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In this supplementary, we extended our experiment to incorporate more an-
notation comparisons with existing datasets in Sec. 1. The detailed generation
settings and more quantitative analysis are discussed in Sec. 2. We also include
more visual cases in Sec. 3 to demonstrate the capacity of our framework to
maintain both fidelity and diversity.

1 Visual Comparison between Original and Defect
Spectrum Dataset

In this section, we first present a visual comparison between ours (the last row)
and the original datasets’ annotation. Figure 1, 2, 3 shows the comparison of
the MVTec dataset, we re-classify the defects based on their type and enabled
more semantic abundance. As for Figure 4 of the VISION dataset, we refined
the original annotation for more granularity. The original DAGM and Cotton
datasets contained no pixel-level annotation, thus we provide our annotation as
shown in Figure 5, 6. We also demonstrate the efficacy of our refined annota-
tions for defect inspection by employing a segmentation model. As illustrated in
Figure 7, 8 and Figure 9, the segmentation model trained on our refined dataset
demonstrates enhanced precision and an improved capability to differentiate be-
tween various types of defects, compared to its performance when trained on the
original dataset.

2 Defect Generation

Implementation details In this section, we will first elaborate on the architec-
ture of Defect-Gen. Then we will go over the dataset and training settings of our
model. Lastly, we quantitatively compared it with other methods to demonstrate
the superiority of our method.

⋆ These authors contributed equally to this work.
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Fig. 1: The annotation comparison of the “cable" and “capsule" class in MVTec dataset.
The first row shows the defect image. Rows 2 and 3 show the original annotation and
our improved annotation. Best viewed in color.

Fig. 2: The annotation comparison of the “toothbrush" and “hazelnut" class in MVTec
dataset. The first row shows the defect image. Rows 2 and 3 show the original annota-
tion and our improved annotation. Best viewed in color.
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Fig. 3: The annotation comparison of the “wood" and “pill" class in MVTec dataset.
The first row shows the defect image. Row 2 and 3 show the original annotation and
our improved annotation. Best viewed in color.

Fig. 4: The annotation comparison of the “capacitor" and “ring" class in VISION
dataset. The first row shows the defect image. Rows 2 and 3 show the original annota-
tion and our improved annotation. Best viewed in color.
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Fig. 5: The annotation comparison of the “cotton fabric" class in the COTTON
dataset. The first row shows the defect image. Row 2 shows our improved annota-
tion. Best viewed in color.

Fig. 6: The annotation comparison of the “texture surface" in DAGM dataset. The
first row shows the defect image. Row 2 shows our improved annotation. Best viewed
in color.
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Fig. 7: Segmentation result comparison between model trained on our refined dataset
and the original dataset of the “cable" and “capsule" class in MVTec dataset. “Original”
denotes the segmentation masks produced by the model trained on the original dataset.
“Refined” denotes the segmentation masks produced by the model trained on our refined
dataset. We show the model trained with our dataset exhibits improved granularity
and high quality. Best viewed in color.
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Fig. 8: Segmentation result comparison between model trained on our refined dataset
and the original dataset of the “hazelnut" and “wood" class in MVTec dataset. “Orig-
inal” denotes the segmentation masks produced by the model trained on the original
dataset. “Refined” denotes the segmentation masks produced by the model trained on
our refined dataset. We show the model trained with our dataset exhibits improved
granularity and high quality. Best viewed in color.
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Fig. 9: Segmentation result comparison between model trained on our refined dataset
and the original dataset of the “Capacitor" and “Wood" class in the VISION dataset.
“Original” denotes the segmentation masks produced by the model trained on the
original dataset. “Refined” denotes the segmentation masks produced by the model
trained on our refined dataset. We show the model trained with our dataset exhibits
improved granularity and high quality. Best viewed in color.

Experimental Settings Since there was no train-test split in MVTec AD
dataset, to train both large and small diffusion models, we employed 5 images
for each defective type per object, which is the same as our segmentation train-
ing setting. For VISION, DAGM2007, and Cotton-Fabric, we use the pre-split
training set. Table 1 to 4 show the architectures of the large and small-receptive-
field models. The training of diffusion models is performed on four 3090 GPUs,
with a batch size of 2, a learning rate of 1e− 4, and a training iteration number
of 150,000. We utilize the Adam optimizer with a weight decay of 2e− 3.

Table 1: Upsampling Block

Layer Type Input size Output size Norm Activation
ResBlock × 2 H ×W × C H ×W × C GN SiLU
Interpolation H ×W × C 2H × 2W × C

2
None None

Table 2: Downsampling Block

Layer Type Input size Output size Norm Activation
ResBlock × 2 H ×W × C H ×W × C GN SiLU

Avg_pool 2× 2 H ×W × C H
2
× W

2
× 2C None None
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Table 3: Architecture for Large receptive fields model.

