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Abstract. In recent years, online Video Instance Segmentation (VIS)
methods have shown remarkable advancement with their powerful query-
based detectors. Utilizing the output queries of the detector at the frame-
level, these methods achieve high accuracy on challenging benchmarks.
However, our observations demonstrate that these methods heavily rely
on location information, which often causes incorrect associations between
objects. This paper presents that a key axis of object matching in track-
ers is appearance information, which becomes greatly instructive under
conditions where positional cues are insufficient for distinguishing their
identities. Therefore, we suggest a simple yet powerful extension to object
decoders that explicitly extract embeddings from backbone features and
drive queries to capture the appearances of objects, which greatly enhances
instance association accuracy. Furthermore, recognizing the limitations of
existing benchmarks in fully evaluating appearance awareness, we have
constructed a synthetic dataset to rigorously validate our method. By
effectively resolving the over-reliance on location information, we achieve
state-of-the-art results on YouTube-VIS 2019/2021 and Occluded VIS
(OVIS). Code is available at https://github.com/KimHanjung/VISAGE.
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1 Introduction

Video Instance Segmentation (VIS) is a challenging task that requires classi-
fication, segmentation, and tracking of distinct instances throughout a video
sequence [32]. Current studies in VIS can be primarily categorized into two ap-
proaches: online and offline, based on whether a video is processed in a per-frame
or per-clip manner. Recently, the advancement of frame-level object detectors
has resulted in online methods becoming increasingly dominant in the VIS field.

As detectors directly impact the accuracy in the video domain, recent on-
line models are primarily built using the powerful query-based detectors [5, 39].
Spatially decoding image information, the detectors are designed to represent
object-wise information using the queries. Therefore, the online VIS methods
reuse these queries from the detectors and have achieved substantial improve-
ments in multiple challenging benchmarks [26, 34] by mostly adopting either
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Fig. 1: Qualitative results across challenging scenarios. Predicted results using
query-propagation [15, 38], query-matching [17, 31, 37], and our appearance-guided
methods. The first row illustrates a shot change across consecutive frames, a scenario
where previous methods fail to maintain consistent tracking. The second and third rows
demonstrate trajectory intersections, leading to id-switching with previous methods.
Unlike previous methods, our method successfully tracks objects without switching or
losses. Best viewed in color.

propagation [15,23] or matching [17,31,37] strategies. However, tracking under
complex scenarios such as shot changes or trajectory intersections (Fig. 1) remains
imperfect, resulting in the degradation of the overall accuracy.

Examining these failure cases, we observe that object-wise information of
the queries is significantly imbalanced: heavy reliance on positional cues, and
less reflection on appearances. As demonstrated in Fig. 1, previous query-based
VIS methods [15, 17, 31, 37, 38], tend to maintain the spatial order of previous
predictions in their current predictions. To support this argument, we conduct
additional analyses by horizontally flipping images to generate two-frame pseudo
videos. The existing models manifest association errors despite the distinct
exterior patterns of objects, as shown at the top of Fig. 2, which highlight the
dependence on object locations. As there exist multiple scenarios that cannot be
fully handled with the imbalanced information, such a phenomenon necessitates
the models to take object appearances into consideration.

We introduce VISAGE (Video Instance Segmentation with Appearance-
Guided Enhancement), a method that leverages appearance cues as a crucial
indicator for distinguishing instances. In our approach, we introduce a streamlined
branch that employs mask pooling to generate appearance queries from the
predicted mask of object queries. This enables each appearance query to capture
the visual features of its corresponding object, providing a more comprehensive
representation for improved tracking accuracy. To refine query discrimination,
we integrate a contrastive loss [3, 8, 27], which enhances the model’s ability to
distinguish between instances across different frames.
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Fig. 2: Proof of concept demonstrated with a flipped image. Previous meth-
ods [15, 17, 31, 37, 38] struggle with instance matching in flipped images, showing a
dependency on location. Our method, VISAGE, addresses this by emphasizing appear-
ance, enabling accurate instance matching even with image flipping.

