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Abstract. Hand motion prediction from both first- and third-person
perspectives is vital for enhancing user experience in AR/VR and ensur-
ing safe remote robotic arm control. Previous works typically focus on
predicting hand motion trajectories or human body motion, with direct
hand motion prediction remaining largely unexplored - despite the ad-
ditional challenges posed by compact skeleton size. To address this, we
propose a prompt-based Future Driven Diffusion Model (PromptFDDM)
for predicting hand motion with guidance and prompts. Specifically, we
develop a Spatial-Temporal Extractor Network (STEN) to predict hand
motion with guidance, a Ground Truth Extractor Network (GTEN), and
a Reference Data Generator Network (RDGN), which extract ground
truth and substitute future data with generated reference data, respec-
tively, to guide STEN. Additionally, interactive prompts generated from
observed motions further enhance model performance. Experimental re-
sults on the FPHA and HO3D datasets demonstrate that the proposed
PromptFDDM achieves state-of-the-art performance in both first- and
third-person perspectives.

Keywords: Hand motion prediction · Generative models · Diffusion
model

1 Introduction

Motion prediction underpins numerous computer vision applications, including
autonomous driving [50] and human-robot interactions [33, 34]. Anticipating
near-future human motions enables a comprehensive understanding of human
intentions and informs automated decision-making. As the primary interface
with the world, predicted hand motions enhance interactions but remain rela-
tively unexplored. Compared to human body skeletons, hand skeletons are more
compact and change more rapidly, making them challenging to predict.

In the existing literature, 3D hand motion prediction is largely overlooked
in computer vision. Motion-related methods predict human motions [5, 11, 44–
46, 70], which change in position, orientation, or shape during an action. They
consider several physical body constraints and human behaviors for diverse mo-
tion prediction during training. However, they focus only on the human body
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Fig. 1: PromptFDDM includes three networks: Spatial-Temporal Extraction Network
(STEN), Ground Truth Extraction Network (GTEN), and Reference Data Generator
Network (RDGN). The red dashed lines indicate the training-only pipeline. Black lines
are used during both training and testing. GTEN and STEN extract latent features
from 3D coordinates of 21 hand joints, from future ground truth and observed motion
respectively. RDGN generates reference data to substitute for ground truth in the
reference stage. STEN predicts future 3D coordinates of 21 hand joints using latent
features from observed motion and differing guidance. It is guided by extracted ground
truth during training and uses generated reference data during testing.

level, and the specific hand motion is neglected. Hand-related methods mainly
forecast the hand trajectory, predicting its spatial movement as a whole but not
the individual finger motions [4, 42]. In certain scenarios, only particular hand
motions should be considered. For instance, in Augmented Reality (AR) and Vir-
tual Reality (VR), predicted hand motion can revolutionize user experiences in
gaming [4,17,41,42]. Besides, in human-computer interaction and gesture-based
control systems, predicted hand motion supports natural, contact-free interac-
tions [20,43,60].

Our focus in this paper is to learn models of hand motion from observed data.
More specifically, we are interested in hand motion prediction during daily activ-
ities, where we forecast the diverse future 3D motions of the human hand given
its past motion. Hand motion prediction presents several challenges. Firstly, ac-
quiring accurate 3D hand motion annotations at scale is labor-intensive and
costly, often requiring wearable markers or multi-camera systems for hand mo-
tion capture in controlled environments [18, 23]. Secondly, hand motions are
subtle and localized, with a limited range of motion. Previous works consider-
ing the full hand as a single joint ignore finger motions and hand articulations.
Furthermore, hand motion occurs in a sophisticated, compact range compared
to the larger motion range of the entire human skeleton. Thirdly, hand motion
is naturally diverse and changes rapidly. Human uncertainties lead to unpre-
dictable intentions, with multiple potential movements possible. Predicting as
many reasonably is practically necessary. Additionally, hand movements change
more quickly than full-body movements, challenging models to extract useful
information. These factors make our task more challenging.
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In this paper, we address these challenges by developing a novel prompt-
based Future Driven Diffusion Model (PromptFDDM). Leveraging the powerful
distribution mapping capabilities of Diffusion Models (DM), PromptFDDM of-
fers an effective solution for future motion prediction. When trained with access
to ground truth, the model inherently possesses the capacity to achieve height-
ened predictive accuracy. Specifically, we first stack ST-GCN-SE blocks [67] to
construct a spatial-temporal extractor network (STEN) for compact skeleton
prediction.

