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1 Global branch in ACCA

Inspired by [6], we employ a two-stream framework for efficient coarse adjust-
ment. In our main paper, we have provided comprehensive details regarding
our local branch and its primary component: W-CCA. Here, we elucidate the
global branch utilized for capturing long-term information. Initially, it employs
two strided convolutions followed by GELU activation to obtain feature Fg ∈
R

H
4 ×W

4 ×48 from an input image I ∈ RH×W×3. Subsequently, we integrate a
"Self-Attnetion" layer to extract global information from the last extracted fea-
ture Fg and generate the final predictions Ag ∈ R,Bg ∈ R3×3. Specifically, the
"Self-Attnetion" mechanism is delineated as follows:

  \begin {split} & F_g = {\rm Reshape}(F_g), \, \, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad F_g \in R^{\frac {H*W}{16} \times 48} \\ & K,V = {\rm Linear}(F_g,48,2*4*16), \, \, \quad \quad \quad \quad \quad \quad K,V \in R^{4\times \frac {H*W}{16} \times 16} \\ & Q = {\rm Parameter}(4,10,16), \, \, \quad \quad \quad \quad \quad \quad \quad \quad \quad Q \in R^{4\times 10 \times 16} \\ & S = {\rm Sotfmax}(Q @ K.transpose(-2,-1)), \quad \quad \quad S \in R^{4\times 10 \times \frac {H*W}{16}} \\ & Y = S @ V, \, \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad Y \in R^{4\times 10 \times 16} \\ & A_g,B_g = {\rm Split}({\rm Linear}(Y,10,1),1,9), \, \, \, \, \quad \quad \quad \quad A_g \in R, B_g \in R^{3\times 3} \\ \end {split}     




           


      

    


    

           

(1)

where ‘@’ denotes matrix multiplication. ‘Linear(,m, n)’ represents a linear pro-
jection layer with ‘m’ and ‘n’ representing the input and output dimensions,
respectively. Additionally, the function ‘Split’ divides a 10-channel feature into
two parts: one (Bg) with 9 channels and another (Ag) with 1 channel. Follow-
ing [6], we introduce a global query parameter Q for sparse and representative
illumination recovery.

2 Complexity of W-CCA

In our method, the ACCA module enjoys superior computational efficiency in
contrast to existing CNN-based methods with an attention-style aggregation
⋆ Equal contribution
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scheme from transformer structures. In this part, we will demonstrate the signif-
icant reduction in computational resource consumption achieved by our W-CCA,
compared with conventional window-based transformer block (W-MSA [26]).

As described in Sec. 3.2, we employ a strided convolution layer to split an
input image feature F into Mh × Mw image patches1. To further reduce the
parameter count, we implement a group-wise convolution with a group size of s
and a kernel size of s×s. Therefore, the complexity of the first convolution layer
can be obtained:

  O({\rm Conv}) = s^2 \times M_h \times M_w \times C^2/s = s \times M_h \times M_w \times C^2.             (2)

Then, we utilize three strided convolution layers to produce the three separable
1D kernels:

  \begin {split} O({\rm Eq.}{\color {red}10}) =& 2* s^2 \times M_h \times M_w \times C *s/s \\ &+ s^2 \times M_h \times M_w \times C^2/s,\\ =& 2*s^2\times M_h \times M_w \times C,\\ &+ s \times M_h \times M_w \times C^2.\\ \end {split}         
    

     

   

(3)

Later on, we compose the Onmi aggregation map using Eq.9:

  \begin {split} O({\rm Eq.}{\color {red}9}) =s^2 \times M_h \times M_w \times C.\\ \end {split}        (4)

Finally, we perform element-wise Onmi similarity aggregation using Eq.8:

  \begin {split} O({\rm Eq.}{\color {red}8}) =s^2 \times M_h \times M_w \times C.\\ \end {split}        (5)

In total, the complexity of a single W-CCA is obtained as:

  \begin {split} O(\text {W-CFA}) = 4HWC + 2HWC^2/s. \end {split} \label {eq.complexity}      (6)

Frequency decomposition. We observe that previous uniform optimization
methods may suffer from inaccurate illumination corrections or residual noise
artifacts (visual examples in Fig. 1,4 and Supp. Fig. 5). To tackle these issues,
we present a low-frequency consistent loss for general frequency disentanglement
optimization.

Table 1: Frequency decomposition scheme comparison on LOL-v2.

Method Restormer(Base) Conv FFT DCT Ours
PSNR (dB) 19.94 23.92 24.05 24.17 24.56
SSIM 0.827 0.871 0.862 0.887 0.893

1 Mh = H/s,Mw = W/s, H ×W is the feature resolution.
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Low-frequency consistency. Here, we assess the low-frequency consistency
results (between model prediction and ground truth) in the table below. It sug-
gests that ACCA outperforms other SOTA models2. Regarding LDRM, we not
only utilize the coarsely enhanced results generated by ACCA as input but also
leverage both low-frequency reconstruction and consistent losses (as described
in Eq. 5) to refine its low-frequency accuracy.