Additionally, we introduce a streamlined tracker designed to minimize reliance
on heuristic procedures to the greatest extent feasible. Previous methods [31, 37]
employ multiple refinement steps for removing redundant mask proposals and
adopt handcrafted threshold values for accurate tracklet construction. Through
such processing, only selectively chosen queries are incorporated into the matching
process. Although these complex tracker configurations enhance tracking accuracy,
they also create a dependency on numerous hyperparameters, each of which can
be tailored heuristically to specific datasets. To alleviate such dependence, our
method streamlines the tracker and dramatically reduces the number of required
hyperparameters, such as threshold values for initializing and deleting tracklets,
and non-maximum suppression (NMS), among others. Nonetheless, a lack of
temporal information still exists, inherent in query-matching online methods, as
they are only aware of adjacent frames. We address this limitation by using a
simple memory bank to facilitate temporal awareness.

Despite the simplicity of our approach, VISAGE has many desirable properties.
Our method introduces a new paradigm in query-based VIS by emphasizing
the crucial role of appearance information for object association. Enhanced by
appearance-based guidance, it demonstrates superior performance in complex
tracking scenarios, outperforming previous methods that often misidentify objects
due to an excessive dependence on spatial information as shown in Fig. 1(a).
It successfully leverages appearance information, as illustrated at the bottom
of Fig. 2, and has been validated on our proposed large-scale pseudo dataset,
outperforming established methods [15, 37] by a large margin. Furthermore, with
its simplified tracker that effectively utilizes the past history of both object and
appearance queries, our method demonstrates competitive performance across
all benchmark datasets. Notably, VISAGE achieves state-of-the-art performance
on three standard benchmarks: YouTubeVIS-19/21 [32,33] and OVIS [26].
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2 Related Works

2.1 Online Video Instance Segmentation

Contrary to traditional online approaches [11, 19, 32, 35], modern online methods
utilize query-based detectors [2, 5, 39] with an emphasis on query association
strategies. Query-based online methods can be divided into two main strategies:
query-matching and query-propagation.

Query-matching approaches dynamically construct tracklets in an online
fashion using query-based detectors [2, 5, 39], which yield predictions for each
video frame individually. MinVIS [17] implements this concept by exclusively
training of the query-based detector, subsequently deploying it on video frames
independently during the inference phase to conduct tracking via bipartite
matching of corresponding queries. However, its supervision is restricted to the
frame-level, which can introduce ambiguity by not accounting for the object’s
continuity in the video sequence. To mitigate this, some studies [31, 37] have
incorporated contrastive learning [3,8,27] to refine instance embeddings. Moreover,
these methods utilize a memory bank at the inference stage, which allows for
the processing of multiple frames, thereby enhancing the temporal information
captured for each object. Specifically, CTVIS [37] further improves discriminative
capability by using the memory bank during the training stage. However, these
previous approaches still fall short in discriminative ability due to their insufficient
use of appearance information. Our method, VISAGE, introduces a novel strategy
that utilizes the appearance cue to significantly enhance discriminative ability,
leading to more robust tracking.

Query-propagation methods track objects in video sequences by utilizing
output queries from prior frames. By propagating output queries, these meth-
ods track corresponding objects across frames [6]. Additionally, some enhance
tracking accuracy by also propagating proposals alongside the queries [12]. Re-
cent developments have enabled some methods to operate in both online and
offline modes, processing videos clip-by-clip and frame-by-frame. For instance,
GenVIS [15] employs an offline VIS method as its backbone, wherein learnable
instance prototypes aggregate the backbone’s outputs through the propagation of
the instance prototype. This design allows GenVIS to function as either an online
or offline method, depending on the length of clip processed by the backbone. On
the other hand, DVIS [38] constructs tracklets by propagating frame queries in
an online manner. These well-established tracklets are then refined to effectively
utilize information from the entire video in an offline manner. Yet, these meth-
ods are often constrained by a local matching strategy that focuses on aligning
tracklets with ground truths based solely on the current frame. This approach
frequently leads to unstable tracking outcomes, as it fails to consider the entire
video context, resulting in suboptimal performance. TCOVIS [23] addresses this
issue by shifting from the local matching strategy of GenVIS [15] to a global
matching approach, thereby achieving more robust tracking across videos.
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2.2 Offline Video Instance Segmentation