To incorporate ground truth, we train the proposed PromptFDDM in two
stages shown in Fig. 1: (1) In the first training stage, a ground truth extractor
network (GTEN) is designed to extract a compact latent feature map Zgt from
future motions to guide STEN in the prediction process. With guidance from the
future, STEN naturally attains more reliable predictions. (2) In fact, such future
guidance cannot be obtained in advance. Therefore, we train a reference data
generator network (RDGN) to directly generate similar features Ẑgt extracted
by GTEN, using only the observed motions. Due to the compact nature of the
latent feature map, RDGN can generate it accurately. With this generated guid-
ance, STEN, lacking real future information, makes more reliable predictions at
inference time than relying solely on itself. In addition to the above scheme and
architectural novelties, we also introduce interactive prompt learning, enabling
the model to dynamically adapt to and learn various motion behaviors. Future
motions are usually highly related to past motions; therefore, the DM can utilize
observed motions to estimate a more robust future latent features map.

The core contributions of PromptFDDM are highlighted as follows:

- We propose PromptFDDM, an approach using the strong mapping abilities
of DM to estimate future information, guiding hand motion prediction.

- We utilize observed motion to generate interactive prompts, a set of tun-
able parameters that aid the denoising process of the RDGN. Introducing
additional historical information prompts improves result reliability.

- We are the first to explore the hand motion prediction problem. Further-
more, we conduct comprehensive benchmarking of recent methods on the
FPHA and HO3D datasets for the proposed task. Extensive experimental
results demonstrate that our approach outperforms state-of-the-art baseline
methods, achieving superior performance.

2 Related Works

Human Motion Prediction. Early in the research, traditional works [36,38,46,
47,55,57,63,75] predict a single future motion based on past poses. RNN-based
models like [16, 21, 28, 47, 62] improve temporal dependency modeling. CNN-
based models [7,22,38] predict whole sequences without accumulation error. As
a derivative of CNNs, GCNs have inherent advantages to represent human skele-
tons as graphs and capture spatial dependencies [2,12,13,32,39,46]. ST-GCN [67]



4 Bowen et al.

proposes a spatial-temporal skeleton joints graph to better maintain tempo-
rally consecutive poses. Besides GCN-based models, transformer-based mod-
els [1, 8, 44, 48] adapt attention mechanism to model pairwise spatial-temporal
dependencies. These methods struggle with long-term prediction. Considering
that human motion is highly subjective and uncertain, similar observed motion
sequences can lead to diverse future motions.

Addressing this has been the focus of stochastic motion prediction methods.
Existing ones are mainly based on the deep generative models [3, 6, 9, 35, 45,
61, 65, 66, 68, 70, 71] such as variational autoencoders (VAEs) [31], generative
adversarial networks (GANs) [19], normalizing flows (NFs) [53] and denoising
diffusion probabilistic models (DDPMs) [25]. However, these works model the
whole human skeleton and neglect the specific hand motion prediction. Here,
we propose an ST-GCN-SE block to extract information from a compact hand
skeleton.

