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A Ablation Study of LiFT Design Choices

We present a careful analysis of LiFT design configurations by varying different
factors in both training and inference. To show the general applicability and
benefits of LiFT, we include three different backbones in this study: DINO [1],
MoCo v3 (MoCo for short) [4], and a Fully Supervised ViT (ViT for short).
We standardize the architecture to a ViT S/16 backbone for this analysis. We
use the SPair-71k dataset and the keypoint correspondence task as the main
representative metric for this analysis. The results are summarized in Table 1.

A.1 Random LiFT

One might question if LiFT actually benefits from training, or if the simple act
of increasing the feature resolution with any arbitrary function is sufficient to
improve performance. To test this question, we take a random initialization of
the LiFT model and measure its performance. We denote this model as ‘Ran-
dom LiFT’ in Table 1. It can clearly be seen in Table 1 rows 2, 8, and 14 that
a randomly initialized LiFT model does not do anything meaningful as it per-
forms poorly on all metrics. These results validate the importance of LiFT’s
self-supervised training method.

A.2 Ablation of Image Input to LiFT

In our approach, we increase the feature resolution through LiFT by also using
the image as a source of finer spatial information. It should be noted that we
use the image at the same resolution as was used to generate the initial features,
which means LiFT does not have or require any additional information beyond
the original ViT’s input. To show the importance of this image information, we
present a version of LiFT with the image input ablated, denoted as ‘LiFT No
Img.’ in Table 1. We can see from rows 3 vs. 6, 9 vs. 12, and 15 vs. 18, that
providing the image input helps LiFT produce better quality features which give
improved performance on the keypoint correspondence task. It appears that
ablating the image input is less harmful for higher-resolution inputs like 448,
* Equal contributors.
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Table 1: Ablation of different design decisions for LiFT training for three different ViT
backbones. We report PCK@0.1 and PCK@0.05 on SPair-71k. For each backbone, we
mark the best score for each metric and input resolution in bold.

PCK@0.1 PCK@0.05

Row Method/Resolution 56 112 224 448 56 112 224 448

1 DINO 2.04 12.67 24.76 28.6 0.51 3.61 9.54 15.33
2 DINO + Random LiFT 1.45 2.37 4.21 6.16 0.35 0.7 1.41 2.35
3 DINO + LiFT No Img. 4.38 15.74 28.49 31.42 1.14 5.03 13.28 18.33
4 DINO + LiFT L1 4.48 16.64 27.77 31.03 1.01 5.93 13.88 18.09
5 DINO + LiFT L2 4.82 17.72 28.17 31.13 1.29 6.18 14.12 18.37
6 DINO + LiFT 5.05 17.72 28.68 31.38 1.19 6.29 14.72 18.90
7 MOCO 1.27 3.43 7.37 12.31 0.21 0.84 2.35 5.49
8 MOCO + Random LiFT 2.59 3.08 4.05 5.79 0.67 0.77 1.31 2.1
9 MOCO + LiFT No Img. 4.58 8.78 13.01 15.48 1.18 2.69 4.95 7.27
10 MOCO + LiFT L1 6.12 9.80 13.73 14.98 1.59 3.22 5.86 7.53
11 MOCO + LiFT L2 6.37 10.08 13.91 16.41 1.53 3.12 5.99 8.34
12 MOCO + LiFT 6.48 10.51 14.13 16.34 1.74 3.36 6.42 8.05
13 ViT 1.26 5.72 13.23 16.9 0.27 1.62 4.89 7.34
14 ViT + Random LiFT 2.36 3.29 7.15 8.21 0.58 1.09 2.33 3.13
15 ViT + LiFT No Img. 2.94 7.76 15.69 18.74 0.79 2.22 5.68 8.23
16 ViT + LiFT L1 3.27 8.32 16.04 18.29 0.79 2.74 6.77 8.45
17 ViT + LiFT L2 3.57 8.78 16.29 18.80 0.97 2.64 6.82 8.87
18 ViT + LiFT 3.76 9.21 16.58 18.69 1.02 2.71 6.63 8.81