Offline VIS architectures [1, 29] process input videos at the clip-level rather than
frame by frame. VisTR [28] extends DETR [2] from frame-level to clip-level
processing in an end-to-end manner by simultaneously handling multiple frame
features within the transformer encoder-decoder. However, this approach, which
processes multiple frame-level inputs at once, demands extensive computation,
making the processing of longer sequences impractical.

To overcome this limitation, IFC [18] introduces a memory token in the
transformer encoder and employs fixed-size clip queries in the transformer de-
coder, enhancing both the model’s performance and efficiency. With the trans-
former decoder design of IFC, Mask2Former-VIS [4] adapts Mask2Former [5]
for video-level tasks, resulting in substantial performance gains. Meanwhile, Seq-
Former [30] redesigns the transformer decoder to process each frame individually,
thus improving the model’s ability to detect instance movement by precisely
capturing location changes. VITA [16] introduces a novel strategy by process-
ing clip queries through cross-attention with frame queries rather than relying
on frame features. This strategy lightens the computational load imposed by
dense spatio-temporal backbones, resulting in an efficient architecture capable
of managing lengthy videos. Beyond focusing solely on transformer architecture
enhancements, TeViT [36] introduces a groundbreaking backbone that improves
temporal information processing by capitalizing on the strengths of ViT [7].

3 Method

3.1 Query-based Detector

Query-based object detectors [2, 5, 39] can be largely divided into three compo-
nents: backbone, transformer encoder, and transformer decoder. The backbone
initiates the process by generating low-level image feature maps, encapsulating
essential visual information. These feature maps are then enhanced through
the transformer encoder, which employs self-attention mechanisms to refine the
feature representation, as detailed in [2, 39]. The process concludes in the trans-
former decoder, where the identified objects are decoded into N learnable queries.
Our approach adopts the well-established query-based detector framework [5],
maintaining its original structure intact.

3.2 Appearance-Guided Enhancement

Prior to the advent of query-based tracking approaches, traditional video tracking
methods [8, 20, 32] extracted instance features from backbone feature maps using
operations such as RoIPool [10] and RoIAlign [13]. Following a similar principle,
we use average pooling to extract appearance queries from the backbone feature
maps, guided by the predicted masks as shown in Fig. 3 (a). These appearance
queries are designed to encapsulate appearance-centric features, providing a
distinctive complement to the object queries. Consequently, alongside the object
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Fig. 3: Overview of VISAGE. (a) The proposed VISAGE’s architecture which
generate object embedding and appearance embedding. (b) Overall inference pipeline of
VISAGE: At time step t− 1, the memory bank is updated with both the appearance
embedding and the object embedding. Then, at time step t, the memory embedding is
read from the memory bank and used for matching. (c). Details of the matching process:
In that scenario, using only object embeddings leads to incorrect matching. However,
when guided by the appearance embedding, the matching process can be corrected.
Best viewed in color.

queries already in use, we introduce appearance queries as an additional indicator.
We then transform both types of queries into appearance embeddings ea ∈ RN×C

and object embeddings ei ∈ RN×C , respectively.

Our appearance embeddings enhance the matching process when using only
object embeddings leads to incorrect matches, as illustrated in Fig. 3 (c). Relying
solely on the similarity of object embeddings may lead to ambiguity due to
their similar positions across subsequent frames. However, this ambiguity can be
resolved by also considering the similarity of appearance embeddings, as their
distinct appearances provide additional discriminative information. With this
guidance, we leverage both appearance embeddings ea and object embeddings
ei to identify the optimal match between queries across subsequent frames as
shown in Algorithm 1 (lines 4-10).