Diffusion Models. Denoising Diffusion Probabilistic Models (DDPMs) are in-
spired by the laws of thermodynamics. These models attempt to learn the in-
verse process of gradually adding noise to the data distribution until it becomes
random noise. Due to its dynamic principles, DDPMs generate diverse and high-
quality results. Researchers in [25, 58] further advance practices for image gen-
eration applications. TCD [56] formulates prediction as a denoising problem,
directly forecasting the observation and prediction motion sequence from noise.
However, they suffer from high computational complexity of diffusion models.
An end-to-end diffusion model, HumanMAC [11], is proposed for direct predic-
tion of future motion from masked noise. BeLFusion [5] aims to learn behavior
codes from observed motions and sample these in a latent space for diversity.
However, its training requires multiple stages to disentangle behavior codes and
heavily relies on pre-trained motion encoders and decoders, making the model
challenging to implement. In this paper, our PromptFDDM performs DM on
generating only compact reference data, providing accurate future guidance for
STEN in the generation process.

Prompt Learning. This approach is initially employed in the NLP domain [37,
40]. It is motivated by pre-trained language models, such as BERT [14] and
GPT [52]. The basic idea is that pre-trained models provide knowledge useful
for downstream tasks. With some adaptations, the prompt idea is introduced
to V-L [76, 77] and vision-only [29, 64] models. The concept of classifier-guided
diffusion is first introduced by [15] and later adapted by [49] to enable condition-
ing based on CLIP textual representations. MDM [59], MotionDiffuse [73], and
T2M-GPT [72] introduce prompts in the field of text-driven motion synthesis.
They employ text prompts from CLIP to generate diverse motions. Here, we
generate prompts from a specific history motion sequence and they are highly
related to generating its future motion.
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3 Preliminaries: Discrete Cosine Transform

In the motion prediction literature, human skeletons are often represented as
a sequence of 3D joint coordinates. This encourages valid pose generation but
does not guarantee smooth, natural results. To ensure temporal continuity, we
adopt a trajectory representation using the Discrete Cosine Transform (DCT),
as proposed in [46]. Discarding high frequencies provides a more compact repre-
sentation capturing motion sequence smoothness, especially in 3D coordinates.

Given a H + P frames motion sequence m ∈ R(H+P )×3J , with each row of
m representing the skeleton of hand joints at each frame. We project the motion
sequences of m into the frequency domain via Discrete Cosine Transform (DCT)
as

m̃ = DCT(m) = Dm, (1)

where D ∈ RM×(H+P ) represents the pre-defined DCT basis as described in [45];
m̃ ∈ RM×3J with each row of m̃ representing the first M < H + P DCT
coefficients for the trajectory.

As the DCT operation is an orthogonal transform, we can consistently recover
the original motion sequence from the DCT domain through an inverse DCT
operation as

m = IDCT (m̃) = D⊤m̃. (2)

4 Methodology

Problem Formulation. We denote the specific length H of the observed hand
motion sequence TH as X = [x1,x2, ...,xH ] ∈ RH×3J , where xh ∈ R3J represents
the Cartesian coordinates of hand skeletons at the h-th frame, and J is the
number of hand joints. Given the observed motion sequence, the objective of
the hand motion prediction task is to predict the subsequent motion sequence
TP , which is represented as Y = [xH+1,xH+2, ...,xH+P ]K ∈ RP×3J , where K
represents the number of possible diversities of hand motions for the next P
frames. Our objectives are: (1) making one of the K predictions as close to
the ground truth as possible, and (2) maximizing the diversity among the K
sequences.

Fig. 2 shows the framework of our approach. We tackle the problem of hand
motion prediction through the following key designs: (1) We first utilize ground
truth (Sec. 4.1) as guidance for motion prediction. (2) We design a diffusion
model (Sec. 4.2) to generate reference data substituting for ground truth. (3)
We adopt observed motion sequences to generate prompts (Sec. 4.3) to improve
performance.
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Fig. 2: Overview of the PromptFDDM approach. PromptFDDM consists of STEN,
GTEN, and RDGN. STEN leverages information from observed motion and is guided
by the other two networks to perform prediction in two stages: (1) In the first stage,
we only train STEN with GTEN. GTEN extracts the latent feature map Zgt from the
ground truth to guide STEN in the prediction process. (2) In the second stage, we only
train RDGN to generate the value Ẑgt that approximates Zgt as closely as possible
for STEN to use. In the inference stage, we only use STEN and RDGN to conduct
the prediction. In the denoising network, to achieve more reliable results, we introduce
interactive prompts that utilize observed information to assist the denoising process.
Notably, we do not input the future ground truth into DM at the inference stage. The
red dashed lines are only used in the training stage. In the testing stage, we only use
the reverse process of DM.

