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Abstract. Generalizable Face anti-spoofing (FAS) approaches have re-
cently garnered considerable attention due to their robustness in unseen
scenarios. Some recent methods incorporate vision-language models into
FAS, leveraging their impressive pre-trained performance to improve the
generalization. However, these methods only utilize coarse-grained or
single-element prompts for fine-tuning FAS tasks, without fully exploring
the potential of language supervision, leading to unsatisfactory general-
ization ability. To address these concerns, we propose a novel framework
called TF-FAS, which aims to thoroughly explore and harness twofold-
element fine-grained semantic guidance to enhance generalization. Specif-
ically, the Content Element Decoupling Module (CEDM) is proposed
to comprehensively explore the semantic elements related to content.
It is subsequently employed to supervise the decoupling of categorical
features from content-related features, thereby enhancing the general-
ization abilities. Moreover, recognizing the subtle differences within the
data of each class in FAS, we present a Fine-Grained Categorical Ele-
ment Module (FCEM) to explore fine-grained categorical element guid-
ance, then adaptively integrate them to facilitate the distribution mod-
eling for each class. Comprehensive experiments and analysis demon-
strate the superiority of our method over state-of-the-art competitors.
Code:https://github.com/xudongww/TF-FAS

Keywords: Face anti-spoofing · Vision-language model · Domain gen-
eralization

1 Introduction

Face recognition techniques have gained significant traction in diverse applica-
tions, such as smartphone login, access control, and electronic payments. Never-
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Fig. 1: (a) Previous methods depend exclusively on coarse-grained prompts during the
fine-tuning process, failing to fully harness the potential of language supervision. Con-
versely, (b) TF-FAS is committed to exploring language guidance specifically tailored
for FAS, including two elements: content and category, to effectively align the vision
and language components, thereby promoting better generalization.

theless, face recognition techniques are constantly confronted with a range of po-
tential threats posed by various presentation attacks, such as printed photos [4],
masks [19], and video replays [68]. To mitigate these attacks, researchers propose
various face anti-spoofing (FAS) methods that rely on either hand-crafted fea-
tures [33,34,67,87,97] or deeply-learned features [76,81,90,94,105] for detection.
Although existing methods have shown promising performance in intra-dataset
scenarios, they encounter difficulties in effectively generalizing to unseen domains
due to the inherent domain gap between the source and target distributions.

To address this challenge, domain generalization (DG) [9, 10, 79] methods
have been incorporated into FAS tasks to learn content-agnostic discriminative
features from multiple source domains allowing for better generalization to un-
seen domains. Adversarial learning-based methods [30,45,82] and meta-learning-
based methods [18, 35, 47] are commonly used in DG. While these techniques
indeed enhance the performance of cross-domain FAS, it is important to note
that the inherent gap between different domains in the visual modality of FAS
tasks still has an impact on the generalization abilities.

As visual-language methods gain prominence, researchers increasingly ex-
plore the use of universal language modalities to mitigate the inherent gap
present within the visual modality of cross-domain FAS tasks. FLIP [69] employs
the coarse-grained heuristic categorical prompts to fine-tune pre-trained models,
enabling them to align images with the given prompts and enhance overall perfor-
mance. VL-FAS [20] employs content-related prompts to provide supervision for
models, guiding them to focus on specific facial regions. Supervised by the text
modality, these methods indeed achieve remarkable performance. However, their
limitation lies in the fact that they solely rely on coarse-grained or single-element
prompts during the fine-tuning process, without fully exploring the potential of
language supervision. Consequently, this might hurt the generalization abilities,
as shown in Fig 1(a).

To cope with this limitation, we propose a novel framework called TF-FAS,
which is committed to exploring language guidance specifically tailored for FAS,
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as shown in Fig 1(b). Specifically, TF-FAS proposes a twofold-element fine-
grained semantic guidance approach to effectively align the vision and language
components, thereby promoting better generalization. Firstly, a Content Element
Decoupling module (CEDM) is proposed to systematically explore the content-
related semantic elements present in each image. These semantic elements are
then utilized to guide the model in decoupling content-related information via
orthogonalizing the image features and content element features. By doing so,
the model places greater emphasis on learning content-agnostic discriminative
features from multiple source domains, thereby enhancing cross-domain per-
formance. Secondly, to better describe each class for FAS, we propose a Fine-
Grained Categorical Element Module (FCEM). Instead of using coarse-grained
text to represent the data in FAS, we leverage numerous granular categorical
texts for each subclass of attacks and real in FAS. This approach enables us
to effectively capture the diverse forms within each category, thereby improv-
ing our ability to model the distribution accurately. Moreover, considering that
each granular categorical text contributes differently to the subclass, we propose
an adaptive integration strategy. This strategy automatically parameterizes the
weight of each text during the training process to provide a comprehensive rep-
resentation of a specific class.