To enhance object association quality, we improve the distinctiveness of both
object and appearance embeddings. We utilize contrastive learning to refine
embeddings obtained from two distinct frames, ensuring that embeddings of
identical object instances are brought closer together in the embedding space,
while those of different instances are separated further apart. Unlike previous
methods utilizing contrastive learning [8, 31], our approach treats object and
appearance embeddings individually, applying contrastive loss to each respectively.
It allows each type of embedding to be distinctly characterized by its inherent
properties, facilitating their mutual synergy in object matching, as illustrated
in Fig. 3 (c). Consequently, our model’s final loss integrates a weighted sum of
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the contrastive losses for both types of embeddings with the original query-based
detector’s loss.

Algorithm 1 Inference pipeline of VISAGE.

Input: model F , frames {xt}Tt=1, weight α
Output: predictions P
1: P ← {}
2: M← {}
3: idx← [0, N − 1]
4: for t in [1, T ]:
5: pt, et

i, e
t
a ← F(xt)

6: M←M+ (et
i[idx], e

t
a[idx])

7: mt
i,m

t
a ←M.read_memory()

8: P ← P + pt[idx]
9: s← (1− α) · cos_sim(et

i,m
t
i)

+ α · cos_sim(et
a,m

t
a)

10: idx← linear_sum_assignment(s)
11: end for
12: return P

3.3 Inference with Appearance

As shown in Algorithm 1, our tracker employs a simple yet effective matching
process that aligns the current object embeddings and appearance embeddings
with their respective counterparts from the previous frame. We compute the sim-
ilarity scores for each object-appearance embedding pair using Cosine Similarity,
following a method similar to that in [17]. Then, employing the weighted sum
of object and appearance similarities, we utilize the Hungarian algorithm [21]
(linear_sum_assignment in Algorithm 1) to achieve optimal assignment.

In addition, we incorporate a simple memory bank to compensate for the
lack of temporal information, a limitation inherent in online processes, as used in
previous methods [31, 37]. We stack the states of previous queries from the most
recent frames within our memory bank, which has a size of W . From this bank,
we read a memory embedding m ∈ RN×C using the read_memory() function
in Algorithm 1.

Specifically, this function is implemented by temporally weighting the embed-
dings to put more emphasis on recent queries while utilizing the confidence scores
for selective weighting. For the current memory embedding mt, the calculation
of the weighting for each embedding at the previous time step w ∈ [1,W ] can be
formally expressed as follows:

mt =

W∑
w=1

(
et−wst−w × W

w

)
, (1)

where s denotes the confidence score. This memory embedding represents the
object and appearance, denoted as mt

i and mt
a respectively, in Algorithm 1.
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Finally, we sequentially associate the predictions (p in Algorithm 1) from each
frame using the obtained assignment. By employing a simple inference pipeline
coupled with an efficient memory bank, we introduce an effective approach.

4 Experiments

4.1 Datasets

We evaluate VISAGE on three VIS benchmarks: Youtube-VIS (YTVIS) 2019
/ 2021 [32,33] and Occluded VIS (OVIS) [26]. The YTVIS datasets contain 40
predefined categories in their videos. YTVIS 2019 is the first and largest dataset
for video instance segmentation. It includes 2,238 videos for training, 302 for
validation, and 343 for the testing. YTVIS 2021 expands upon the YTVIS 2019
dataset, containing 2,985 videos for training, 421 for validation, and 453 for
testing, while refining annotations and modifying some categories.

OVIS stands out for its more complex and longer videos, featuring 25 categories
and comprising 607 videos for training, 140 for validation, and 154 for testing.
In comparison to YTVIS, it contains a higher number of instances per video,
averaging 5.8, and a total of 296k masks. Additionally, the average length of
videos in OVIS is approximately 12 seconds.