4.1 Learning from Ground Truth

In the first stage, STEN is guided by ground truth extracted from GTEN for
prediction. The structure of GTEN is illustrated by the yellow box in Fig. 2.
It mainly consists of ST-GCN-SE blocks, as depicted in the Fig. 2, based on
ST-GCN [67] with squeeze-and-excitation (SE) blocks [27]. Diverse guidance
modules G are introduced to assist STEN and GTEN in calibrating learning
input motion behaviors. GTEN is designed to extract the compact latent feature
map from Concat(X,Y), denoted as Zgt ∈ Rn×d. After that, STEN utilizes the
information to predict future motions. The structure of STEN is shown in Fig. 2
blue box, containing the encoder E and decoder D. Both are similar to GTEN.

Within each ST-GCN-SE block, we utilize the SE-block to aggregate local
features from the spatial dimension following GCN and the temporal dimen-
sion following TCN, respectively. It serves as an attention mechanism but with
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significantly fewer parameters compared to the self-attention module. Adaptive
scaling is applied to individual channels to model dependencies among differ-
ent channels, thus optimizing the learning process of ST-GCN and improving
network performance, especially in this compact hand skeleton information sce-
nario. Following the method in [45, 46], we replicate the final frame of X for P

times to construct X̂ before computing the DCT coefficients, which translates to
estimating a residual vector in frequency space. The STEN encoder E solely ex-
tracts the latent feature map Z = E(X̂). GTEN extracts the latent feature map
Zgt from both observed and future motions Concat (X,Y). The fusion block
combines the two latent feature maps (Z̄ = fusion (Z,Zgt)). Subsequently, the
STEN decoder D reconstructs the motions from the fused latent feature maps
Z̄. Since the hand structure is inherently similar to the human skeleton, we fol-
low similar training strategies as the human motion prediction tasks to train
STEN with GTEN. And the parameters of the trained STEN will be fixed for
the second stage usage.

4.2 Guiding STEN by Generated Reference Data

TransLinear Block

TransLinear Block

TransLinear Block

TransLinear Block

 N

Prompt

self-attention

MLP

FiLM

FiLM

Diffusion
Timesteps

MLP

Fig. 3: The architecture of the noise
prediction network TransLinear, which
takes the latent feature map at dif-
fusion step t as input. TransLinear is
composed of N blocks with skip con-
nections. Each block contains an inter-
active prompt block that utilizes extra
observed motion information for better
denoising performance.

In the second stage, conditioned on the
latent features Z extracted by trained
STEN from historical motion X, RDGN
generates reference data to substitute for
the ground truth, guiding the trained and
fixed STEN to perform prediction. We
leverage the powerful data estimation ca-
pabilities of DM to generate Ẑgt. First, we
employ the pretrained GTEN to extract
Zgt from the concatenation of X and Y.
Then, in the DM training stage, we con-
tinuously add noise to transform the in-
put Zgt into Gaussian noise Zgt

T ∼ N (0, 1)
over T time steps. Each step is modeled
as a Markov noise process using the fol-
lowing equation

q
(
Zgt
t | Zgt

t−1

)
= N

(
Zgt
t ;

√
αtZ

gt
t−1, βtI

)
,

(3)
where the βt represents the pre-defined
scale factor, and αt = 1 − βt. Here, N
denotes the Gaussian distribution. As one
of the properties of the forward process, it

allows for the sampling of Zgt
t at any time step t, which can be represented in

the following form: by using ᾱt = Πt
i=1αi, we have

q
(
Zgt
t | Zgt

0

)
= N

(
Zgt
t ;

