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Abstract. We address prevailing challenges of the brain-powered re-
search, departing from the observation that the literature hardly recover
accurate spatial information and require subject-specific models. To
address these challenges, we propose UMBRAE, a unified multimodal
decoding of brain signals. First, to extract instance-level conceptual and
spatial details from neural signals, we introduce an efficient universal brain
encoder for multimodal-brain alignment and recover object descriptions at
multiple levels of granularity from subsequent multimodal large language
model (MLLM). Second, we introduce a cross-subject training strategy
mapping subject-specific features to a common feature space. This allows
a model to be trained on multiple subjects without extra resources, even
yielding superior results compared to subject-specific models. Further, we
demonstrate this supports weakly-supervised adaptation to new subjects,
with only a fraction of the total training data. Experiments demonstrate
that UMBRAE not only achieves superior results in the newly introduced
tasks but also outperforms methods in well established tasks. To assess
our method, we construct and share with the community a comprehensive
brain understanding benchmark BrainHub. Our code and benchmark are
available at https://weihaox.github.io/UMBRAE.
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Fig. 1: Multimodal Decoding. By aligning brain features with MLLMs, UMBRAE
decodes multimodal cues from brain signals, which allows multiple downstream tasks.

1 Introduction

Typically, artificial intelligence research relies on intermediate modalities to inter-
pret human intentions, such as language [7,44], gaze [1,[50], facial expression [10],
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and action [16]. These modalities, however, are indirect channels of communi-
cation with humans and may be highly inaccurate for people with cognitive or
physical disabilities or even locked-in patients who are conscious but unable to
communicate through speech, limb, or facial movements |21]. In this context, the
potential for direct interpretation of neural signals stands out as a promising
prospect. The brain imaging literature has recently advanced, decoding neural
signals into various forms such as image [37], video [8], or text [43] to read
intentions [6,[22]. This deepens our understanding of the brain which neural
activity is not directly comprehensible to humans.

However, there are remaining challenges in brain-powered research. First,
decoding brain signals into a single modality results in a lossy representation
of the brain activities. On the one hand, text fails to preserve the peculiar
appearance of a texture or the spatial location of an object. On the other hand,
visual decoding [31L[37],/49] addresses the underdetermined problem of pixel-
wise reconstruction and lacks explicitation of the scene structure. Consider, for
instance, the scenario where a person uses thoughts to control a robotic arm
to retrieve an apple from a fruit bowl on a table. The first task is to recognize
the apple amidst similar visual concepts and then locate its exact position. But
current methods lack such fine-grained decoding capability to interpret object
categories, visual concepts, and their relationships. The second challenge pertains
to the subject-specific patterns of brain activities [2]. Therefore, current methods
typically train a model for each subject to cope with distinctive brain patterns.
Decoding brain signals across multiple subjects presents challenges due to the
structural and functional differences among individual brains.

Hence, we instead propose to decode a robust multimodal representation which
serves as proxy for downstream tasks, such as textual or visual decoding. Our
method allows brain decoding at different granularities, through prompting, which
unravels unprecedented brain-machine interface for locked-in patients [21] that
typically requires iterative feedback. To evaluate our novel tasks, we extend the
popular Natural Scenes Dataset (NSD) [2] with multimodal ground truth, which
constitutes a new brain understanding benchmark. Both code and benchmark
will be made publicly available. Our contributions summarize as follows:

— We introduce UMBRAE, aiming at unified multimodal brain decoding. Our
method relies on a universal brain encoder and a frozen multimodal large
language model seeking to align brain signals with images. We also propose
a cross-subject training strategy to learn a universal representation across
subjects, as opposed to the standard subject-specific training. Furthermore,
it allows the novel weakly-supervised adaptation, enabling the training of a
model for any arbitrary subject with minimal training data.

— We construct BrainHub, a multimodal brain understanding benchmark ex-
tending NSD |2]. The benchmark pairs fMRI with semantic concepts and
spatial localization in visual stimuli, offering tasks and metrics for evaluation.

— Our method achieves better or on par performance compared to state-of-
the-art methods on a variety of tasks including brain captioning, retrieval,
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and visual decoding. It is also the first one to enable direct brain grounding,
performing on par with natural baselines while being at least 10 times faster.

