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Abstract. Defect inspection is paramount within the closed-loop man-
ufacturing system. However, existing datasets for defect inspection of-
ten lack the precision and semantic granularity required for practical
applications. In this paper, we introduce the Defect Spectrum, a com-
prehensive benchmark that offers precise, semantic-abundant, and
large-scale annotations for a wide range of industrial defects. Building
on four key industrial benchmarks, our dataset refines existing annota-
tions and introduces rich semantic details, distinguishing multiple defect
types within a single image. With our dataset, we were able to achieve
an increase of 10.74% in the Recall rate, and a decrease of 33.10%
in the False Positive Rate (FPR) from the industrial simulation experi-
ment. Furthermore, we introduce Defect-Gen, a two-stage diffusion-based
generator designed to create high-quality and diverse defective images,
even when working with limited defective data. The synthetic images
generated by Defect-Gen significantly enhance the performance of defect
segmentation models, achieving an improvement in mIoU scores up to
9.85 on Defect-Spectrum subsets. Overall, The Defect Spectrum dataset
demonstrates its potential in defect inspection research, offering a solid
platform for testing and refining advanced models. Our project page is
in https://envision-research.github.io/Defect_Spectrum/.

1 Introduction

Industrial manufacturing is a cornerstone of modern society. In an environment
where minute imperfections can result in significant failures, ensuring top-tier
quality is imperative. Manufacturing predominantly relies on a closed-loop sys-
tem, encompassing production, defect inspection, filtering, and analysis, as illus-
trated in Figure 1.

Within this system, defect inspection plays a pivotal role, interfacing with
most stages and ultimately determining product quality. Striking the right bal-
ance between identifying defective items and acknowledging sub-optimal ones,
⋆ These authors contributed equally to this work.
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Fig. 1: (a) Identifying the size, position, and type of defects is essential for quality con-
trol, as it guides the post-processing of products. Major issues such as misaligned zipper
teeth, necessitate factory rework, whereas minor problems, like fabric snags, can lead
to different distribution strategies. This approach ensures the maintenance of product
quality and enhances the distribution process. (b) Shows our annotation is finer, and
includes those that are omitted in the source annotation. (c) Source annotation [1,3,46]
ignores multiple defective classes within a single image, while ours provides annotation
for distinct class, shown in different colors. Best viewed in color.

based on defect size, position, and type, becomes critical [42]. Taking the "zip-
per" defect as an illustrative case. A garment zipper where the teeth are mis-
aligned, as depicted in Figure 1 (a). This type of defect, although it might seem
minor in terms of size or visibility, critically impacts the garment’s functionality,
necessitating its return to the factory for correction. However, defects located on
the fabric, such as minor snags or slight color variations, require careful consider-
ation of their size and impact. Small-scale fabric defects could be classified within
an acceptable range, allowing for differentiated distribution strategies that might
include selling these products at a discount, thereby maintaining product flow
without compromising overall quality standards. Additionally, documenting the
category and location of defects can pave the way for predictive maintenance
and provide valuable insights for refining product repair processes [29].

However, current datasets struggle to meet the intricate practical needs of
industrial defect inspection. One notable limitation is the insufficient granularity
concerning defect types and locations. For instance, anomaly detection datasets
like MVTEC [3] and AeBAD [51] give pixel-level annotations but are restricted
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to binary masks. Meanwhile, datasets like VISION [1], though more detailed,
occasionally miss or misclassify defect instances.

To address these gaps, we introduce the Defect Spectrum, aiming to offer
semantics-abundant, precise, and large-scale annotations for a broad spectrum of
industrial defects. This empowers practical defect inspection systems to furnish
a more thorough and precise analysis, bolstering automated workflows. Building
on four key industrial benchmarks, Defect Spectrum offers enhanced annotations
through a rigorous labeling endeavor. We have re-evaluated and refined existing
defect annotations to ensure a holistic representation. For example, contours of
subtle defects, like scratches and pits, are carefully refined for better precision,
and missing defects are carefully filled with the help of specialists. Beyond that,
our dataset stands out by providing annotations with rich semantics details,
distinguishing multiple defect types even within a single image. Lastly, we have
incorporated descriptive captions for each sample, aiming to integrate the use of
Vision Language Models (VLMs) in upcoming studies. During this endeavor, we
employ our innovative annotation tool, Defect-Click. It has largely accelerated
our labeling process, emphasizing its utility and efficiency, ensuring meticulous
labeling even with the extensive scope of our dataset.