√
ᾱtZ

gt
0 , (1− ᾱt) I

)
. (4)
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In the inference stage, DM methods sample Gaussian random noise Zgt
T and

gradually denoise it until it reaches a high-quality output, denoted as Zgt
0 :

q
(
Zgt
t−1 | Zgt

t , Zgt
0

)
= N

(
Zgt
t−1; µ̃t

(
Zgt
t , Zgt

0

)
, β̃tI

)
, (5)

where the mean µ̃t

(
Zgt
t , Zgt

0

)
= 1√

αt

(
Zgt
t − ϵ 1−αt√

1−ᾱt

)
and variance β̃t =

1−ᾱt−1

1−ᾱt
βt.

The symbol ϵ represents the noise in Zgt
t and is the only source of uncertainty

in the reverse process.
For the noise prediction, we introduce the denoising network ϵθ (see Fig. 3),

which is a transformer-based U-net [54]. We utilize a transformer-based denoising
model with long skip connections [11] on the motion latent Zgt ∈ Rn×d. We
use {Zgt

t }Tt=0 to denote the noisy sequence, and Zgt
t−1 = ϵθ

(
Zgt
t , t

)
for t-step

denoising. We also focus on unconditional generation with a simple objective [25]

LLDM := Eϵ,t

[
∥ϵ− ϵθ

(
Zgt
t , t

)
∥22
]
, (6)

where ϵ ∼ N (0, I), and Zgt
0 = GTEN(Concat (X,Y)). During training ϵθ, the

GTEN is frozen to compress the motion sequence into Zgt
0 . The samples of the

diffusion forward process are from the latent distribution p
(
Zgt
0

)
. During the

diffusion reverse stage, ϵθ first predicts Ẑgt
0 with T iterative denoising steps,

then the STEN decoder D reconstructs the latent Z̄ = fusion
(
Z, Ẑgt

0

)
into the

motion sequence.

4.3 Prompts for Generating Reference Data

GAP

Prompt
Components

Prompt

C

SE-block

· ·

Fig. 4: Illustration of the interactive
prompt block. The future motions
are inherently related to the observed
motions. Fusing extracted history Z
and future Zgt

t latent feature maps
makes the generated prompts inherit
extra history information. Interactive
prompts with input features can enrich
the content inside the Z̄gt

t .

In NLP [26, 37, 40] and vision tasks [29],
prompting-based techniques are explored
for the parameter-efficient fine-tuning of
large frozen models trained on a source
task (S) for application to a target
task (T). The effective performance of
prompting-based techniques is attributed
to their ability to encode task-specific
contextual information within prompt
components efficiently. Our interactive
prompt blocks are intended to generate
historical condition prompts, added at ev-
ery layer in RDGN to generate better ref-
erence data Ẑgt

0 .
Prompt Components form a set of

learnable parameters interacting with the
information from the input features. The
most efficient method for feature-prompt
interaction is through the learned prompt



Prompting Future Driven Diffusion Model for Hand Motion Prediction 9

components to calibrate features, see Fig. 4. Given that future motions are inher-
ently correlated with past motions, we introduce fusing the latent feature map
Z encoded from observed motions with Zgt

t (Z̄ = fusion
(
Z,Zgt

t

)
) to generate

prompt in the denoising stage.
To generate the interactive prompts from input features Z̄, we first apply

global average pooling (GAP) across the spatial dimension to generate the fea-
ture v ∈ RM . Then, we obtain a more compact vector through compression and
use the softmax operation to calculate the prompt weight w ∈ RN . Finally, we
utilize these weights to guide the parameters in the generated prompt compo-
nents through a dot product operation to generate the prompts P.