which makes intuitive sense as the feature map resolution is higher and thus
more detail about the object boundaries can be represented. For DINO and
the supervised ViT (rows 3 and 15), the no-image LiFT actually does very
slightly better at 448 input resolution for PCK@0.1, but for all other cases
normal LiFT is better. For PCK@0.05, the standard LiFT with image input is
consistently much better. We believe this happens because LiFT can take direct
cues regarding scene and object boundaries from the image input and generate
higher resolution features which better respect these contours.

A.3 Effect of Distance Function

In our final approach, we use cosine distance to compute the loss between the
ViT-generated higher resolution features and the upscaled features from LiFT.
In Table 1, we compare with two alternative options for this distance function,
specifically the L1 and L2 distance metrics. We denote these as ‘LiFT L1’ and
‘LiFT L2’ respectively. Cosine distance gives the best performance in most cases,
such as in rows 4 & 5 vs. row 6, rows 10 & 11 vs. row 12, and rows 16 &
17 vs. row 18. For higher-resolution inputs, L2 distance is sometimes slightly
better than cosine distance, but in most cases cosine is preferable. We believe
this occurs because of the inherent normalization that cosine distance provides
before computing the final loss.

A.4 Ablation of Training Epochs

As an additional experiment, we train the LiFT module on ImageNet for an
extended period up to 100 epochs on 4 GPUs in Table 2. We find that there are
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Table 2: Ablation of LiFT training epochs on ImageNet, including longer training.
Results are shown for DINO+LiFT on Keypoint Correspondence using PCK@0.1.

Res/Epochs 5 10 30 50 100

112× 112 17.47 17.53 17.75 17.97 18.14
224× 224 28.45 28.50 28.65 29.00 29.11

small performance gains from training to very long epochs, however performance
mostly saturates by epoch 5. At resolution 224, DINO+LiFT at 5 epochs gives a
∼3.7 point gain over the base DINO model, while training 95 epochs further only
gives an additional 0.66 point gain. We believe this early saturation is thanks to
the LiFT network’s small size.

B Additional Details for ViTDet+LiFT

For our experiments combining LiFT with ViTDet [5], we increase the size of our
LiFT module to address the additional complexity of the task and backbone. To
be consistent with ViTDet, we use an MAE-trained ViT-Base backbone instead
of the ViT-Small used in our other primary experiments. Note that a stan-
dard ViT-Small model outputs feature maps with 384 channels, while ViT-Base
outputs 768 channels. To handle the increased number of channels, we commen-
surately increase the number of channels in the layers of our LiFT module. We
also add an additional convolutional block to the encoder segment. This larger
LiFT module has a total of 7M parameters, as compared with the 1.2M param-
eter version used for smaller architectures. The ViTDet model used has 111M
parameters, so our combined ViTDet+LiFT architecture has 118M parameters
total. This is a 6.3% increase in total parameters, which is similar to the relative
percentage increase of the smaller LiFT version for DINO ViT-S/16. Also, here
we train LiFT on the COCO dataset in place of ImageNet. Because the COCO
dataset is much smaller than ImageNet, we train on it for 100 epochs.

C Additional Backbones with LiFT

We further demonstrate the general utility of LiFT by applying it to several
additional backbones, including Leopart [6] and several other DINO [1] ViTs,
namely ViT-S/8, ViT-B/16, and ViT-B/8. The results are summarized in Table
3. LiFT shows consistent improvement for the various architectures and models
across patch sizes (8 and 16), trainings (Leopart and DINO), and backbone sizes
(Base and Small). We also extend the Performance vs. Compute Cost analysis
curve to include both the MOCO and fully-supervised ViT backbones, as shown
in Figure 1. We find that LiFT consistently boosts the performance of all three
backbones at all FLOP allowances.
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Table 3: Application of LiFT to various backbones for the Keypoint Correspondence
task on SPair-71k for all metrics. LiFT gives consistent performance improvements.