Our main contributions can be summarized as follows:

– We propose a novel framework named TF-FAS, which introduces a twofold-
element fine-grained semantic guidance approach to explore language guid-
ance specifically tailored for FAS tasks.

– TF-FAS introduces two novel modules, the Content Element Decoupling
Module (CEDM) and Fine-Grained Categorical Element Module (FCEM).
They investigate fine-grained prompts for content and category indepen-
dently, aiming to acquire content-agnostic discriminative features and effec-
tively capture the diversity within each category. They enhance the general-
ization abilities of the system as a whole.

– Extensive experiments and analysis demonstrate the superiority of TF-FAS
over state-of-the-art competitors on widely-used benchmark datasets.

2 Related Work

2.1 Face Anti-Spoofing

Conventional methods mainly utilize various handcrafted features such as LBP
[6, 14, 22], HoG [36, 62, 88], and SIFT [2, 7, 57], to differentiate real and fake
faces. However, the performance of these methods is underwhelming due to the
shallow structure. With the advent of deep learning, many deep architectures
are employed to extract more discriminative features. This evolution included
the integration of auxiliary signals like depth maps [63], r-ppg signals [54], or
reflection map [89] to enhance detection capabilities. Despite advancements in
intra-dataset settings, substantial performance degradation is observed in target
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domains due to pronounced domain shifts. FAS techniques employ domain adap-
tation (DA) [31, 38, 49–51,55, 76, 98, 107] to mitigate the distribution disparities
between source and target domains. However, the acquisition of a sufficient vol-
ume of unlabeled target data often poses significant challenges and incurs high
costs. Domain generalization (DG) methods [9, 10, 79, 99, 100] have been incor-
porated into FAS tasks to facilitate the learning of content-agnostic features via
adversarial learning [30,45,82], meta-learning [18,35,47,106], test-time general-
ization [104] and instance whitening [105], thereby enhancing generalization to
unseen domains. Recently, Vision Transformers (ViT)-based approach [23,28,43]
posits that ViT can discern long-range dependencies for superior generalization.
However, relying only on image data can limit its generalization capabilities in
unseen domains. The emergence of visual-language methods offers new potential
to address the aforementioned issues.

2.2 Vision-Language Models

Guided by natural language supervision, vision-language pretraining has recently
surfaced as a promising approach for image [29, 39, 59, 80, 93] and video un-
derstanding [12, 58, 77, 78, 84]. These approaches diverge from the conventional
method of utilizing discrete labels, offering a novel paradigm for recognition
based on the alignment of visual and text features. It is inherently suited for zero-
shot transfer across various downstream tasks [16,25,53,66,101]. Several studies
have investigated the application of the transferable knowledge from pre-trained
models to address tasks such as visual question answering (VQA) [40, 41, 56],
zero-shot object detection [53, 66, 85], and image captioning [21, 27, 102], etc.
Recent efforts have sought to leverage visual-language methods to bolster the
cross-dataset generalization of FAS tasks [20, 52, 69]. These studies posit that
text, rich in content-invariant information, can enhance model generalization.
However, these methods only utilize coarse-grained or single-element prompts
for fine-tuning FAS tasks, without fully exploring the potential of language su-
pervision, leading to unsatisfactory generalization ability. In contrast, we propose
a novel TF-FAS framework to thoroughly explore and harness twofold-element
fine-grained semantic guidance to enhance generalization.

3 Methodology

In this section, we will provide an elaboration of each component of the proposed
method. Section 3.1 outlines the overall architecture of our approach. Section
3.2 revisits the CLIP model for the FAS task. Sections 3.3 and 3.4 detail the
implementation specifics of the CEDM and FCEM modules, respectively. Finally,
Section 3.5 presents the overall training and optimization strategies.

3.1 Overview

Figure 2 shows the overview of the proposed TF-FAS method, which includes two
key components: a Content Element Decoupling Module (CEDM), and a Fine-



TF-FAS 5

Fig. 2: The framework of TF-FAS explores language guidance specifically tailored for
FAS, including two elements: content and category. Specifically, the Content Element
Decoupling Module (CEDM) is proposed to systematically explore the content-related
semantic elements to guide the model in decoupling content-related features from the
essential features of FAS task. Then, the Fine-Grained Categorical Element Module
(FCEM) leverages numerous granular categorical texts for each subclass of attacks and
real in FAS to model the distribution accurately.