To enable interaction between prompt weights and input features, we begin
by concatenating Zgt

t with the prompts P in the spatial channel. Next, a 1D
convolution is used to fuse them and exploit the degradation information encoded
in the prompts to transform the input features.

5 Experiments

5.1 Datasets

First-Person Hand Action (FPHA). The FPHA dataset [18] collects first-
person RGB-D videos capturing diverse hand-object interactions. It includes
ground-truth 3D hand pose, 6D object pose, and hand joint locations from
magnetically-tracked mocap sensors. Object pose is annotated for 4 objects in a
subset of videos, also via magnetic sensors. Our model observes 15 past frames
(0.5s) and predicts 60 future frames (2.0s).
HO-3D. The HO-3D dataset [23] captures hand-object interactions from a third-
person perspective. It contains 77, 558 frames with 3D hand joint positions and
3D object bounding boxes. In our study, we only use the 3D hand position
annotations. The dataset [23] is divided into a training set of 66, 034 frames and
an evaluation set of 11, 524 frames. In the evaluation set, only wrist coordinates
are labeled for the hands, and full hand annotations are unavailable. Therefore,
we utilize only the original training set and follow the same action split as in [10,
24, 69]. Additionally, we select one video sequence per object for the test set
manually. Our model observes 20 past frames and predicts 80 future frames.

5.2 Implementation

Evaluation metrics. Consistent with the evaluation protocols in [70], we em-
ploy five metrics to assess the diversity and accuracy of our model. (1) Average
Pairwise Distance (APD): computing the L2 distance among all pairs of
predicted motion poses at each time step. (2) Average Displacement Er-
ror (ADE): the smallest average L2 distance between the ground truth and
the predicted motions for the entire sequence. (3) Final Displacement Error
(FDE): the smallest average L2 distance between the ground truth and the
predicted motions for the last frame of the sequence. (4) Multi-Modal-ADE
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Table 1: Quantitative results on the FPHA and HO3D datasets. Bold numbers indi-
cate the best results. The lower is better for all metrics except for APD. The symbol
‘-’ indicates that certain methods are not reported in this setting.

Method FPHA [18] HO3D [23]
APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓

cVAE [70] 5.168 0.671 0.754 0.672 0.751 2.729 0.198 0.261 0.221 0.264
DLOW [70] 9.616 0.668 0.723 0.669 0.723 5.744 0.222 0.292 0.243 0.292
MOJO [74] 7.695 0.532 0.607 0.535 0.608 6.335 0.180 0.255 0.214 0.260
GSPS [45] 9.738 0.494 0.654 0.495 0.650 2.808 0.187 0.225 0.204 0.227

HumanMAC [11] 2.831 0.684 0.781 0.686 0.780 1.821 0.155 0.217 0.209 0.236
BeLFusion [5] 2.822 0.696 0.869 0.699 0.870 - - - - -
STEN alone 18.627 0.473 0.602 0.474 0.600 4.090 0.168 0.215 0.195 0.221

Ours 19.798 0.413 0.535 0.416 0.534 4.541 0.163 0.203 0.190 0.210

(MMADE): the multi-modal version of ADE, grouped by similar observed past
motion status. (5) Multi-Modal-FDE (MMFDE): similarly, the multi-modal
version of FDE.
Baselines. To comprehensively evaluate our method, we compare it with sev-
eral motion prediction models, including cVAE [70] and DLow [70], MOJO [74],
GSPS [45], HumanMAC [11], and BeLFusion [5]. All comparative methods are
trained on the two hand datasets from scratch. In this task, all models are con-
figured to match the hand skeleton data structure. In qualitative comparison,
the employed competitors are GSPS and HumanMAC.
Implementation details. We use similar loss functions with previous human
motion prediction works [45,70]. The dimensionality of latent feature maps Z and
Zgt is 16 for all methods. The number of diverse samples K for each prediction is
10. For comparisons, the encoder and decoder of our STEN and GTEN models
both have 4 layers of ST-GCN-SE block. For FPHA and HO3D, the model is
trained with a batch size of 16 for 500 epochs using 1000 training examples per
epoch. Adam optimizer [30] with base learning rate 1e-3, is used, decayed after
100 epochs.