PCK@0.1 PCK@0.05 PCK@0.01

Method/Resolution 56 112 224 448 56 112 224 448 56 112 224 448

DINO S/16 2.04 12.67 24.76 28.60 0.51 3.61 9.54 15.33 0.01 0.20 0.54 1.40
DINO S/16 + LiFT 5.05 17.72 28.68 31.38 1.19 6.29 14.72 18.90 0.06 0.29 0.91 2.52
DINO B/16 1.98 12.20 24.90 28.22 0.46 3.61 9.64 15.04 0.01 0.17 0.52 1.15
DINO B/16 + LiFT 5.43 17.74 29.35 31.27 1.29 6.56 14.80 18.10 0.04 0.37 0.92 2.43
DINO S/8 9.39 21.30 31.05 32.15 2.35 8.44 16.74 18.96 0.15 0.39 1.19 2.32
DINO S/8 + LiFT 12.90 26.73 34.54 34.58 4.35 11.99 20.61 21.01 0.18 0.75 2.21 3.77
DINO B/8 8.88 20.40 30.08 30.89 2.83 7.70 15.81 17.84 0.12 0.39 1.09 1.95
DINO B/8 + LiFT 12.21 25.17 33.23 33.17 4.22 11.73 19.39 20.18 0.13 0.69 2.27 3.32
MOCO S/16 1.27 3.43 7.37 12.31 0.21 0.84 2.35 5.49 0.00 0.03 0.10 0.31
MOCO S/16 + LiFT 6.48 10.51 14.13 16.34 1.74 3.36 6.42 8.05 0.04 0.16 0.42 0.73
ViT S/16 1.26 5.72 13.23 16.90 0.27 1.62 4.89 7.34 0.02 0.06 0.30 0.50
ViT S/16 + LiFT 3.76 9.21 16.58 18.69 1.02 2.71 6.63 8.81 0.02 0.13 0.45 0.72
Leopart S/16 2.35 11.20 23.33 26.54 0.60 3.22 8.90 12.26 0.05 0.10 0.47 0.79
Leopart S/16 + LiFT 4.24 15.61 27.77 30.06 1.22 5.16 12.81 15.66 0.02 0.25 0.74 1.39
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Fig. 1: Performance vs. Compute Cost trade-off curve for LiFT when combined with
different ViT backbones. Results are presented for SPair-71k Keypoint Correspondence.
LiFT provides a performance boost for all three backbones at any FLOP budget.
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Table 4: Comparison between LiFT and other baselines on the DAVIS Video Object
Segmentation task with additional metrics J Mean and F Mean.

J Mean F Mean J & F Mean

Method/Res. 56 112 224 448 56 112 224 448 56 112 224 448

DINO 9.50 21.90 37.80 52.10 5.20 13.10 28.10 49.70 7.40 17.50 33.00 50.90
Leopart 9.00 20.20 34.90 47.30 4.80 12.10 25.70 42.80 6.92 16.12 30.33 45.08
SelfPatch 9.70 21.60 38.10 52.50 5.10 12.90 27.90 50.30 7.40 17.23 33.01 51.37
DINO+BL 13.70 29.40 42.80 54.00 7.90 17.90 31.20 52.00 10.78 23.66 37.01 53.02
DINO+RC 13.80 29.60 43.00 53.90 8.20 18.40 31.90 52.50 11.00 24.00 37.40 53.20
DINO+JBU 13.90 30.60 42.80 54.90 8.60 21.70 35.10 54.10 11.20 26.20 39.00 54.50
DINO+LiFT 16.27 33.04 48.07 59.43 9.72 23.00 40.56 62.79 13.00 28.02 44.32 61.11

D Additional Results

We present results for additional metrics on DAVIS, reporting the J Mean and
F Mean in Table 4. We present these results alongside the previously reported J
& F mean for completeness. We find that both the J Mean and F Mean are also
consistently improved by adding LiFT, and that DINO+LiFT surpasses all other
baselines. We also present additional Unsupervised Object Discovery results for
PASCAL VOC 2007 [2] and PASCAL VOC 2012 [3] in Table 5 alongside the
results for COCO20K. We again find that LiFT gives the best CorLoc boost
over all baselines for both datasets.

