmentation, and
the target video dataset, following previous works [3,4,7,10,13]. Our batch size is
16 for all datasets, and we sample 4 images from each video. VISAGE is trained
for 20, 000/60, 000/60, 000 iterations on YTVIS 2019/2021/OVIS and undergoes
decay at 15, 000/45, 000/45, 000 iterations. The initial learning rate is 1e-4 and
its reduction factor is 0.1. At the inference stage, the memory bank size, denoted
as W , is set to 5, and the resolution of the input frame is resized so that its
shortest side is 480 pixels.

B More Experimental Details

Simplified Tracker. Tab. 4 in the main paper demonstrates the effectiveness of
our simplified tracker. To substitute our tracker with another, we follow the official
code from CTVIS [13] to adopt their tracking style. We select hyperparameter
values identical to those used in CTVIS for thresholding the predictions. We have
eliminated the heuristic design element, Mask NMS, from the tracker, as shown
in the second row of Tab. 4.

Pseudo Dataset. To evaluate performance in complex scenarios not easily
observed in traditional datasets, we create a pseudo dataset. Using copy-paste
augmentation with instances from the COCO [8], we generate 36-frame videos. We
manually select instances with high annotation quality from the 21 classes present
in both COCO and YouTubeVIS-19 [12]. Randomly choosing 2 or 3 instances,
we utilize them to compose each video, with class selection probabilities based
on the class distribution in the YouTubeVIS-19 dataset. Background images are
randomly chosen from BG-20k [6], and resolutions are randomly selected from
cartesian product A×A where A = {600, 700, 800, 900}.
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Each instance moves along a random Bezier curve, leading to the occurrence
of complex scenarios such as occlusion due to simultaneous movements. To ensure
consistent depth order when instances overlapped, we maintain a coherent order
throughout the video. Additionally, we allow instances to move outside the frame
by up to 20% in each direction, creating scenarios where objects exited and
re-entered the frame naturally.

The dataset comprises a total of 1000 videos, evenly split into 500 track-type
and 500 swap-type videos. In track-type videos, instances move along Bezier
curves for all 36 frames. In swap-type videos, instance positions switch at a
randomly chosen intermediate frame, returning to their original trajectory after
the swap. The pseudo dataset and its generation code are available at GitHub.

Table 8: Computation Comparison on YTVIS 2019 validation set.

Method Metric YTVIS
2019

YTVIS
2021 OVISFPS Params GFLOPs

MinVIS [5] 25.6 44 3031 47.4 44.2 25.0
CTVIS [13] 13.2 44 3036 55.1 50.1 35.5
VISAGE 23.3 45 3083 55.1 51.6 36.2

C Comparative Computational Analysis

Our approach, VISAGE, showcases its effective performance through simplicity.
To substantiate this, we conduct a comparative analysis of frames per second
(FPS) and the number of parameters (Params) with MinVIS [5] and CTVIS [13],
both employing the Mask2Former [1] framework and a query-matching approach.
All evaluations are carried out on a single A100 GPU, utilizing the YTVIS 2019
validation set equipped with a ResNet-50 backbone.

As shown in Tab. 8, VISAGE exhibits effectiveness at the inference stage.
To ensure a fair comparison, each model processes a single frame at a time,
and the same frame resolution is used across all methods during evaluation. We
measure the FPS on all videos of the YTVIS 2019 validation set. MinVIS, which
generates per-frame outputs and associates them using cosine similarity without
any heuristic design or memory bank, achieves the highest FPS among all the
models. On the other hand, CTVIS, employing some heuristic design in their
tracker, has a lower FPS than others. Our VISAGE shows comparable FPS to
MinVIS, although its performance is similar to CTVIS.

In Tab. 8, VISAGE shows a slight increase in both parameters and GFLOPs
compared to the other two methods. This increase is attributed to VISAGE’s
adoption of an additional appearance branch, which results in a larger number
of parameters and higher GFLOPs. However, these differences are very marginal.

https://github.com/KimHanjung/VISAGE


Video Instance Segmentation with Appearance-Guided Enhancement 3

Notably, when measuring GFLOPs for both VISAGE and MinVIS using the same
10 videos sampled from the YTVIS 2019 validation set, the GFLOPs of VISAGE
are only 1.7% higher compared to MinVIS.