Another palpable challenge is the limited number of defective samples in
datasets. For instance, in DAGM, there are only 900 defective images. In MVTEC,
although it has 5354 total images, the defectives among them are merely 1258.
And even the extensive VISION dataset falls short in comparison to natural
image datasets like ImageNet [11] (1 million images) and ADE20k [53, 54] (20k
images). To address this, we harness the power of generative models, proposing
the “Defect-Gen”, a two-stage diffusion-based generator. Our generator exhibits
promising performance in image diversity and quality even with a limited num-
ber of training data. We show that these generated data could largely boost the
performance of existing models in our Data Spectrum benchmark.

To summarize, our contributions are listed as follows.

– We introduce the Defect Spectrum dataset, designed to enhance defect in-
spection with its semantics-abundant, precise, and large-scale anno-
tations. Unlike existing datasets, we not only refine existing annotations for
a more holistic representation but also introduce rich semantics details. This
dataset, building on four key industrial benchmarks, goes beyond binary
masks to provide more detailed and precise annotations.

– We propose the Defect-Gen, a two-stage diffusion-based generator, to
tackle the challenges associated with the limited availability of defective
samples in datasets. This generator is shown to boost the performance of
existing models, by enhancing image diversity and quality even with a limited
training set.

– We conducted a comprehensive evaluation on our Defect Spectrum dataset,
highlighting its versatility and application across various defect inspection
challenges. By doing so, we provide a foundation for researchers to evalu-
ate and develop state-of-the-art models tailored for the intricate needs of
industrial defect inspection.
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2 Related Work

Industrial Datasets There are several well-used datasets for Industrial Defect
Inspection: DAGM2007 [46], AITEX [36], AeBAD [51], BeanTech [27], Cotton-
SFDG [20] and KoektorSDD [39] offer commonly seen images that cover a wide
array of manufacturing materials; MVTEC [2, 3] is a dataset for benchmarking
anomaly detection methods with a focus on industrial inspection; VISION V1
[1] includes a collection of 14 industrial inspection datasets containing multiple
objects. A notable shortcoming in the aforementioned industrial datasets is they
often lack specificity regarding the defect’s type or its precise location. Aiming
to refine these issues, we introduce the Defect Spectrum datasets. Further details
will be explained in Section 3.

Defect-mask Generation Defect inspection plays a vital role in various in-
dustries, including manufacturing, healthcare, and transportation. Previous at-
tempts based on the traditional computer vision method [37] have proven to be
robust for detecting small defects, but they all suffer from detecting defects in
textures-rich patterns. In recent years, Convolutional Neural Networks(CNNs) [15,
16,28] based models are commonly used for defect inspection, but limited avail-
ability of real-world defect samples remains a challenge. To mitigate such data-
insufficiency issue, traditional methods for synthesizing defect images manually
destroy normal samples [26] or adopt Computer-Aided Drawing (CAD) [19,25].
Deep learning-based approaches are generally effective, but they require large
amounts of data. GAN-based methods [14, 31, 45, 50] are adopted to perform
defect sample synthesis for data augmentation. DefectGAN adopts an encoder-
decoder structure to synthesize defects by mimicking defacement and restoration
processes. However, it is important to note that GAN-based methods typically
require a substantial quantity of real defect data in order to achieve effective
results. Recent advancements in Diffusion models [12, 18, 30] demonstrated a
superior performance in image generation. However, they tend to reproduce ex-
isting samples when trained with scarce data, leading to a lack of diversity. Stable
Diffusion [32] is one of the most prevailing methods in this field. Nonetheless,
it is not applicable to use a pre-trained stable diffusion model when generating
masks. Our proposed approach, on the other hand, is capable of generating de-
fective image-mask pairs with both diversity and high quality, even when trained
on limited datasets.

3 Dataset

3.1 Datasets Analysis

In Table 1, we present an analysis of the Defect Spectrum datasets in comparison
with other prevalent industrial datasets. Notably, the DAGM2007 and Cotton-
Fabric datasets originally lacked pixel-wise labels, making them less suitable for
detailed defect inspection. While datasets like AITEX, AeBAD, BeanTech, and
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KoektorSDD offer defect masks, they only focus on a limited range of products,
offering a restricted number of annotated images and defect categories.