2 Related Works

Brain-Conditioned Generation. Generative vision models conditioned on
brain signals [25/311[37}40,49] have recently achieved unparalleled performance
in decoding visual stimuli from corresponding brain responses. Generally, these
methods map brain responses, captured in the form of functional magnetic res-
onance imaging (fMRI), to more common modalities suitable for feeding into
pretrained vision-language models [19,[36L|51] for subsequent image reconstruc-
tion. For example, Lin et al. |25] project fMRI data to a CLIP [35] common
space and reconstruct images through a finetuned StyleGAN2 [19]. Takagi and
Nishimoto [40] utilize the ridge regression to link fMRI signals with CLIP text
embeddings and the latent space of Stable Diffusion [36] (SD). Xia et al. [49]
extract semantics, depth, and color cues, and reconstruct images using a depth-
color-conditioned SD. Rather than relying solely on textual embeddings, several
methods [141/41] aim to obtain explicit descriptions for the visual stimuli. In con-
trast, our method decodes brain responses into various human-readable textual
and visual cues, which can also flexibly serve as inputs for generative models.

Multimodal Large Language Models. Expanding Large Language Models
(LLMS) to encompass other modalities, such as images, has garnered consider-
able attention recently. These models typically comprise three components: a
frozen image encoder, a trainable adapter, and a frozen or finetuned LLM. The
adapter’s role is to bridge the gap from image features to the LLM, which can
be implemented as a linear layer 7], a multilayer perceptron (MLP) [27], or a
lightweight transformer [17]. In addition to vision-focused LLMs, recent studies
aim to expand the boundaries of LLMs to include other modalities, making
it possible to unify multiple modalities within a single LLM. Brain signals, as
an emerging modality, have also recently been incorporated, for example in
OneLLM [14], but like training with other modalities, all these methods require
massive amounts of data and abundant computational resources. In contrast, we
demonstrate a simple yet effective way to align brain signals with images.

Multimodal-Brain Alignment. The prevailing practice for brain alignment
is to map the neural modality into a common latent space [141[31,/37,49], which
can be divided into two lines of works: discriminative alignment and generative
alignment. Considering the scarcity of data, methods in the first category aligns
the brain modality within a pretrained embedding space, such as CLIP [35],
through direct regression [3140l41], contrastive learning [49], or diffusion prior [37].
The second is garnering significant attention in the field of MLLMs. For instance,
OneLLM [14] adopts generative training to learn the alignment of multimodal
inputs, including brain signals, thereby connecting a universal encoder with an
LLM. However, such alignments between brain signals and images or text are
trained per subject, resulting in one model for each subject. In contrast, we align



4 W. Xia et al.

<subject_token> queries e

i

' 1

' 1

, \ | :

\ i

: ; s1 § Large | A flock of birds sitting |

! ' Tokenizer "~ §- Language | on top of branches. i

: s1 : : 3 Model !

; ; s2 Universal ! ;

; '

: s2 ! | Tokenizer | | Perceive ; :

i ‘ 555 Encoder alignment ' :

H s H - 1 i

[ e | & |

; ! Tokenizer Encoder V 5‘_‘{ s i

2 i

LSubject Set SQJ . ) reference i i
M- ’ Brain Encoder B (training only) inference

Fig. 2: Overview of UMBRAE. Our brain encoder includes subject-specific tokenizers
and a universal perceive encoder (Sec.[3.I)). Neural signals (fMRI) from multiple subjects
are mapped into a common feature space, enabling cross-subject training and weakly-
supervised adaptation (Sec. . The brain encoder learns to align neural signals with
image features (Sec. [3.3). During inference, the learned encoder interacts with MLLMs
and performs brain understanding tasks according to given prompts (Sec. [3.4)).

the brain modality with image features to recover both semantic and spatial cues
and achieve cross-subject multimodal-brain alignment to leverage user diversity.

3 UMBRAE

Our method is designed to address two shortcomings of the brain decoding
literature. First, instead of learning a unimodal decoding (text or image), we
learn a brain encoder that aligns brain features with pretrained multimodal
space thus benefiting from all the MLLMs downstream tasks for multimodal
decoding. Second, we observe that prior works train per-subject models owing to
neuroscience showing inter-subject variability of the brain activities [2]. Instead,
we intuit that inter-subject patterns present and learn a subject-unified represen-
tation by training jointly across-subjects. Beside better performance, this allows
adaptation to novel subjects with minimal training data.

The overview of our method, named UMBRAE, is in Fig. 2] The acronym
stands for unified multimodal brain decoding and signifies the process of unveiling
encoded information hidden within the ‘shadows’ of brain signals. We rely mainly
on a flexible brain encoder architecture (Sec. [3.1]) and a cross-subject training
strategy (Sec. to map brain responses from different subjects, each with
variable length, into a common feature space. In our experiments, we observe that
simply binding brain modality with image features enables the recovery of both
semantic and spatial cues (Sec. . We then conduct brain prompting interface
by inputting the standardized brain representations from diverse subjects into
MLLMs for downstream tasks (Sec. [3.4).