Table 2: Low-frequency consistency results of different LLIE models on LOL-v2.

Methods A B C D E F G (ACCA)
MAE 0.77 0.74 0.69 0.54 0.53 0.50 0.46
MSE 0.11 0.13 0.09 0.07 0.10 0.07 0.06

3 Results on VV and ExDark.

In our research paper, we conduct extensive experiments to validate the efficacy
of our approach. Here, we specifically investigate the advantages of our frequency
disentanglement learning on the VV [39] and ExDark [27] datasets. VV, which
is a non-reference low-light image benchmark, comprises 24 images. We employ
the NIQE metric for quantitative evaluation. ExDark, on the other hand, is a
dataset for low-light image detection, and we adopt the average precision (AP)
scores following the methodology of Retinexformer for object assessment.

To swiftly gauge the impact of our method, we compare two baseline mod-
els (Retinexformer [3] and SNR [51]) with their counterparts enhanced by our
disentanglement optimization (referred to as Retinexformer-De and SNR-De).
As demonstrated in Tab. 3, Retinexformer-De and SNR-De consistently outper-
form their baseline counterparts, affirming the effectiveness of our techniques in
enhancing high-level detection accuracy and achieving superior results on non-
reference metrics.

Table 3: Quantitative improvements over SOTA LLIE methods on VV and ExDark
benchmarks.

Datasets Retinexformer Retinexformer-De SNR SNR-De
VV(NIQE↓) 13.72 10.48(-3.24) 12.33 10.37(-1.96)
ExDark(AP↑) 75.60 76.40(+0.80) 74.00 76.20(+2.20)

Exploring other image restoration tasks. We’ve examined its potential
in tasks such as image HDR, denoising, deblurring, and deraining. As Tab. 4
2 A-F represent “MIR-Net", “Restormer", “SNR", “Retinexformer", “Star", and “IAT",

with G representing “ACCA".
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demonstrates, our frequency disentanglement optimization strategy proves ad-
vantageous (PSNR/SSIM) compared to the representative baseline model. We
will continue exploring other restoration problems in our future work.

Table 4: Quantitative improvements over Restormer for other image restoration tasks.

Task HDR Denoising Deblurring Deraining
Dataset MIT-Adobe-5K SIDD RealBlur-J Rain100H
Restormer 24.12/0.882 40.02/0.960 28.96/0.879 31.46/0.904
Restormer-De 25.90/0.921 40.36/0.964 29.62/0.903 32.39/0.910

4 More Visual Results

In our main paper, we demonstrate the effectiveness of our disentanglement
learning applied to several representative SOTA models for the LLIE task. In
this section, we will provide more visual examples for qualitative comparison in
Fig. 1, Fig. 2, Fig. 3 and Fig. 4, respectively for MIR-Net [56], Retinexformer [3],
Restormer [55] and SNR [51]. In Fig. 5, we also provide visual examples to illus-
trate the disentanglement enhancement capability of our method. It is clear that
our method provides more accurate intensity adjustment in the low-frequency
domain and effective denoising in the high-frequency domain.
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MIR-NetInput Ours GT

Fig. 1: Qualitative comparison between MIR-Net [56] and the enhanced version by
our method. Samples are selected from LOL-v2 [52], SID [4], SDSD [43] (both indoor
and outdoor parts) datasets. Our integration provides accurate outcomes for both
high-frequency (clearer image detail restoration) and low-frequency (more accurate
illumination recovery) areas.
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RetinexformerInput Ours GT

Fig. 2: Qualitative comparison between Retinexformer [3] and the enhanced version by
our method. Samples are selected from LOL-v2 [52], SID [4], SDSD [43] (both indoor
and outdoor parts) datasets. Our integration provides accurate outcomes for both
high-frequency (clearer image detail restoration) and low-frequency (more accurate
illumination recovery) areas.



AFD-LLIE 7

RestormerInput Ours GT

Fig. 3: Qualitative comparison between Restormer [55] and the enhanced version by
our method. Samples are selected from LOL-v2 [52], SID [4], SDSD [43] (both indoor
and outdoor parts) datasets. Our integration provides accurate outcomes for both
high-frequency (clearer image detail restoration) and low-frequency (more accurate
illumination recovery) areas.
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SNRInput Ours GT

Fig. 4: Qualitative comparison between SNR [51] and the enhanced version by our
method. Samples are selected from LOL-v2 [52], SID [4], SDSD [43] (both indoor
and outdoor parts) datasets. Our integration provides accurate outcomes for both
high-frequency (clearer image detail restoration) and low-frequency (more accurate
illumination recovery) areas.
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Fig. 5: Visual comparison between SOTA LLIE models and their enhanced ver-
sion by our method. Our integration provides accurate outcomes for both high-
frequency (clearer image detail restoration) and low-frequency (more accurate illu-
mination recovery) areas.
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