Grained Categorical Element Module (FCEM). Firstly, inspired by the success
of multimodal vision-language pre-trained (VLP) in the zero-shot across various
downstream tasks, we adopt CLIP as our backbone, where the image encoder
is a 12-layer visual transformer ViT-B/16 [3] and the text encoder consists of
a 6-layer transformer [71]. The Large Language Model is GPT-4 [1] and the
Multimodal Large Language Model is LLAVA [44]. During the training, to pre-
vent the disruption of the joint text-image space, we froze the text encoder and
trained only the image encoder during the generalization process. Initially, the
given image is fed into the visual encoder to obtain the corresponding visual
representation.

First, CEDM is proposed to systematically explore the content-related se-
mantic elements present in each image, which guides the model in decoupling
content-related information via orthogonalizing the image features and content
element features. As such, the model places greater emphasis on learning content-
agnostic discriminative features from multiple source domains, thereby enhanc-
ing the generalizability. As for FCEM, instead of using coarse-grained text to
represent the data in FAS, we leverage numerous granular categorical texts to
represent each subclass of attacks and real faces, which effectively capture the
diverse forms within each category, thus improving the ability to model the dis-
tribution accurately. Moreover, considering that each granular categorical text
contributes differently to the subclass, we propose an adaptive integration strat-
egy, which automatically parameterizes the weight of each text during the train-
ing process, achieving efficient inference.

3.2 Revisiting CLIP Baseline for FAS

Contrastive Language-Image Pre-Training (CLIP) [60] extracts dual-modality
features by a visual encoder and text encoder that is trained on the WebIm-
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ageText, consisting of 400 million image-text pairs collected from a variety of
publicly available sources on the Web. The visual encoder VisEnc() extracts fea-
tures and projects them to a global feature V ∈ RD. The text encoder TextEnc()
generates a global text representation T ∈ RD×K for K categories. Classification
scores S ∈ RK are computed as:

T = TextEnc (PK) ; V = VisEnc(I); S = TTV (1)
where T and V are L2 normalized features, and PK are the category prompts to
describe the K categories. The matrix multiplication computes cosine similarity.
For the FAS task, the number of classes is 2, corresponding to real and spoof,
with the respective prompts being The photo of a real face and The photo of a
spoof face. The training objective of CLIP is to maximize the cosine similarity
sim(·, ·) of the paired image and text embedding while minimizing the cosine
similarity of the unpaired ones. Hence, we employ cross-entropy loss to bring
matching pairs closer and separate non-matching pairs in feature space, which
is defined as:

Lce(x, y) = − 1

N

N∑
i=1

yi log(sim(Vxi , Tyi)),

with sim(Vxi , Tyi) = V T
xi
Tyi/∥Vxi∥∥Tyi∥.

(2)

where N is the batch size, and Vxi and Tyi represent visual features of the image
and text features of its corresponding category prompt, respectively. During
the inference stage, the predicted class ŷ is determined by the class description
having the highest cosine similarity score sim(·, ·) with the given image I.

3.3 Content Element Decoupling Module

The pre-trained CLIP model extracts not only detailed contour information but
also captures semantic content features from images, including environmental
context (background, lighting) and facial attributes (age, gender, expressions),
which are not directly relevant to the FAS tasks. Taking inspiration from pre-
vious research [86, 94], decoupling task-irrelevant features has the potential to
enhance the overall ability to generalize. To this end, we propose CEDM, which
comprehensively explores the semantic elements related to content and is em-
ployed to supervise the decoupling of categorical features from content-related
features, thereby enhancing generalization abilities.
Content Prompts Generation. Recently, we have observed the remarkable
success of Multimodal Language Models (MLLMs), which can comprehend the
relationship between visual content and linguistic descriptions, generating de-
scriptive text by combining text prompts with corresponding images. Inspired
by this, we utilize MLLMs to generate content prompts for images in the FAS
dataset. To ensure the text focuses on content irrelevant to the FAS task, such as
environmental factors (lighting and background) and facial attributes (gender,
age, and expression), we have designed the prompts as follows:
Please describe the environment ( background, lighting intensity, etc.) and the
face ( age, gender, expression, etc.) of the person. Additionally, to prevent the
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content prompts from reflecting real deceptive characteristics and to avoid con-
flicts between the decoupling objective and the task objective, we remove the
sentences containing category-related keywords (such as "print" and "display")
from the generated content prompts, ensuring that useful features are retained.
Content-related Decoupling. Inspired by several methods to disentangle vi-
sual features from the textual information, such as contrastive learning, mutual
information minimization [5,13], or orthogonal loss [61], we utilize the generated
content prompts P con

i , to supervise the decoupling of visual features extracted.
Specifically, we feed images Ii to an image encoder to obtain visual feature fvi,
and input the corresponding content prompts P con

i to a text encoder to obtain
content feature f con

ti . Afterward, we calculate the dot product between the two
sets of features and utilize the resulting value as a loss function to constrain the
model. The objective is to ensure that the extracted visual features are inde-
pendent of the content features. The loss of orthogonality Lorth is defined as:

Lorth =

N∑
i=1

fvi · f con
ti , (3)

where fvi = VisEnc(Ii), f
con
ti = TextEnc(P con

i ).

3.4 Fine-Grained Categorical Element Module

In the real world, the types of attacks in liveness detection are diverse, such
as print, video replay, etc.. Furthermore, within the same category of attack,
there are multiple forms, such as A4 paper and kraft paper in print attacks.
Simple and singular binary classification task prompts are insufficient to model
the full spectrum of attack types. Therefore, we propose the FCEM to explore
fine-grained categorical element guidance, and then adaptively integrate them
to facilitate the distribution modeling for each class.
Fine-grained Categorical Prompt Generation. In the FAS task, attack
types include print, replay, and 3D attacks, etc. Print attacks focus on high-level
visual semantics, while replay attacks involve low-level textural features, such as
moiré patterns. It is unreasonable to conflate all the attacks. This paper utilizes
the fine-grained task prompts to subdivide and guide the attack types in the
classification. These detailed prompts provide the model with more deceptive
information, enabling it to learn the subtle differences between different attack
types and thereby enhancing its ability to discriminate between them. Addi-
tionally, diversifying category prompts enhances the robustness of the content
decoupling process. Specifically, motivated by [17], we propose employing GPT-
4 [1] to automatically generate a diverse set of prompts, rather than manually
designing prompts, since it might introduce subjective bias and is cumbersome.
Concretely, we query GPT with requirement prompts such as:
Paraphrase the sentence: {The photo of a {class} face.} with similar semantics.
For each class in FAS tasks, we generate 64 categorical prompts, which are
displayed in the supplementary materials.
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Categorical Prompt Filtering. The inherent randomness in the generation of
64 prompts for each class may inevitably introduce some noise prompts, which
is not appropriate for the FAS datasets. Using them directly could potentially
hinder performance. To address this issue, we propose a filtering mechanism to
automatically select the most effective prompts for the tasks. Specifically, we
evaluate the compatibility of generated prompts P cls

j with the dataset distribu-
tion based on the similarity between the textual features of the prompts f cls

ti

and the image features fvi. We then filter out generated prompts that deviate
significantly from the dataset distribution using a threshold θ. The filtering is
formulated as follows:

Filtered Prompts =

{
P cls
j | (

N∑
i=1

sim(P cls
j , Ii))/N ≥ θ

}
(4)

where P cls
j is jth prompt, Ii is the ith image of corresponding class, sim(P cls

j , Ii)
is the function that calculates the similarity of the features between the prompt
P cls
j and the image Ii, and N is the total number of this class in the dataset.

Adaptive Prompt Integration. To comprehensively represent one specific
class, individual prompt alone is insufficient. It is necessary to integrate all the
prompts belonging to the same category in order to obtain the final features.
A intuitive approach would be to average the features of prompts belonging
to the same type, representing the corresponding class. However, we observe
that each prompt fits the dataset to varying degrees, and thus, using a simple
average for aggregation is unreasonable. Therefore, we set the prompt weights as
learnable parameters, adaptively adjusting the weight coefficients during training
to better model the overall data distribution. Specifically, the integration process
is formulated as:

F cls
t =

N∑
i=1

σ(wi) · f cls
ti , σ(wi) =

ewi∑K
j=1 e

wj

(5)

where f cls
ti = TextEnc(P cls

i ) is the feature of corresponding category prompts
P cls
i , wi is the learnable weight with the summarization of all σ(wi) equals 1.

3.5 Overall Training and Optimization

To further enhance the model’s robustness against data variations, we fellow
FLIP [69] to employ a simCLR loss for auxiliary training. This approach gen-
erates two views (Iv1 and Iv2) of a given image I through distinct transforma-
tions. The features of the two transformed images are extracted by the image
encoder VisEnc() and subsequently projected via a non-linear projection net-
work H. A contrastive loss is then applied to the projected features. fv1 =
VisEnc(Iv1),fv2 = VisEnc(Iv2). h1 = H(fv1), h2 = H(fv2),h1,h2 ∈ Rdh .