While some high-quality datasets offer a significant volume of images with
pixel-level annotations, they are not without their limitations. For instance, there
are cases where MVTEC and VISION annotations either miss defects or provide
imprecise, coarse labels, as illustrated in Figure 1(b). Additionally, these datasets
commonly merge various defect classes into a single homogeneous category. This
shortcoming is particularly apparent in the “pill” and “capacitor” examples in
Figure 1(c), where the original annotations provide only binary masks that do
not differentiate between defects such as “scratch”, “crack”, and “color point”. This
approach fails to reflect real-world scenarios, where industrial images frequently
exhibit multiple types of defects simultaneously.

To enhance the capabilities for defect detection, Defect Spectrum datasets
introduce a comprehensive collection of 3518 high-quality, high-resolution im-
ages derived from the aforementioned datasets. These selected images feature
a wide variety of objects and defects, ensuring extensive variance and coverage
for improved analysis. This curated dataset offers detailed, precise, and diverse
category annotations for each image and enriches the data with comprehensive
captions to facilitate better contextual understanding. For every product type
featured, the Defect Spectrum datasets extend their utility by incorporating re-
alistic synthetic data and their accurate masks, ensuring a thorough and versatile
testing ground.

Table 1: Comparison with real-world manufacturing datasets. Defect Spectrum
datasets are the second largest one even though excluding our synthetic data. Defect
Spectrum is also the most diverse, semantics-abundant, and precise manufacturing
benchmark datasets to date. We use * to represent the amount of synthetic data.

Annotated
Defective
Images

Defect
Type

Pixel-wise
Label

Multiple
Defective

Label

Detailed
Caption

AITEX [36] 105 12 ✓
AeBAD [51] 346 4 ✓

BeanTech [27] 290 3 ✓
Cotton-Fabric [20] 89 1
DAGM2007 [46] 900 6

KolektorSDD2 [39] 356 1 ✓
MVTec [3] 1258 69 ✓

VISION V1 [1] 4165 44 ✓ ✓
VisA [56] 1200 75 ✓

Defect Spectrum 3518+1920* 125 ✓ ✓ ✓
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Fig. 2: The inference process of the two staged diffusion models. The input to the large
model pθ is gaussian noise, after the optimal step is reached, the intermediate results
containing global information will be used as the input to the small model pϕ.

3.2 Annotation Improvements

Our improvements in annotations are mainly in three aspects: precision, semantics-
abundance, and detailed caption.

Precision For datasets that were not annotated or merely had image-wise an-
notations, we have elevated them to meet our standards. We have enriched these
datasets with meticulous pixel-level annotations, delineating defect boundaries
and assigning a distinct class label to each type of defect. For those datasets that
already possessed pixel-wise masks, we enhanced their precision and rectified any
imperfections. We undertook efforts to account for any overlooked defects, en-
suring exhaustive coverage. For nuanced defects, such as scratches and pits, we
refined the contours to achieve heightened accuracy.

Semantics Abundance In contrast to datasets that only offer binary defective
masks, Defect Spectrum furnishes annotations with more semantic details, iden-
tifying multiple defect types within a single image. We identify that there are
552 multiple defective images and provide their multi-class labels. Moreover, we
have re-assessed and fine-tuned the existing defect classes, guaranteeing a more
granular and precise categorization. In total, we offer 125 distinct defect classes.

Detailed Caption With the evolution of Vision Language Models (VLMs), we
have equipped our datasets by integrating exhaustive captions. It’s worth not-
ing that current captioning models, such as BLIP2 [22] and LLaVa [23], often
overlook defect information. As a remedy, we manually refined the captions from
VLMs and furnished detailed descriptions. These narratives not only identify the
objects but also elucidate their specific defects. We anticipate that this enhance-
ment will inspire researchers to increasingly leverage VLMs for defect inspection
in forthcoming studies.
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3.3 Defect Generation

To tackle the issue of defects scarcity, we turn to the burgeoning field of gen-
erative models. By using the limited available data, we propose a two-staged
diffusion-based generator, called the “Defect-Gen”.

Background Given a set of defective image-mask pairs, we aim to learn a gen-
erative model that captures the true data distribution. We denote the dataset as
D = {(I1,M1), (I2,M2), . . . , (IN ,MN )}, where the image Ii ∈ Rh×w×3 and the
mask Mi ∈ {0, n}h×w×n refer to the defect image and its defect mask respec-
tively. N is the number of samples in the training set, which is small in practice.
n denotes the number of defective types in the mask images. Specifically, we
convert the mask into a one-hot encoding scheme for each channel separately.