For the denoising model, we train ϵθ on both datasets with a 1000-step
DDPM [25] and sample with a 100-step DDIM [58]. The Linear scheduler is
exploited for variance scheduling in our model. The noise prediction network
contains 4-layer and 12-layer TransLinear blocks for FPHA and HO3D respec-
tively.

5.3 Comparison to state-of-the-art approaches

Quantitative results. We compare our method with counterparts in Tab. 1 on
FPHA and HO3D. As observed, for FPHA, our method achieves state-of-the-art
across all metrics, demonstrating validity. Previous methods exhibit relatively
low diversity (APD) and accuracy (ADE, FDE, MMADE, MMFDE). For HO3D,
our method provides relatively reliable predictions compared to MOJO, with the
highest diversity. Additionally, our method provides relatively higher diversity
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(a) Diversity motion sequences prediction visualization on FPHA.
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(b) Diversity motion sequences prediction visualization on HO3D.

Fig. 5: Qualitative results on motion sequence prediction visualization. The first line
of each sample is the ground truth. The negative and positive frame numbers on the
time axis indicate the observed motions and future motions at certain time steps,
respectively. The red-black skeletons and red-to-blue skeletons denote the observed and
predicted motions, respectively. We focus on the valid poses and range of motion for
overlapping predicted motions. GSPS normally generates some invalid poses, indicated
by red arrows. HumanMAC generates a limited range of motion, indicated by red
circles.
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(a) Comparison on end poses visualization on FPHA.
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(b) Comparison on end poses visualization on HO3D.

Fig. 6: Results of end poses visualization. Each row denotes the 10 predicted end
poses from three models. The red-black skeletons and red-to-blue skeletons denote the
observed and predicted motions, respectively. GSPS generates some invalid poses. Hu-
manMAC generates very similar 10 motions, indicating a lack of diversity and resulting
in low APD results.
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Table 2: Experimental results of the ablation study on a different number of the first
L rows of DCT.

FPHA HO3D
L APD↑ ADE↓ FDE↓ APD↑ ADE↓ FDE↓

5 15.193 0.417 0.560 1.532 0.176 0.232
10 20.634 0.462 0.610 3.002 0.162 0.204
20 19.798 0.413 0.535 4.541 0.163 0.203

than HumanMAC, the most accurate ADE. Our HO3D predictions strike an ex-
cellent balance between diversity and accuracy. As mentioned in Sec. 5.1, FPHA
is collected from a first-person perspective and HO-3D from a third-person per-
spective. In the egocentric scenario, the world coordinates continually change
with sensor movement, so FPHA exhibits higher diversity and lower accuracy
than HO-3D.
Qualitative comparison. To visually evaluate the diversity and accuracy of
results, we follow the approach of previous works in human motion prediction by
using overlapping predicted motions and end poses for visualization, see Fig. 5.
We compare our method with GSPS [45] and HumanMAC [11]. Since hand
motions are localized with limited range, for better visualization, we show only
the five least overlapping predicted motions per frame. In Fig. 6, we show the
end poses of all predicted results separately.

For future predictions, GSPS consistently generates unreasonable failure cases
like finger joint fractures (annotated by red arrows) in Fig. 5 and Fig. 6. In con-
trast, HumanMAC produces more reasonable cases but with limited diversity.
Its range of finger movements is insufficient to cover general daily activities (an-
notated by red circles). The results in Fig. 5 and Fig. 6 demonstrate that our
method generates more physically valid and diverse results in daily activities.