4.2 Implementation Details

We adopt the Mask2Former [5] as our query-based detector. All of our models are
initialized with parameters pre-trained on COCO dataset [24] with ResNet-50 [14]
backbone. We also adopt COCO joint training following previous works [15,16,
23,30,37]. Our batch includes 16 videos. In our experimental setup, we set the
weights for the contrastive losses applied to both the appearance and object
embeddings at 2.0. For losses other than the contrastive loss, we adopt the same
loss function and weight specifications as those described in [4]. The window size
of memory bank W is set to 5 and appearance weight α is set to 0.75 during
inference. Finally, our method is trained using 4 NVIDIA A6000 GPUs.

4.3 Main Results

We compare our methods with state-of-the-art methods on three VIS benchmarks:
YTVIS 2019/2021 and OVIS. The results are reported in Tab. 1.

Youtube-VIS 2019 & 2021. As shown in Tab. 1, we compare our VISAGE
with previous state-of-the-art methods. On the YTVIS 2019 benchmark, VISAGE
performs on par with the highest-performing method cited as CTVIS [37]. Notably,
both VISAGE and CTVIS [37] surpass previous methods by a large margin. On
the YTVIS 2021 benchmark, an improved version of YTVIS 2019, VISAGE
outperforms other existing methods. We achieve the highest performance on
both the YTVIS 2019 and 2021 datasets by incorporating appearance-guided
enhancement.
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Table 1: Comparisons on the YouTube-VIS 2019, 2021 and OVIS validation
sets. Methods are denoted as online or offline, indicated by the text color. We highlight
the best performance in bold.

Method Setting YouTube-VIS 2019 YouTube-VIS 2021 OVIS
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

IFC [18] offline 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9 - - - - -
Mask2Former-VIS [4] offline 46.4 68.0 50.0 - - 40.6 60.9 41.8 - - - - - - -
MinVIS [17] online 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7 25.0 45.5 24.0 13.9 29.7
IDOL [31] online 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9 30.2 51.3 30.0 15.0 37.5
VITA [16] offline 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6 19.6 41.2 17.4 11.7 26.0
GenVIS [15] online 50.0 71.5 54.6 49.5 59.7 47.1 67.5 51.5 41.6 54.7 35.8 60.8 36.2 16.3 39.6
GenVIS [15] offline 51.3 72.0 57.8 49.5 60.0 46.3 67.0 50.2 40.6 53.2 34.5 59.4 35.0 16.6 38.3
DVIS [38] online 51.2 73.8 57.1 47.2 59.3 46.4 68.4 49.6 39.7 53.5 31.0 54.8 31.9 15.2 37.6
DVIS [38] offline 52.6 76.5 58.2 47.4 60.4 47.4 71.0 51.6 39.9 55.2 34.1 59.8 32.3 15.9 41.1
TCOVIS [23] online 52.3 73.5 57.6 49.8 60.2 49.5 71.2 53.8 41.3 55.9 35.3 60.7 36.6 15.7 39.5
CTVIS [37] online 55.1 78.2 59.1 51.9 63.2 50.1 73.7 54.7 41.8 59.5 35.5 60.8 34.9 16.1 41.9
VISAGE online 55.1 78.1 60.6 51.0 62.3 51.6 73.8 56.1 43.6 59.3 36.2 60.3 35.3 17.0 40.3

OVIS. In Tab. 1, we present a comparison on the OVIS benchmark [25], which is
characterized by long videos and complex scenarios, including frequent occlusions.
VISAGE achieves performance on par with the previously established state-of-
the-art methods such as GenVIS [15], TCOVIS [23], and CTVIS [37]. Through
our proposed properties, which include appearance-guided enhancement and a
simplified tracker, VISAGE effectively handles such long and complicated videos.
As a result, these advancements enable VISAGE to achieve state-of-the-art
performance.

4.4 Ablation Studies

In this section, we provide the ablation studies for our proposed method and
discuss its effect. All ablation experiments are conducted on YTVIS 2019 [32]
validation set.