Fig. 3: DDPM predicts high
density around training sam-
ples and fails to capture the
true data distribution.

We perform a channel-wise concatenation be-
tween I with the M , i.e., x = I ⊕ M , where ⊕
means concatenation and x ∈ Rh×w×ntotal , and
ntotal = ndefect + 3. We then treat the x as the
input to train the generator. This improves the
usability of the generative model with negligible
computational overhead.

Few-shot Challenges Note that defect images
are difficult to collect in practice, and thus, models
have to be trained with very few samples. Under
this situation, we observe that the generated re-
sults lack diversity. To be specific, models tend
to memorize the training set. The reason could be
that the generative models such as Diffusion mod-
els tend to predict high density around training
samples and fail to capture the true data distribution, as depicted in Figure 3.

Overfitting Issue The limitation discussed above is not surprising. In sta-
tistical learning theory, it is well-known that the generalization capacity of a
classification model is positively related to the sample size and negatively re-
lated to the dimension. We can reasonably hypothesize that a similar trend also
holds in the diffusion model according to the Vapnik–Chervonenkis theory [41].

In this sense, as the data dimension (h×w× ntotal) is much larger than the
sample size (N = 25 in our setting), the vanilla diffusion model suffers severe
overfitting. As shown in Figure 4 (a), DDPM replicates training cases, leading
to low diversity generation.

Modeling the Patch-level Distribution To alleviate the aforementioned
problem, we propose to model the patch-level distribution instead of the image-
level distribution. By treating a patch as one sample, the data dimension (hpatch×
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wpatch × ntotal) is largely reduced, while the sample size (Npatch)is significantly
increased. This reduces the risk of overfitting. Figure 5. demonstrates the effec-
tiveness of our strategy.

Fig. 4: The visual cases in (a) demon-
strate a lack of diversity in using DDPMs.
Cases in (b) demonstrated excessive diver-
sity. (c) shows the generated samples using
our framework. we maintained the global
structure while introducing local variance.

Restraining the Receptive Field
Although we can naively replace
x with cropped image patches to
achieve patch-level modeling, it is
hard to use learned patches to recon-
struct into a whole image during in-
ference. In other words, if explicitly
train a patched generator, we would
have to introduce a reconstruction
term to merge these patches. Alterna-
tively, we leverage the network archi-
tecture to restrain the size of the re-
ceptive field to achieve this. Standard
U-Net is used in the vanilla diffusion
model [18]. It is composed of a series
of down-sampling layers. With the re-
duced number of down-sampling lay-
ers, the output receptive fields grad-
ually decrease. This allows the model
to only be visible to small patches on the original images. This strategy does
not change the position of each patch in one image and thus has the potential to
maintain the whole image. Thus, by using a smaller receptive field, patch-level
modeling is achieved.

Fig. 5: The property of patch-level mod-
eling. The right image is generated from
the small-receptive-field model, and the two
left images are the two most similar images
from the training set.

Handling the Global Distortion
While patch-level modeling is effec-
tive in overcoming overfitting, it falls
short of representing the global struc-
ture of the entire image, leading to
unrealistic results. This is shown in
Figure 4(b). To address this issue, we
propose a two-stage diffusion process
as depicted in Figure 2. Our approach
is inspired by [9], which reveals that
different time steps in the diffusion
process correspond to distinct levels
of information. In the early stages,
coarse geometry information is gener-
ated, while in later stages, finer infor-
mation is produced.
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Specifically, we train two models: one with a small receptive field, which we
introduced previously, and another with a larger receptive field. During infer-
ence, we use the large-receptive-field model to capture the geometry structure
in the early steps, and then switch to the small-receptive-field model to generate
diverse local patches in the remaining steps. The effectiveness of this strategy
is demonstrated in Figure 4 (c). Our model has two key hyper-parameters: the
switch timestep u and the receptive field of the small model. Both of them can
control the trade-off between fidelity and diversity. We use FID to measure the
generation fidelity. LPIPS was originally used for measuring the similarity be-
tween two images, the lower score indicates a higher similarity and vice versa.
In this scenario, to achieve a higher generation diversity with fidelity, we want
to maintain a higher LPIPS score with a similar FID score. Due to the page
limits, the detailed selection of the switch timestep u and the receptive field of
the small model can be found in the Sec.B of the Appendix.