VISAGE has similar computational requirements as MinVIS, yet their perfor-
mances differ significantly. Additionally, VISAGE outperforms CTVIS in accuracy
and offers a considerably higher FPS rate. Following these results, our VISAGE,
despite its simplicity, not only exhibits competitive performance on various
benchmarks but also proves to be highly effective.

D Additional Experiments

D.1 Youtube-VIS 2022

We additionally perform experiments on the YouTube-VIS (YTVIS) 2022 dataset,
which represents a challenging scenario with longer sequences. The YTVIS 2022
dataset includes 71 extra videos added to the validation set of YTVIS 2021. As
shown in Tab. 9, our VISAGE demonstrates comparable performance to both
GenVIS [3] and TCOVIS [7].

Table 9: Comparisons on the YouTube-VIS 2022 long videos sets. Methods are
denoted as online or offline, indicated by the text color. Bold and underline highlight
the highest and second-highest performances, respectively.

Method Setting YouTube-VIS 2022
AP AP50 AP75 AR1 AR10

MinVIS [5] online 23.3 47.9 19.3 20.2 28.0
VITA [4] offline 32.6 53.9 39.3 30.3 42.6
GenVIS [3] online 37.5 61.6 41.5 32.6 42.2
GenVIS [3] offline 37.2 58.5 42.9 33.2 40.4
TCOVIS [7] online 38.6 59.4 41.6 32.8 46.7
VISAGE online 37.5 60.0 37.1 35.2 44.1

D.2 Swin-L backbone

In Tab. 10, we evaluate our method using the Swin-L backbone [9] on various
benchmarks. VISAGE demonstrates a notable increase in performance compared
to the ResNet-50 backbone [2]. When compared with other methods, VISAGE
achieves competitive performance across these benchmarks. If VISAGE does
not incorporate appearance information by setting α to 0, overall performance
decreases.

Additionally, we conduct further experiments using our pseudo dataset with
a stronger backbone. As illustrated in Tab. 11, our VISAGE still outperforms
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Table 10: Comparisons on the YouTube-VIS 2019, 2021, and OVIS validation
sets with online methods are presented. Each method is trained using the Swin-L
backbone. The best performance is highlighted in bold.

Method YTVIS
2019

YTVIS
2021 OVIS

MinVIS [5] 61.6 55.3 39.4
IDOL [11] 64.3 56.1 42.6
GenVIS [3] 64.0 59.6 45.2
DVIS [14] 63.9 58.7 47.1
TCOVIS [7] 64.1 61.3 46.7
CTVIS [13] 65.6 61.2 46.9

VISAGE (w/o app) 63.1 58.6 41.5
VISAGE 64.2 59.6 46.5

Table 11: Comparisons on Pseudo dataset using Swin-L backbone. Bold denote the
highest accuracy.

Method AP AP50 AP75 AR1 AR10

T
ra

ck

GenVIS [3] 71.9 83.7 76.2 74.1 79.7
CTVIS [13] 75.0 87.6 81.5 78.6 82.1

VISAGE (w/o app) 73.8 87.0 78.2 76.1 80.3
VISAGE 76.6 88.2 81.8 78.9 83.0

Sw
ap

GenVIS [3] 47.2 64.8 48.5 59.4 67.0
CTVIS [13] 60.5 79.7 64.3 66.4 69.9

VISAGE (w/o app) 54.3 75.0 55.5 58.4 63.2
VISAGE 64.5 82.0 68.1 68.0 73.2

other methods in scenarios where appearance information is crucial. On the track
dataset, all methods exhibit marginal differences from each other. Conversely, on
the swap dataset, VISAGE significantly outperforms the other methods. Moreover,
the performance degradation observed when appearance information is removed
from our method shows the effectiveness of appearance cues.