Appearance feature. In Tab. 2, we analyze the impact of feature maps which
create the appearance query. When we make the appearance query from the
transformer encoder feature maps, there is a degradation in performance. This
indicates that backbone feature maps contain rich visual information compared
to transformer encoder feature maps.

Appearance guidance. Tab. 3 shows effectiveness of our appearance-guided
enhancement. We omit appearance information by setting the α in line 9 of
Algorithm 1 to 0, resulting in a matching process that relies solely on object
similarity. As indicated by rows 1 and 3 in Tab. 3, the absence of appearance
information leads to a degradation in performance. Further analysis of the
effectiveness of appearance guidance is discussed in Sec. 4.5.
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Table 2: Ablation study of the target feature maps which generate appearance query

Feature AP AP50 AP75 AR1 AR10

Transformer Encoder 51.4 72.4 56.7 49.8 60.7
Backbone 55.1 78.1 60.6 51.0 62.3

Table 3: Ablation study on appearance
guidance and memory bank utilization,
with memory bank window size W = 5.

App
Memory
Bank

YouTube-VIS 2019
AP AP50 AP75 AR1 AR10

49.9 71.4 54.7 47.0 58.7
✓ 50.2 72.1 54.7 47.3 60.7

✓ 53.4 76.8 58.7 49.8 61.2
✓ ✓ 55.1 78.1 60.6 51.0 62.3

Table 4: Ablation study of the tracklet
post-processing.

Tracker NMS AP AP50 AP75 AR1 AR10

[31, 37] 52.7 75.3 57.6 49.3 61.6
[31,37] ✓ 54.4 77.9 59.0 49.9 62.8
ours 55.1 78.1 60.6 51.0 62.3

Memory bank. In Tab. 3, we demonstrate the necessity of the memory bank
for compensating for the lack of temporal information. We evaluate performance
differences between scenarios with and without the use of the memory bank.
Rows 1 and 2 in Tab. 3 show decreased performance compared to rows 3 and 4,
respectively. Without a memory bank, our method is constrained to using only
the immediately preceding frame for historical context, relying on similarities
measured exclusively between consecutive frames. However, the introduction
of a memory bank expands this capability by leveraging a broader historical
perspective. Furthermore, the adoption of a memory bank significantly boosts
the effectiveness of appearance information. This is because historical appearance
information provides a more reliable basis for matching than only considering
the appearance from the immediate preceding frame to recognize an identical
object. By implementing a memory bank, our method gains awareness of previous
frames, which leads to improved performance.

Tracklet processing. Previous query-matching based methods [31,37], build
upon the tracker framework from [8], incorporating handcrafted thresholding
and heuristic post-processing techniques, including Non-Maximum Suppression
(NMS). In contrast, our tracker exclusively utilizes cosine similarity and the
Hungarian algorithm for matching, as detailed in Algorithm 1. To understand
the impact of handcrafted designs, we align our inference pipeline with those
of methods previously used [31, 37]. The results, as detailed in Tab. 4, reveal
that our streamlined approach consistently surpasses the performance of the
conventional tracker. A detailed examination, especially between rows 1 and 2
of Tab. 4, reveals that the absence of heuristic elements, such as NMS, leads
to a decline in performance. However, row 3 reveals that our simplified tracker
performs impressively even without heuristic design elements. This suggests that
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Table 5: Analysis of Appearance Weight α. The plot demonstrates the relationship
between different appearance weight α settings and their corresponding AP scores on
the YouTube-VIS 2019 and OVIS validation sets.

α
YouTube-VIS 2019 OVIS

AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

0.00 53.4 76.8 58.7 49.8 61.2 32.2 55.6 30.9 16.1 36.3
0.25 53.6 77.0 59.4 50.0 61.1 34.5 59.2 32.5 16.7 38.8
0.50 54.5 77.2 60.3 50.9 61.7 34.8 59.8 35.3 16.2 39.4
0.75 55.1 78.1 60.6 51.0 62.3 36.2 60.3 35.3 17.0 40.3
1.00 24.9 36.7 28.7 40.9 53.7 11.4 22.7 10.2 10.3 24.9

a simplified tracker is capable of achieving commendable performance without
the complexity of heuristic design elements.