3.4 Auxiliary Annotation Tool

Segment
Anything

Defect
Click

Fig. 6: Comparison between Defect Click and Segment Anything [21]. Progressively
annotating a scratched capsule with human clicks: With our “Defect-Click” tool, we
can swiftly pinpoint the two scratches. However, when using “Segment Anything”, it
becomes challenging to accurately identify the defects, as shown in the red box. Best
viewed in color.

Annotating pixel masks is an exceptionally demanding task in the labeling
domain, especially under the stringent standards of Defect Spectrum. It is not
feasible to perform such a task from scratch. To alleviate this challenge, we
introduce an auxiliary annotation tool, “Defect-Click,” designed to conserve the
efforts of our specialists.

Defect-Click is an advanced interactive annotation tool designed to automat-
ically segment defect areas based on a user’s click point. Distinct from traditional
interactive segmentation methods, Defect-Click utilizes its pretrained knowledge
of industrial defects to adeptly pinpoint irregular defective regions. Built upon
the Focal-Click framework [6,7], we tailored Defect-Click for the industrial defect
domain by integrating 21 proprietary labeled datasets, introducing multi-level
crop training for small defects, and incorporating edge-sensitive losses during
training. The 21 proprietary labeled datasets consist of defective image-mask
pairs for industrial inspection. Multi-level crop training means we rescale the
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training samples randomly to a resolution of [512, 1024, 1536, 2048, 2560, 3072]
and then crop 512×512 patches for training. Edge-sensitive losses denote the loss
function in Mask2Former [8]. We use the losscls : lossmask : lossdice = 2 : 5 : 5
in practice. These specialized approaches ensure that Defect-Click significantly
outperforms other annotation tools in the industrial dataset domain, as show-
cased in Figure 6. Segment Anything [21] struggles to identify the scratch defect,
while Defect-Click clearly delineates the defect’s contour.

With the assistance of Defect-Click, we can initially obtain a rough defect
mask with merely several clicks and subsequently refine its imperfections. On
average, this approach has resulted in a time-saving of about 60%. Even though,
this comprehensive annotation project still spans a total of 580 working hours.

4 Experiments

4.1 Benchmarking existing methods

In the realm of industrial defect inspection, there are three primary tasks: de-
fect detection (determining if an image contains a defect), defect classification
(identifying the type of defect), and defect segmentation (pinpointing both the
boundaries and the type of the defect in the image) [4, 24, 40]. Typical defect
detection methods such as Patchcore [34], PADIM [10], and BGAD [48] empha-
size identifying the presence of defects but fall short in discerning defect types.
Defect classification methods can determine the type of defect but do not pro-
vide information about its location or size. Our Defect Spectrum dataset come
with detailed and comprehensive annotations, aiming to solve the most complex
task. Consequently, we focus on methods that excel in defect segmentation.

Additionally, due to the confidential nature of many industrial products,
transferring data externally is often prohibited. This necessitates models that
can operate efficiently on local devices. With this in mind, we have handpicked
several SOTA segmentation methods and adapted them to a lightweight version.
Our baseline includes UNet - small [33], ResNet18 [17] - PSPNet [52], ResNet18
- DeepLabV3+ [5], HRNetV2W18 - small [43], BiseNetV2 [49], ViT - Tiny [13]-
Segmenter [38], Segformer - MiT - B0 [47], and HRNet - Mask2Former [8]. The
models are abbreviated as follows: UNet (UNet - small), PSP (ResNet18 - PSP-
Net), DL (ResNet18 - DeepLabV3+), HR (HRNetw18small), Bise (BiseNetV2),
V-T (ViT-Tiny - Segmenter), M-B0 (Segformer - MiT-B0), and M2F (HRNet -
Mask2Former).

We present a comprehensive evaluation of the above methods on each sub-set
of our Defect Spectrum benchmark. For the performance metric, we choose the
mean Intersection over Union (mIoU). Results are shown in Table 2. The con-
sistent performance of DeepLabV3+ across multiple datasets suggests that it’s
a robust model for various types of defect segmentation tasks. The Transformer-
based models seem to be particularly effective for Cotton-Fabric. This might be
due to the inherent advantages of Transformers in capturing long-range semantic
information, which could be commonly found in “Cotton-Fabric”. Performance
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varies across models for different categories, suggesting no universal solution.
Model selection should consider dataset specifics. Some datasets challenge all
models, highlighting a need for more research.