LsimCLR = simCLR(h1,h2)
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Overall, we formulate the joint optimization objective as:

L = Lce + λ1Lorth + λ2LsimCLR (6)

where λ1 and λ2 is hyper-parameters.

4 Experiment

4.1 Experimental Setting

Datasets and DG Protocols: Our evaluation encompasses two protocols.
Strictly following the [28], we adopt a leave-one-domain-out approach for the two
protocols, treating each dataset as a distinct domain to gauge cross-domain ca-
pabilities on the remaining domain. Protocol 1 tests our method on established
cross-domain FAS benchmarks: MSU-MFSD (M) [83], CASIA-MFSD (C) [96],
Idiap Replay Attack (I) [15], and OULU-NPU (O) [8], with scenarios like OCI
→ M indicating O, C, and I as sources and M as the target. Protocol 2,
strictly following [92], is a single-source-to-single-target setup using M, C, I,
and O datasets, yielding 12 scenarios. To fairly compare with FLIP [69], we also
conduct the above experiments with the auxiliary dataset the CelebA-Spoof [95].
In addition, to better simulate the real-world scenarios without large pre-trained
datasets, we also conduct the experiments without CelebA-Spoof.
Implementation Details: The image encoder and the text encoder are the
dual-stream CLIP where the image encoder adopts the ViT-B/16 structure. The
LLMs used for expanding category prompts utilizes GPT-4 [1] and the MLLMs
is LLAVA [44] with 13 billion parameters. Face images are preprocessed to a
resolution of 224× 224× 3 and segmented into patches measuring 16× 16. The
maximum length of the textual token sequence L is set to 77. Our method is
implemented with PyTorch and trained with Adam optimizer, with both the
learning rate and weight decay initialized at 10−6. During training, batch sizes
are set to 3. For testing, the batch size is set to 10 across all protocols. Each
variant of our model undergoes training for a total of 4000 iterations. λ1 and
λ2 are set to 1. The text encoder is frozen and only the image encoder and the
parameters of the category prompt are trained.
Evaluation Metrics: Following [28], we use two metrics: Half Total Error Rate
(HTER) and Area Under the Receiver Operating Characteristic Curve (AUC).
HTER, the average of False Acceptance and False Rejection Rates, indicates er-
ror balance, with lower values being better. AUC measures discrimination ability,
with values closer to 1 being superior and 0.5 indicating random chance. These
metrics together offer a comprehensive evaluation of the model’s performance.

4.2 Cross-domain FAS Performance

The MCIO dataset, being smaller compared to CelebA-Spoof [95], benefits sig-
nificantly from the addition of it in bridging the domain gap between different
domains. To comprehensively investigate the impact of the proposed method
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Table 1: Evaluation of cross-domain performance in Protocol 1, between MSU-MFSD
(M), CASIA-MFSD (C), Replay Attack (I) and OULU-NPU (O) with the assessment
metrics being HTER and AUC. The * indicates using the CelebA-Spoof [83] as the
supplementary source dataset.

Method OCI → M OMI → C OCM → I ICM → O Avg.

HTER AUC HTER AUC HTER AUC HTER AUC HTER

MADDG (CVPR’ 19) [64] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02 23.09
MDDR (CVPR’ 20) [74] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47 20.64
NAS-FAS (TPAMI’ 20) [91] 16.85 90.42 15.21 92.64 11.63 96.98 13.16 94.18 14.21
RFMeta (AAAI’ 20) [65] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16 16.97
D2AM (AAAI’ 21) [11] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87 16.09
DRDG (IJCAI’ 21) [48] 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75 15.66
Self-DA (AAAI’ 21) [76] 15.40 91.80 24.50 84.40 15.60 90.10 23.10 84.30 19.65
ANRL (ACM MM’ 21) [47] 10.83 96.75 17.85 89.26 16.03 91.04 15.67 91.90 15.09
FGHV (AAAI’ 21) [46] 9.17 96.92 12.47 93.47 16.29 90.11 13.58 93.55 12.87
SSDG-R (CVPR’ 20) [30] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54 11.28
SSAN-R (CVPR’ 22) [82] 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63 9.80
PatchNet (CVPR’ 22) [72] 7.10 98.46 11.33 94.58 13.40 95.67 11.82 95.07 10.90
GDA (ECCV’ 22) [107] 9.20 98.00 12.20 93.00 10.00 96.00 14.40 92.60 11.45
AMEL (ACM MM’ 22) [106] 10.23 96.62 11.88 94.39 18.60 88.79 11.31 93.96 13.00
IADG (CVPR’ 23) [105] 5.41 98.19 8.70 96.44 10.62 94.50 8.86 97.14 8.40
GAC-FAS (CVPR’ 24) [37] 5.00 97.56 8.20 95.16 4.29 98.87 8.60 97.16 6.52
DiVT-M (WACV’ 23) [42] 2.86 99.14 8.67 96.62 3.71 99.29 13.06 94.04 7.07