4.5 Analysis of Appearance-Guided Enhancement

Appearance Weight. In our methodology, as detailed in line 9 of Algorithm 1,
the hyperparameter α plays a crucial role by representing the weighting of the
appearance similarity. By tuning the value of α, we modulate the emphasis placed
on the appearance information. In Tab. 3, we demonstrate how our appearance
guidance significantly enhances performance on the YTVIS 2019 dataset. In this
section, we further analysis the impact of appearance cue on robust matching by
exploring various values of α.

Tab. 5 highlights the critical role of both appearance and location information
in tracking. We analyze the impact of appearance weight α on both the YTVIS
2019 and OVIS validation sets. There are two extreme cases to consider: relying
solely on location information or exclusively on appearance information. We
observe a reduced performance on both datasets when the α value is set to 0,
with this reduction being more pronounced on the OVIS dataset. Given OVIS’s
complex scenarios, such as frequent occlusions, the dataset’s intricacies make the
contribution of appearance information especially significant. Conversely, setting
α to 1, and thus relying only on appearance information, results in a significant
drop in performance. Without the positional cue, the model only depends on ap-
pearance information for matching across frames, leading to potential ambiguities
in making object tracklets.

However, integrating both appearance and location information consistently
surpasses these two extreme cases, highlighting the complementary strengths of
using both cues in establishing robust tracklets. Notably, increasing the value of α,
and thereby the emphasis on appearance information, correlates with performance
enhancements.

T-SNE Visualization. As illustrated in Fig. 4, we analyze the impact of
appearance-guided enhancement in VISAGE on its association capabilities using
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Fig. 4: T-SNE visualization on the
OVIS dataset. Each row represent-
ing three different videos. Each column
corresponds to the type of query em-
bedding utilized. Points plotted in the
same color indicate the same instance
across the dataset. Best viewed in color.
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Fig. 5: Visualization of the pseudo
dataset. In track type videos, instances
move along random bezier curves. On the
other hand, the swap type refers to a sce-
nario where the positions of each instance
are exchanged in the middle of the video.
The colored dot above each instance rep-
resents the corresponding instance in the
swapped frame.

the OVIS dataset by visualizing the query embeddings for an entire video, with
consistent colors indicating the same instance. The visualization includes three
types of query embeddings: object-only, appearance-only, and a combination
of both object and appearance queries. While object-only embeddings for the
same object exhibit scattered and inconsistent clustering, appearance-only query
embeddings demonstrate a high degree of clustering. The integration of object
and appearance query embeddings results in even more distinct and pronounced
clustering, as exemplified by the red circle in Fig. 4. This enhanced cluster-
ing clearly indicates that our appearance-guided enhancement leads to better
association.

Pseudo Dataset. Traditional datasets do not fully cover the complex scenarios
that our approach is designed to address. To validate VISAGE in a more intuitive
manner, we construct a pseudo dataset consisting of synthetic videos. Instances
in pseudo videos are created by compositing objects from the COCO dataset [24]
with Copy-and-Paste augmentation [9]. The background images for the pseudo
dataset are randomly sourced from BG-20k [22]. Additionally, we employ Bezier
Curves to simulate the movement of objects. It includes two types of videos:
track, where objects move following arbitrary Bezier Curves, and swap, where
objects’ locations are randomly swapped along their trajectories. Except for the
movement of instances, both types of datasets are generated under the same
conditions.

As shown at the top of Fig. 5, instances in the track type pseudo video move
along a Bezier Curve. Consequently, complex scenarios, such as intersections
between instances or movements out of the frame, occur naturally. On the other
hand, the swap type presents a challenge for methods that primarily rely on
location information, as this dependence results in incorrect matching. This is
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Table 6: Comparisons on Pseudo dataset.