Layer Type Resolution # of Channels Norm Activation
InConv 256 4 GN SiLU

DownSampleBlock 256 192 None None
DownSampleBlock 128 384 None None
DownSampleBlock 64 768 None None
DownSampleBlock 16 1536 None None
UpSampleBlock 16 768 None None
UpSampleBlock 64 384 None None
UpSampleBlock 128 192 None None
UpSampleBlock 256 96 None None

OutConv 256 4 GN SiLU

Table 4: Architecture for Small receptive fields model.

Layer Type Resolution # of Channels Norm Activation
InConv 256 4 GN SiLU

DownSampleBlock 256 192 None None
DownSampleBlock 128 384 None None
UpSampleBlock 128 192 None None
UpSampleBlock 256 96 None None

OutConv 256 4 GN SiLU
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Parameter analysis As we discuss in Sec.3.4.2, our model has two key hyper-
parameters: the switch timestep u and the receptive field of the small model.
Both of them can control the trade-off between fidelity and diversity. We use
FID to measure the generation fidelity. Since there is no existing metric to effec-
tively measure the generation diversity, we used LPIPS score to indicate such.
A higher LPIPS score with a similar FID score demonstrated a higher diversity
in the dataset. Table 5 shows the FID and LPIPS for different u and receptive
fields. As shown, when u increases, fidelity increases while diversity decreases.
Similarly, when the receptive field switches from small to large, the same trend
occurs. Empirically, we use u=50 and the medium receptive field to achieve a
good trade-off between FID and LPIPS.

Table 5: The table shows the trade-off between diversity and image quality of the
capsule class. The column represents 3 different receptive field sizes, large, medium,
and small, and the respective down-sampling blocks are 6, 3, 2. The row represents the
timesteps(v) used for the small receptive field model.

u 25 50 75 100 400 700
Small FID ↓ 115.2754 93.2839 80.8040 79.6411 82.5127 78.4115

LPIPS ↑ 0.3981 0.3666 0.3537 0.3523 0.3467 0.3460
Medium FID ↓ 69.9419 57.5374 57.3961 57.8977 57.426 57.006

LPIPS ↑ 0.3473 0.3458 0.3450 0.3417 0.3392 0.3381
Large FID ↓ 59.085 56.6246 56.7247 56.2493 55.7226 54.0529

LPIPS ↑ 0.2914 0.2870 0.2866 0.2853 0.2832 0.2814

Quantitative Evaluation We have compared the segmentation performance
boost across different methods on the original MVTec dataset. GAN-based meth-
ods were excluded since they hardly generate realistic images, further disrupting
the original data distribution. Results for defect segmentation are shown in Ta-
ble. 6. The first column shows the defect segmentation mIoU score with only the
original training data. The rest of each column presents defect segmentation per-
formance with original training data pairs and the augmented pairs generated
by different synthesis methods. SinDiffusion dropped the mIoU score, due to
the incorrectly structured output images and mislabeled masks. However, it can
slightly improve the segmentation performance for certain classes like “Carpet",
“Grid", “Leather", “Tile" and “Wood". Since those classes do not contain any
industrial parts and thus do not require any global structure information during
synthesizing. DDPM-generated samples can boost the performance score, how-
ever, due to the lack of diversity during generation, the increase in performance
is limited.
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Table 6: Quantitative comparison on segmentation performance between sinDiffusion,
DDPM, and our method. To demonstrate the effectiveness of our method on other
dataset besides Defect Spectrum, the comparison was made on the original MVTec
dataset

w/o any AUG sinDiffusion DDPM Ours
capsule 75.47 76.25 79.21 82.20
bottle 67.54 70.52 67.32 73.75
carpet 67.33 72.89 68.94 74.27
screw 53.12 49.66 60.12 58.78
grid 59.68 61.59 60.68 62.14
cable 46.28 41.75 48.28 49.14

hazelnut 69.25 65.65 69.25 71.46
leather 66.39 66.91 66.39 66.80

metal_nut 69.56 63.5 68.57 74.4
pill 69.71 66.75 70.14 73.19
tile 70.33 72.43 71.23 73.58

toothbrush 68.26 64.26 68.09 70.14
transistor 44.31 47.16 44.37 47.47

wood 65.33 70.25 64.93 68.55
zipper 67.62 63.12 68.61 70.48
mean 64.01 63.51 65.07 67.76

3 Visual Generation Results

We have included more defect generation results along with their masks as shown
in Figure 10 to 15 below.

Fig. 10: The generated images and masks of the “bottle" and “capsule" class. Best
viewed in color.

References
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Fig. 11: The generated images and masks of the “carpet" and “grid" class. Best
viewed in color.

Fig. 12: The generated images and masks of the “pill" and “ring" class. Best viewed
in color.

Fig. 13: The generated images and masks of the “screw" and “tile" class. Best viewed
in color.
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Fig. 14: The generated images and masks of the “wood" and “toothbrush" class. Best
viewed in color.

Fig. 15: The generated images and masks of the “wood-surface" and “zipper" class.
Best viewed in color.
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