E Additional Similarity Map Samples

We have found that the feature self-similarity maps for DINO+LiFT more clearly
and sharply outline the central object in an image. To further highlight this, we
provide a zoomed-in comparison of the difference between DINO+LiFT and
DINO+Bilinear upscaling in Figure 2. We can see that DINO with Bilinear up-
sampling highlights the main object, but the outline is hazier and less precise due
to the smoothing of the features. Meanwhile, the upscaled feature map produced
by LiFT better respects object contours and produces a much sharper feature
self-similarity map. Finally, we provide additional samples further showing the
benefits of LiFT for self-similarity maps, as shown in Figure 3. In rows 1 to 8
(left), we show samples with single central objects of differing shapes and sizes.
We see that the feature self-similarity maps for DINO+LiFT more uniformly fill
the foreground object region, and have less noisy correlations with background
regions. In rows 1 to 3 (right), we show samples where the central feature vec-
tor, shown by the red marker, lies on a background region. In these cases, we
still see sharp contours around the foreground objects, or around the body of
water in row 1 (right). In cases like rows 4 to 8 (right), when there are multiple
overlapping instances of the same object class, we see a uniform highlighting of
the multiple object instances. We also see that DINO+LiFT better highlights
thin structures in objects, like the teapot handle and tripod legs in rows 7 and
8 (left). For comparison, when DINO (without LiFT) is given a doubled input
size, these details are sometimes lost to noisy background regions.
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DINO + Bilinear DINO + LiFT Original Image

Fig. 2: Compared with DINO+Bilinear, DINO+LiFT gives feature self-similarity maps
with much sharper object boundaries, especially when zoomed in.
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Fig. 3: Additional visualizations of the self-similarity of features extracted from DINO,
DINO+Bilinear interpolation, DINO with higher resolution image, and DINO+LiFT.
The input image is shown for comparison. The self-similarity is computed using the
feature corresponding to the center of the grid (marked in red) and all other features
from each spatial location. Brighter pixels show a higher similarity.
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Table 5: Unsupervised Object Discovery comparison on PASCAL VOC 2007, PASCAL
VOC 2012, and COCO20K. We report results for the CorLoc metric.

Dataset Method
Resolution

56 112 224 448

VOC07

DINO 20.74 50.07 65.60 68.27
Leopart 18.92 32.59 51.59 48.79
SelfPatch 18.04 41.99 62.40 63.62
DINO+BL 21.27 46.96 64.70 68.37
DINO+RC 28.96 55.00 66.85 68.87
DINO+JBU 26.16 56.60 66.75 69.03
DINO+LiFT 36.54 62.02 68.79 69.65

VOC12

DINO 23.27 55.33 69.01 71.64
Leopart 22.44 37.41 55.74 54.40
SelfPatch 20.19 47.32 68.02 66.48
DINO+BL 23.46 52.64 68.53 71.55
DINO+RC 31.63 59.96 68.87 71.47
DINO+JBU 28.97 61.67 69.13 71.54
DINO+LiFT 40.56 66.21 70.91 71.71

COCO20K

DINO 16.28 40.08 53.98 57.99
Leopart 16.14 26.78 43.89 44.08
SelfPatch 14.15 35.76 52.18 55.47
DINO+BL 17.78 35.62 51.53 56.84
DINO+RC 22.92 42.53 54.52 58.40
DINO+JBU 21.36 43.87 55.45 58.82
DINO+LiFT 27.72 50.20 58.03 60.50
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