Method App AP AP50 AP75 AR1 AR10

T
ra

ck

GenVIS [15] 54.8 70.6 58.8 61.2 65.9
CTVIS [37] 63.7 78.7 69.7 70.3 74.8
VISAGE 65.2 80.9 71.3 70.2 75.2
VISAGE ✓ 65.6 80.7 71.8 70.5 75.8

Sw
ap

GenVIS [15] 41.8 59.7 44.0 50.8 57.0
CTVIS [37] 53.1 71.7 56.9 61.7 65.7
VISAGE 51.8 72.1 54.4 57.7 62.8
VISAGE ✓ 66.1 81.8 73.3 69.9 75.6

illustrated at the bottom of Fig. 5, where the positions of instances in the pseudo
video are suddenly swapped. Such scenarios verify the method’s awareness of
appearance cues when location information is no longer a reliable indicator.

In Tab. 6, we conduct an evaluation of various online VIS methods [15,37]
including VISAGE on the pseudo dataset using published ResNet-50 backbone
weights, which are trained on the YouTube-VIS 2019 dataset. All of these methods
use COCO joint training, ensuring a fair comparison. The overall trend is similar
to that observed on the YTVIS 2019 dataset. In contrast, VISAGE outperforms
other methods in swap type videos, mainly due to the challenges posed by the
dataset in associating instances using only location information. Consequently,
other methods demonstrate degraded performance on swap type videos compared
to their performance on track types. Furthermore, the absence of appearance
information in the matching process notably impacts VISAGE’s performance
on swap type videos, although it remains relatively unaffected for track type
videos. It proves that appearance cue serves as an additional indicator, providing
robustness in scenarios with swapped object positions.

4.6 Qualitative Results

Fig. 6 displays the visualization results of our VISAGE across various challenging
scenarios. In the first row, several cats are positioned closely together and the
red-colored cat crosses another cat. In such cases, relying solely on location
information can often result in identity-switching errors. In the second row, we
present a similar scenario involving different classes: a person and a cow.

In the third row, we showcase another challenging scenario where an object
completely disappears and then reappears: a cat disappears and then reappears.
Our memory bank, which stores the previous queries of the cat, enables us to
reestablish the association when the cat reappears. The fourth row demonstrates
a similar scenario, where our memory bank proves effective: a small sedan is
completely occluded by the truck. Even though the large truck in the foreground
and the small, disappeared car are located closely, their distinct appearances
ensure accurate matching.
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Fig. 6: Qualitative results of VISAGE. Videos are sourced from OVIS [26] and
YTVIS 2021 [33] datasets. These videos represent complex scenarios, characterized by
intersections and reappearances. Best viewed in color.

5 Limitations and Future Works

VISAGE addresses the lack of appearance awareness in existing query-based online
VIS methods. Nevertheless, it faces two main limitations. Firstly, while VISAGE
primarily employs a query-matching strategy, we recognize that query-propagation
methods also depend on spatial information. This observation suggests a future
research direction: integrating appearance information awareness into query-
propagation approaches. Secondly, a fundamental issue not unique to our method
but prevalent in tracking-by-detection approaches, especially in recent query-
based VIS methods, is the heavy reliance on frame-level detectors. During the
tracking stage, these methods do not account for their own errors, allowing any
inaccuracies to adversely affect video-level predictions. Addressing this challenge
requires thorough consideration and represents another avenue for future work.

6 Conclusion

In this paper, we explore the importance of appearance in tracking objects,
an aspect often taken for granted yet overlooked by current VIS methods. By
leveraging appearance cues, our simple yet effective method achieves comparable
performance to previous methods across various VIS benchmarks. However, as
existing VIS benchmarks do not focus on appearance-requiring scenarios, we
generate a synthetic dataset that necessitates the use of appearance information.
This dataset serves to validate our appearance-aware approach and our approach
surpasses other methods with very large margin. We believe that recognizing and
leveraging the importance of appearance can lead to progress of VIS.
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