VL-FAS (ICASSP’ 24) [20] 3.13 99.31 4.00 98.64 5.00 98.90 7.92 97.05 5.01
TF-FAS (Ours) 3.44 99.42 0.81 99.92 2.24 99.67 2.26 99.48 2.19

ViT* (ECCV’ 22) [28] 1.58 99.68 5.70 98.91 9.25 97.15 7.47 98.42 6.00
FLIP-MCL* (ICCV’ 23) [69] 4.95 98.11 0.54 99.98 4.25 99.07 2.31 99.63 3.01
TF-FAS* (Ours) 1.49 99.80 0.58 99.99 1.56 99.89 1.43 99.93 1.27

Table 2: Evaluation of cross-domain performance in Protocol 2, for all the 12 different
combinations between MSU-MFSD (M), CASIA-MFSD (C), Replay Attack (I) and
OULU-NPU (O) with the assessment metrics being HTER. The * indicates using the
CelebA-Spoof [83] as the supplementary source dataset.

Method C → I C → M C → O I → C I → M I → O M → C M → I M → O O → C O → I O → M Avg.

ADDA (CVPR’ 17) [70] 41.8 36.6 - 49.8 35.1 - 39.0 35.2 - - - - 39.6
DRCN (ECCV’ 16) [24] 44.4 27.6 - 48.9 42.0 - 28.9 36.8 - - - - 38.1
DupGAN (CVPR’ 18) [26] 42.4 33.4 - 46.5 36.2 - 27.1 35.4 - - - - 36.8
KSA (TIFS’ 18) [38] 39.3 15.1 - 12.3 33.3 - 9.1 34.9 - - - - 24.0
DR-UDA (TIFS’ 20) [75] 15.6 9.0 28.7 34.2 29.0 38.5 16.8 3.0 30.2 19.5 25.4 27.4 23.1
MDDR (CVPR’ 20) [74] 26.1 20.2 24.7 39.2 23.2 33.6 34.3 8.7 31.7 21.8 27.6 22.0 26.1
ADA (ICB’ 19) [73] 17.5 9.3 29.1 41.5 30.5 39.6 17.7 5.1 31.2 19.8 26.8 31.5 25.0
USDAN-Un (PR’ 21) [31] 16.0 9.2 - 30.2 25.8 - 13.3 3.4 - - - - 16.3
GDA (ECCV’ 22) [107] 15.10 5.8 - 29.7 20.8 - 12.2 2.5 - - - - 14.4

CDFTN-L (AAAI’ 23) [92] 1.7 8.1 29.9 11.9 9.6 29.9 8.8 1.3 25.6 19.1 5.8 6.3 13.2
TF-FAS 10.82 3.44 4.16 1.51 3.19 4.50 0.69 3.88 3.53 1.28 5.68 2.09 3.73

FLIP-MCL* (ICCV’ 23) [69] 10.57 7.15 3.91 0.68 7.22 4.22 0.19 5.88 3.95 0.19 5.69 8.40 4.84
TF-FAS* 3.06 1.59 3.78 0.69 1.34 2.50 0.11 2.31 1.40 1.5 4.02 1.59 1.99

on domain generalization, all protocols were conducted both with and without
CelebA-Spoof [95]. Tables 1 and 2 detail the zero-shot cross-domain performance
under Protocols 1 and 2, respectively. The results and analyses are as follows.



TF-FAS 11

Table 3: Ablation studies on each proposed component: CPDM and FCEM

Baseline FCEM CPDM C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

✓ 20.75 86.77 11.68 95.61 19.24 89.38 17.22
✓ ✓ 14.61 91.83 5.98 97.43 7.59 97.49 9.39
✓ ✓ ✓ 10.82 95.54 3.44 98.85 4.16 99.07 6.14