D.3 Ablation Studies

Window Size. We analyze the effect of the window size W of our memory bank
on the YTVIS 2019 validation set. As demonstrated in Tab. 12, using a memory
bank improves performance compared to not using one (W = 1). Furthermore,
a longer window size contributes to this improvement. Given that setting the
window size to both 5 and 10 yields the same performance, we set the default
window size of W = 5.
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Table 12: Ablation study of the win-
dow size W .

W AP AP50 AP75 AR1 AR10

2 53.2 75.2 58.7 50.1 62.1
3 54.6 76.8 60.3 50.3 62.7
5 55.1 78.1 60.6 51.0 62.3
10 54.0 76.4 59.9 50.2 61.6

Table 13: Results of Ablation Experi-
ments on α.

Dataset 0.00 0.25 0.50 0.75 1.00

YT21 50.2 50.2 50.8 51.6 23.2
YT22 32.1 34.4 36.7 37.5 18.0
Track 65.2 65.5 65.8 65.6 29.2
Swap 51.8 58.5 63.0 66.1 28.0

Table 14: Feature anaylsis. All experiments are repeated 5 times.

Dataset Backbone Transformer
Encoder

Per-pixel
Embedding

R
50

YT19 0.96± 0.003 0.90± 0.001 0.84± 0.001
YT21 0.94± 0.001 0.87± 0.002 0.79± 0.002
OVIS 0.91± 0.002 0.79± 0.002 0.66± 0.002

Sw
in

L YT19 0.99± 0.000 0.89± 0.001 0.85± 0.001
YT21 0.98± 0.000 0.85± 0.002 0.79± 0.001
OVIS 0.96± 0.001 0.76± 0.003 0.67± 0.004

Additional Analysis of Appearance Weight α. Building on the analysis
in Tab. 5, we provide additional analysis on the appearance weight α using
the remaining datasets. As shown in Tab. 13, setting α to 0.75 yields the best
performance across most datasets. This result underscores the importance of
appearance-guidance.

D.4 Analysis on the Model Design.

We generate the appearance query from the backbone feature. However, other
features may also contain appearance information. To address this, we conduct
experiments to identify which features best capture appearance information, as
shown in Tab. 14.

We extract object features from various types: backbone, transformer encoder,
and per-pixel embedding (mask feature) using ground-truth masks. For the same
object, we measure the cosine similarity between two features extracted from
different timesteps. This experiment is conducted on all objects for each dataset
using Mask2Former COCO pre-trained weights.

Object features from the backbone show higher cosine similarity compared
to those from the transformer encoder and mask feature. We hypothesize that
self-attention layers aggregate the features, thereby diminishing their appearance
expressiveness. This aligns with the results shown in Tab. 2.
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Fig. 7: Additional qulitative results present a side-by-side comparison of our method,
VISAGE, with previous methods [3,5,11,13,14] on various scenarios. Each row show-
cases the predicted results from different methods, with VISAGE distinctly achieving
accurate predictions. Consistency across evaluations is maintained by employing the
same backbone and benchmark-trained weights for all methods, as illustrated in this
collection of images.

E Additional Qualitative Results

We compare our method, VISAGE, with previous methods [3, 5, 11, 13, 14] across
various scenarios. We expand upon the qualitative results presented in the main
paper, specifically Fig. 1 and Fig. 2, by including additional comparisons with
other methods as depicted in Fig. 7. Notably, only VISAGE accurately predicts
the results. All methods evaluated in each video utilize the same backbone and
benchmark-trained weights.

Additionally, we compare our method with previous state-of-the-art meth-
ods [3, 13] on benchmark videos and demonstrate our generalization ability on
real-world videos, as demonstrated in our submitted demo_video. The video
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illustrates that our VISAGE exhibits robust performance in scenarios with heavy
intersections. Furthermore, VISAGE shows effective performance in situations
involving shot changes or dynamic movements, as evidenced by our real-world
video samples sourced from YouTube.
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