5.4 Ablation Study

We conduct comprehensive ablation studies, including (1) the value of L in
DCT/iDCT; (2) the design of the noise-denoising network; (3) the effectiveness
of the SE-block; and (4) the impact of interactive prompts. We provide detailed
explanations for each aspect. In all tables, our final choices for our method are
highlighted with gray shading.
Value of L. As discussed in Sec. 4.1, we approximate the DCT and iDCT oper-
ations by selecting the first L rows of D as DL to improve computing efficiency.
In Tab. 2, we present the optimal choice for L, 20 for both datasets.
Design of the noise prediction network. RDGN’s LDM adopts a U-Net
architecture from [11]. More precisely, U-Net comprises a stack of TransLinear
blocks, and within each transformer encoder, two FiLM-like conditioning mod-
ules [51] are integrated. Tab. 3 shows reasonable layer choices considering average
rank across three metrics; the best values are 4 layers for FPHA and 12 layers
for HO3D.
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Table 3: Experimental results of the abla-
tion study on a different number of layers
in the noise prediction network.

FPHA HO3DLayer APD↑ ADE↓ FDE↓ APD↑ ADE↓ FDE↓

2 19.645 0.419 0.563 4.530 0.165 0.207
4 19.798 0.413 0.535 4.500 0.163 0.205
8 19.742 0.406 0.541 4.558 0.164 0.204
12 19.825 0.422 0.544 4.541 0.163 0.203

Table 4: Experimental results of the ab-
lation study on different schedulers in the
diffusion model.

FPHA HO3DScheduler APD↑ ADE↓ FDE↓ APD↑ ADE↓ FDE↓

Linear 19.798 0.413 0.535 4.541 0.163 0.203
Sqrt 18.794 0.452 0.568 4.441 0.164 0.210

Cosine 18.940 0.448 0.585 4.517 0.165 0.209

Table 5: Experimental results of the ab-
lation study with respect to the SE-block
in the model.

FPHA HO3DSE-block APD↑ ADE↓ FDE↓ APD↑ ADE↓ FDE↓

w/o SE 16.008 0.422 0.523 3.685 0.196 0.249
w SE 19.798 0.413 0.535 4.541 0.163 0.203

Table 6: Experimental results of the ab-
lation study on interactive prompts usage
and its length.

FPHA HO3DPrompt len APD↑ ADE↓ FDE↓ APD↑ ADE↓ FDE↓

w/o 18.884 0.423 0.562 3.851 0.161 0.206
5 19.847 0.420 0.539 4.541 0.163 0.203
10 19.798 0.413 0.535 4.513 0.162 0.200

We conduct an investigation to assess the impact of various predefined diffu-
sion variance schedulers, including Linear, Cosine, and Sqrt. As shown in Tab. 4,
the Linear scheduler is the most optimal choice for both datasets.
Effectiveness of the SE-block. The SE-block is a plug-in module within ST-
GCN, which serves as the basic unit of our model. We analyze its ability to
extract spatial-temporal information. Tab. 5 shows that this module demon-
strates highly efficient capability for comprehensively capturing both temporal
and skeletal information.
Impact of the interactive prompts. As the interactive prompts are generated
based on observed motions, we analyze the impact of generated prompts in terms
of their size. Tab. 6 shows the optimal choices are size 10 for FPHA and size 5
for HO3D.

6 Conclusion

In this paper, we propose to predict hand motion in 3D physical space from both
first- and third-person viewpoints. We introduce a novel prompt-based Future
Driven Diffusion Model (PromptFDDM) to fill the gap in the motion prediction
field. The future-driven prompting method ensures more accurate and diverse
outcomes. Quantitative and qualitative experiments demonstrate the effective-
ness of our approach, with superior performance on the hand datasets FPHA
and HO3D. The various action behaviors learned during training contribute to
predicting future motions based on a single observed motion, yielding reliable
and diverse results. There are some limitations in the trade-off between diver-
sity and accuracy. We expect PromptFDDM can serve as a solid baseline and
provide a new perspective for modeling 3D hand motion prediction. Future re-
search efforts will focus on improving the accuracy of third-person viewpoints
and consider the motion involved in hand-object interactions.
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