3.1 Architecture

Our brain encoder, based on a lightweight transformer architecture [17/46],
accommodates variable-length brain response inputs. This is important for cross-
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subject training as fMRI data are variable across subjects. Hence, our architecture
comprises subject-specific tokenizers which aim is to extract and map the subject-
specific characteristics, along with a universal perceive encoder designed to
capture subject-agnostic knowledge, later aligned with image features.

Subject Tokenizer. The subject-specific tokenizer projects the input brain
signal s € R%s selected from the subject set S, with arbitrary length Ly,
into a fixed-length sequence of brain tokens x € RE*P . Here, L is the sequence
length and D is the token dimension. Considering inter-subject variability in
brain patterns |2|, we design a separate tokenizer for each subject. Besides, we
introduce a learnable subject-specific token {sk}szl to switch between subjects,
where K is the total number of subjects and s, € RM*P contains M tokens of
dimension D. Then, we prepend subject-specific tokens s; to the predicted brain
tokens x and encode them with the following universal perceive encoder.

Universal Perceive Encoder. The universal perceive encoder seeks to project
all brain tokens x into a common space. We utilize here a transformer-based
architecture |17] which uses cross-attention modules to project the input tokens
into a latent bottleneck where the key K and value V are projections of the input
tokens, while @ is the projection of learnable latent queries.

The subject-specific tokenizers are expected to capture specific information
for each subject, including structural and functional differences among individual
brains; and the universal perceive encoder aims to extract common knowledge
across different subjects, encompassing categories, semantics, textures, and ge-
ometries of various objects and scenes. We now detail the training strategy for
cross-subject alignment.

3.2 Cross-Subject Alignment

For cross-subject alignment, it is crucial to ensure that examples from each subject
are uniformly sampled. This enables the model to avoid subject preference and
prevent catastrophic forgetting. Therefore, we adopt a sampling strategy to ensure
that 6 percent of samples in a batch are from the same subject. Considering Sp,
being the union over K subjects training data S = Uke{1,2,...,K} Sk, we select
data samples from a subject S with probability:

Skl
PE= ko (1)
2 n=1 ISl
where || - || denotes cardinality (i.e., the number of data samples). To construct a

batch with B number of data samples, we select a subject S, with probability pg
and conduct random sampling to yield § x B training samples. The remaining
(1—0) x B examples are uniformly sampled from other subjects, i.e., Sp\Sk. This
batch sampling strategy significantly benefits from user diversity as it allows the
model to focus primarily on intra-subject training while being exposed to different
subjects to improve inter-subject discrimination. We latter demonstrate that this
cross-subject alignment enhances performance without incurring extra training
costs compared to training with a single subject, at no additional training time.
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3.3 Multimodal Alignment

Previous multimodal methods learn to map multiple modalities into a common
latent space, typically through contrastive pretraining, using either images [13|
or text [14] as the binding modality. Instead, we align brain representations with
image features from a pretrained image encoder using element-wise reconstruction.

Given a brain response s € R'*% and the corresponding visual stimulus
v € RWXHXC the source brain encoder B and target visual image encoder V
encode brain signals and images into features denoted b and v, respectively. We
train the brain encoder B to minimize the distance between brain features and
image features, aiming for a close approximation B(b) ~ V(v) through:

Erec = EbNB,VNV[”V(U) - B(b))”%] . (2)

Our brain encoder B learns the alignment between source brain space B
and target image space V. Different from previous methods, we align the brain
signals with the intermediate image features from a pretrained image encoder,
thus achieving semantic and spatial alignment for the brain representation.
MLLMs [7,27] show such features provide sufficient visual cues for finetuning
LMDMs. Furthermore, aligning with intermediate image features allows direct
input of aligned brain representations into the MLLM.

3.4 Brain Prompting Interface

After alignment, brain features from the brain encoder B are fed into the MLLM’s
adapter, to retrieve the mapped visual embeddings <image>. These embeddings
are then concatenated with a user instruction prompt and inputted into the
finetuned LLM. Thus, our brain encoder inherits from multimodal capabilities of
the MLLM, allowing tasks to be used in a prompting fashion using template:

system message. user: <instruction> <image> assistant: <answer>

The tags <instruction> and <answer> serve as placeholders for human in-
structions and assistant answers. We use variable templates for different tasks.
Specifically, brain captioning uses ‘Describe this image <image> as simply
as possible.’; brain grounding, ‘Locate <expr> in <image> and provide
its coordinates, please.’, where <expr> is the expression. More templates
for different supported tasks can be found in the supplementary material.