Table 2: Quantitative comparison of various defect segmentation methods across dif-
ferent Defect Spectrum reannotated datasets. Results reflect the mIoU. We highlight
the best mIoU of each dataset with red color. “DS” is abbreviated for Defect Spectrum.

CNNs Transformers
UNet PSP DL HR Bise V-T M-B0 M2F

Defect
Spectrum
(MVTec)

bottle 43.44 50.20 56.53 45.02 44.92 69.71 40.88 53.20
cable 47.95 52.50 52.59 50.39 45.24 54.51 58.31 49.72

capsule 28.05 29.59 35.49 34.02 28.30 33.94 38.95 26.91
carpet 50.91 53.76 53.75 47.28 44.52 43.70 38.45 47.34
grid 37.06 42.86 41.18 30.97 33.89 40.08 18.86 24.81

h_nut 58.84 56.87 61.78 59.31 57.53 55.07 59.60 56.72
leather 57.56 61.42 54.56 55.45 57.89 47.85 50.80 53.96
m_nut 49.18 46.99 51.08 48.76 55.51 54.68 48.89 39.43

pill 35.81 36.38 33.83 29.30 27.23 42.65 46.35 27.14
screw 31.87 38.77 33.36 29.66 19.01 22.54 19.26 21.89
tile 85.49 82.51 83.02 85.66 84.21 78.29 79.14 83.04

t_brush 23.96 25.25 25.16 26.25 25.58 33.30 32.22 28.26
tran. 40.37 44.02 58.23 44.50 45.97 53.60 41.13 50.87
wood 72.69 67.93 68.21 69.00 67.81 62.62 73.02 59.66
zipper 54.83 60.95 58.03 55.87 47.15 51.69 60.12 49.47
mean 49.88 51.41 51.58 47.99 45.40 49.31 46.45 45.70

Defect
Spectrum
(VISION)

Capa. 57.04 54.01 52.75 54.56 54.36 56.30 59.29 57.27
Console 35.32 30.77 32.67 31.70 30.45 22.48 25.64 32.50
Ring 52.37 56.16 56.97 60.17 54.06 44.27 52.21 62.09
Screw 53.13 53.91 55.20 52.46 51.76 36.87 47.54 52.05
Wood 64.75 66.80 66.72 66.79 67.40 53.34 63.43 66.70
mean 52.52 52.33 52.86 53.14 51.61 42.65 49.62 54.12

DS-DAGM2007 85.89 85.14 86.82 84.02 83.14 52.42 83.06 85.56
DS-Cotton-Fabric 39.03 48.73 47.55 41.13 46.82 51.29 50.52 64.09

4.2 Generation Quality

Figure 7 provides a qualitative comparison between our generation results and
those from other synthesis methods. On the left-hand side, we present differ-
ent objects to demonstrate the high fidelity of our method. On the right-hand
side, we used the two images shown in the “Real defect” to generate samples to
demonstrate our high diversity. We observe that the generated models from Cy-
cleGAN [55] and DDPM [18] completely failed to learn a diverse defect pattern
and thus failed to generate samples with diversity by producing mere duplicates
of the training set. On the other hand, sinDiffusion [44] and SinGAN [35] can
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produce diverse samples but are not visually realistic. More visual cases, in-
cluding other classes, can be found in the supplementary file. Figure 8 displays
the image-mask pairs we generated. Our images are of high quality, and the
corresponding masks align well with them.

OursSinDiffusionReal Defect SinGAN CycleGANDDPM DDPMCycleGAN OursReal Defect SinDiffusion SinGAN

Fig. 7: Qualitative comparison of our method with other image synthesis methods. On
the left-hand side, we compared different objects across different datasets to demon-
strate the high fidelity of our generation method. On the right-hand side, we show our
method can exhibit diversity while maintaining high quality. Best viewed in color.

Fig. 8: Qualitative results of our proposed defect generation method. Generated im-
ages demonstrated rich semantics, exhibiting high quality. Generated masks precisely
reflected defect areas. Best viewed in color.