Cross-domain performance in Protocol 1. The proposed framework at-
tained optimal performance, compared to the state-of-the-art (SOTA) methods,
in three-quarters of the settings (C=+3.19, I=+1.47, O=+5.66), with an average
performance increase of +2.82 without CelebA-Spoof [95] even surpassing the
FLIP [69] train with CelebA-Spoof [95] 1.74 (in terms of average HTER). Like-
wise, with the inclusion of CelebA-Spoof [95], optimal performance was achieved
in three-quarters of the settings (M=+0.09, I=+2.69, O=+0.88), yielding an av-
erage enhancement of 1.74. This demonstrates the effectiveness of the proposed
TF-FAS in modeling live data and effectively bridging the domain gap.
Cross-domain performance in Protocol 2. In single-source to single-target
settings, the proposed TF-FAS surpasses current SOTA methods by a consider-
able margin of +9.47 and +2.85 in terms of average HTER without and with the
inclusion of CelebA-Spoof [95], respectively. Specifically, for the target domain
O, there are substantial improvements of +25.74, +25.4, and +22.07 when select-
ing C, I, and O as the source domains, respectively, without CelebA-Spoof [95].
When including CelebA-Spoof [95], in comparison to FLIP-MCL [69], the pro-
posed method achieves a maximum increase of +7.51 (C → I). These findings
confirm that TF-FAS is capable of learning robust generalizable features and
adept at navigating challenges posed by limited data and domain gaps.

4.3 Ablation Studies

Due to the significant domain gap between dataset C and other datasets, trans-
ferring knowledge learned from source domain C to other domains results in
a considerable performance drop. Furthermore, incorporating CelebA-Spoof [95]
as supplementary data for the source domain helps to bridge the gap between the
source and target domains. Therefore, to convincingly demonstrate the feasibil-
ity of the proposed method for domain generalization, all ablation experiments
are conducted in the settings of C→I, C→M, and C→O without using CelebA-
Spoof [95] as additional source domain data.
Effect of CEDM and FCEM. To explore the impact of each proposed module
on the generalization of FAS, we conducted ablation experiments on the proposed
modules, using a dual-stream CLIP structure with category prompts: The photo
of the real face and The photo of the spoof face as the baseline. As shown in Table
3, the inclusion of the FCEM module resulted in a 7.83% improvement in the
average HTER, indicating that the fine-grained FCEM can better model attack
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Table 4: Effect of category prompt generation and integration.

C → I C → M C → O Avg.
Coarse Fine-grain Coop Augment Filter Adaptive HTER AUC HTER AUC HTER AUC HTER

✓ 20.75 86.77 11.68 95.61 19.24 89.38 17.22
✓ 15.37 91.67 10.84 95.25 15.41 92.76 13.87
✓ ✓ 17.54 89.77 13.52 93.92 12.31 95.09 14.56
✓ ✓ 16.26 89.5 8.23 99.74 10.17 96.76 11.55
✓ ✓ ✓ 15.37 90.08 7.94 96.29 9.15 96.78 10.82
✓ ✓ ✓ ✓ 14.61 91.83 5.98 97.43 7.59 97.49 9.39

Table 5: Effect of different disentangling functions.

Prompt C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

none 14.61 91.83 5.98 97.43 7.59 97.49 9.39
club 13.1 93.16 3.76 98.65 6.8 97.91 7.89
mine 11.57 94.41 3.44 97.66 7.72 97.96 7.58

contrast 12.31 93.34 5.29 97.8 5.41 98.20 7.67
orthogonality 10.82 95.54 3.44 98.85 4.16 99.07 6.14

types, discern subtle differences between different attack types, and enhance
spoof detection capabilities. The addition of the CEDM module led to a 3.25%
increase in average HTER, suggesting that content semantics related to the
domain do not facilitate domain generalization, and decoupling such content
from the features can promote cross-domain generalization.
Effect of category prompt generation and aggregation: To thoroughly
investigate the impact of each component within the FCEM, we conducted com-
prehensive ablation experiments. The results, as shown in Table 4, reveal that
coarse-grained category prompts struggle to model the diverse types of live at-
tacks, resulting in a suboptimal performance with an average HTER of only
17.22%. The introduction of fine-grained prompts enhances the model’s abil-
ity to discern subtle differences between various attack types, improving the
average HTER by 3.38%. Furthermore, we observed that fine-grained prompts
learned through the CoOp [103] approach did not outperform manually designed
prompts, suggesting that prompt tuning may lead to overfitting on the source
dataset, which is detrimental to domain generalization, as evidenced by a 0.69%
decrease in average HTER. The expansion of category prompts via GPT-4 [1]
enables more comprehensive modeling of sample categories, thereby improving
generalization performance and increasing the average HTER by 2.32%. The
filtering operation helps to eliminate augmentation samples that deviate from
the dataset, enhancing the fit of category samples and increasing the average
HTER by 0.73%. Finally, adaptive weight parameter learning, which adaptively
balances each sample, further promotes the process of category prompt modeling
across all samples, leading to a 1.43% increase in the average HTER.
Effect of different disentangling loss: Table 5 presents the effects of dif-
ferent disentanglement functions. We found that for the FAS task, all tested



TF-FAS 13

Table 6: Effect of different content semantics.