4.3 Synthetic Data for Performance Boost

Boosting SOTA methods with Synthetic Data Results in Table 3 show
a large performance increase in both DS-MVTec and DS-Cotton datasets, the
increase is comparatively smaller in the DS-VISION dataset, however, such in-
crease is demonstrated in each of the sub-classes. We do not generate extra data
for DS-DAGM2007, since it is already a synthetic dataset. The result demon-
strates the effectiveness of our synthetic data. We also compared with other
generation methods in the ability to boost performance. Detailed comparisons
can be found in the supplementary file.

Impact of Synthetic Data In Figure 9, we delve deeper into the impact of
varying the quantity of our synthetic data on model performance. Figure 9 (a)
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Table 3: Performance (mIoU) comparison between models trained with and without
synthetic data. The bolded text indicates results with synthetic data. “DS” is abbrevi-
ated for Defect Spectrum.

DS-MVTec DS-VISION DS-Cotton
DeepLabV3+ 51.58/55.55 52.33/53.46 48.73/58.58
Mask2Former 45.70/50.16 54.12/55.47 64.09/65.39

MiT-B0 46.45/56.21 49.62/50.75 50.52/55.86

shows the performance improvement over different quantities of synthetic data
using DeepLabV3+. Interestingly, we found that the transformer-based model
(MiT-B0) benefits much more with synthetic data than CNN-based models, as
shown in Figure 9 (b).

mIoU Improvement with different proportion of synthetic data

(a) (b)

Fig. 9: Improvement in mIoU with different proportions of synthetic Data. This ex-
periment is done on Defect Spectrum (MVTec) with DeeplabV3+ and MiT-B0 shown
as (a) and (b) respectively.

When using synthetic data that is 20% of the size of the original training
set, there is an enhancement in the results. Additionally, it’s worth noting that
the optimal amount of synthetic data required can vary based on the specific
category of images. When using synthetic data that is 200% of the size of the
original training set, there is an enhancement in the performance, but results in
greater variance. Additionally, the performance starts to decrease after reaching
the 300%. On a holistic scale, integrating 100% of the synthetic data appears to
be a reasonable choice.

4.4 Comparison between original and Defect Spectrum dataset

The enhancement of our dataset contains two significant modifications: 1) the
expansion to include more defect classes, and 2) the improvement of anno-
tation accuracy in both training and validation sets. Given these significant
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Table 4: The quality control benchmark for the objects to be inspected. We show
Zipper, pill, and wood as example classes.

Example classes Standard For Benign Products
Zipper No defect on teeth; Fabric defect < 4800 pixels

Pill No cracks; Contamination < 4000 pixels; Color stains < 300 pixels
Wood No scratch; No dent; Impurities < 250 pixels; Stain < 1000 pixels

changes, it becomes impractical to directly assess the performance (like comput-
ing mIoU) of our refined model on the original ground truth, and vice versa.

Table 5: Comparison of original annotation and de-
fect spectrum annotation in the simulation experiment
of manufacturing production. Metrics are reported in im-
age level recall rate and false positive rate (FPR).

Method ↑ Recall (%) ↓ FPR (%)

Original 85.33 49.60
Defect Spectrum (DS) 96.07 16.50

To objectively assess our
dataset’s superiority, we
conducted a simulation
experiment mimicking real-
world manufacturing pro-
cesses. Experts set quality
control benchmarks, de-
tailed in Table 4, speci-
fying critical and minor
defect thresholds. Valida-
tion samples were classi-
fied as benign or defective
based on these criteria.

We trained two identical segmentation models: one on our refined dataset and
one on the original dataset. Using the segmentation results and benchmarks,
we calculated the image-level recall rate ( TP

FN+TP ) and the false positive rate
( FP
TN+FP ). A higher recall rate indicates better defect identification, while a

lower false positive rate indicates fewer benign products flagged as defective.
Table 5 shows that the model trained with our refined dataset outperformed the
original in both metrics, enhancing profitability without compromising quality.

We compared the original dataset with our refined dataset, evaluating an-
notations and segmentation model masks. Our refined dataset showed improved
accuracy and differentiation among defect types. Visual examples are included
in the appendix.

5 Conclusion

In conclusion, our Defect Spectrum dataset, complemented by the Defect-Gen
generator, addresses critical gaps in industrial defect inspection. By providing
Semantics-abundant, precise, and large-scale annotations, our contributions will
foster advancements in defect inspection methodologies. The potential integra-
tion of Vision Language Models, the practical value of labeling assistant Defect-
Click, coupled with the Defect-Gen’s capability to mitigate data scarcity, sets
the stage for more robust defect inspection systems in the future.
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