Prompt C → I C → M C → O Avg.

HTER AUC HTER AUC HTER AUC HTER

none 14.61 91.83 5.98 97.43 7.59 97.49 9.39
environment 12.24 94.85 5.29 97.53 5.6 98.33 7.71

face semantics 10.07 94.56 3.44 97.91 5.98 98.06 6.50
all 10.82 95.54 3.44 98.85 4.16 99.07 6.14

disentanglement functions have a certain degree of efficacy, with the orthogo-
nal function [61] yielding the best disentanglement performance increasing the
average HTER by 3.25%. The club [13] and mine [5] methods, which estimate
mutual information through neural networks, aim to minimize the mutual infor-
mation between the model-extracted visual features and content features. How-
ever, these complex mutual information estimation methods are not the most
effective for feature disentanglement in FAS tasks. In contrastive learning [32],
we treated category prompts and content prompts as positive and negative for
images, respectively, to promote independence between image features and con-
tent features. However, in this function, the attraction of positive samples plays
a dominant role, and the optimization process for the independence of image
features and content features is not complete, resulting in unsatisfactory disen-
tanglement performance. The more direct orthogonal method, which enforces
orthogonality between image features and content features in high-dimensional
space, effectively renders the extracted visual features content-agnostic and en-
hances cross-dataset generalization capabilities.
Effect of different content prompt: Table 6 illustrates the impact of disen-
tangling environmental information (lighting and background) and facial seman-
tics (age, gender, expression, and facial features) on performance. Disentangling
environmental information increased the average HTER by 1.68%, while disen-
tangling facial semantics led to a more significant improvement of 2.89%. Dis-
entangling both aspects further enhanced generalization capabilities, yielding a
3.59% improvement in average HTER. These results suggest that both environ-
mental and facial attributes are detrimental to the FAS task and hinder domain
transfer. The greater impact of disentangling facial semantics is likely due to
the face extraction pre-processing step, which emphasizes facial regions in the
images, making facial attributes more influential than environmental factors.

4.4 Visualization and Analysis

T-SNE visualization of image feature distributions. To understand how
TF-FAS models live data and learns common knowledge across different datasets,
we used t-SNE to visualize feature distributions for each domain. Fig. 3 (a-b)
illustrates these visualizations. Compared to the FLIP, our method shows clear
segmentation boundaries on the source dataset, highlighting the effectiveness of



14 X.Wang et al.

source fakesource real target real target fake real content fake content

(a) FLIP (b) TF-FAS (c) Content

Fig. 3: Comparison results of t-SNE feature visualization.

FCEM in modeling live data. Additionally, on the target dataset, which was not
used during training, our method also establishes clear decision boundaries, with
similar distributions between the source and target datasets. This indicates that
the CEDM effectively decouples features, enabling the model to learn common-
alities across datasets and enhancing cross-dataset generalization performance.
T-SNE visualization of content feature distributions. To understand the
role of the content prompt in the FAS task, we used t-SNE to reduce the dimen-
sionality of the content feature space for visualization. As shown in Figure 3(c),
the reduced content features are chaotically scattered, with both real and fake
images uniformly dispersed. This suggests that image semantics are irrelevant to
the FAS task, while environmental information and facial semantics are content-
related and affect generalization. Therefore, decoupling content semantics during
domain transfer is crucial. The visualization supports this rationale.

5 Conclusion

In this paper, we propose a novel framework of TF-FAS, which introduces
a twofold-element fine-grained semantic guidance method to explore language
guidance designed for FAS tasks. Concretely, we propose the Content Element
Decoupling Module (CEDM) to conduct a thorough investigation of semantic
elements associated with content. It plays a pivotal role in supervising the disen-
tanglement of categorical features from those related to semantics, consequently
fortifying the generalization capabilities of the model. Furthermore, acknowl-
edging the intricate variations within the data of each class in FAS, we have
devised the Fine-Grained Categorical Element Module (FCEM), which is tai-
lored to scrutinize and harness fine-grained categorical element guidance, and
adeptly integrates these insights to refine the modeling of distributions for each
class, thereby capturing the subtle distinctions that are critical for effective anti-
spoofing. Extensive experimental evaluations and in-depth analyses have been
conducted, which collectively attest to the preeminence of our TF-FAS frame-
work over the current state-of-the-art competitors.
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