Our primary focus in this study is on brain captioning and grounding, which
reflects the capabilities of brain signals in concept recognition and spatial local-
ization. They are often referred to as image captioning and visual grounding
in the multimodal learning literature. However, in this context, brain signals
are used as the input rather than images. Our method also supports other
instruction-following capabilities, such as conversation, detail description, and
complex reasoning. Our method is model-agnostic, allowing for the use of any
image encoders, LLMs, and MLLMs according to specific needs.
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4 Experiments

4.1 Implementation Details

Architecture. We use the pretrained CLIP ViT-L/14 |35] as the visual encoder
and Vicuna-7B/13B [9] as the LLM, consistent with the setup in Shikra |7] and
LLaVA [27]. The target image features are obtained from the second last layer of
the transformer encoder, denoted as T € R16X16x1024 which are then converted
to T € R?6%P for further processing by the adapter and LLM. The dimension
D is 4,096 for Vicuna-7B and 5,120 for Vicuna-13B. The learnable tokens for
each subject are of dimensions R?*1024,

Training Details. Our models are trained on a single A100 GPU for 240 epochs
with a global batch size of 256. It takes around 12 hours to complete. We use
AdamW [28] as the optimizer with 5, = 0.9, 82 = 0.95, and weight decay of 0.01.
For the learning rate scheduler, we use one-cycle [38] with an initial learning rate
of 3e-4. We set € = 0.5, meaning that in each batch of 256 samples, 128 come from
each of two subjects. The selection probabilities are identical for each subject,
as they contain the same number of training data. Following visual decoding
studies [37.,|40L|49], we use the standard train and test splits for the four subjects
(S1, S2, S5, ST). Specifically, each subject contains 24,980 training samples. For
testing, we report the average of the three same-image repetitions, totaling 982
samples per subject. Note that the above studies train a subject-specific model
for each of the four subjects, while we train one brain encoder for them all.

4.2 BrainHub

For evaluation, we construct a multimodal brain understanding benchmark,
BrainHub, to further analyze the information contained in brain signals. Specifi-
cally, we extend the NSD [2], a popular dataset comprising brain responses of
subjects viewing visual stimuli (images) sourced from Microsoft Common Objects
in Context (COCO) |26]. NSD provides (fMRI, image) pairs which is sufficient
for visual decoding. However, we aim to explore the ability to process brain
signals for identifying visual concepts, recognizing and localizing instances, as
well as extracting spatial relationships among multiple exemplars. Specifically,
we process the corresponding COCO images for each fMRI sample and extract
relevant labels for the following tasks and metrics:

— Brain Captioning aims at textually describing the primary content of a
given brain response. Ground truth captions are retrieved from COCO |[26],
and evaluation of inferred captions uses five standard metrics: BLEU-k [32],
METEOR [4], ROUGE-L |24], CIDEr [47], and SPICE 3], in addition to two
CLIP-based scores [35], namely CLIP-S and RefCLIP-S [15].

— Brain Grounding is the counterpart of visual grounding [7,[27] and seeks
to recover spatial locations from brain signals by inferring coordinates. Given
that identified classes might be named differently, or simply absent from
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Table 1: Brain Captioning. ‘UMBRAE-S1’ refers to our model trained with a single
subject (S1 here) only, while ‘UMBRAE’ denotes the model with cross-subject training.
‘Shikra-w/img’ refers to the image captioning result from Shikra |7] using the ground
truth image as input, serving as an approximate upper bound. The colors represent the
best , second-best , and third-best performance.

Method BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE CLIP-S RefCLIP-S
Shikra-w/img |7|  82.38 69.90 58.63 49.66 35.60 65.49  161.43 27.62 80.60 85.92
SDRecon (40| 36.21 17.11 7.72 3.43 10.03 25.13 13.83 5.02 61.07 66.36
OneLLM |[14] 47.04 26.97 15.49 9.51 13.55 35.05 22.99 6.26 54.80 61.28
UniBrain |29| - - - - 16.90 22.20 - - - -
BrainCap (12| 55.96 36.21 22.70 14.51 16.68 40.69 41.30 9.06 64.31 69.90
UMBRAE-S1 57.63 38.02 25.00 16.76 18.41 42.15 51.93  11.83 66.44 72.12
UMBRAE 59.44 40.48 27.66 19.03 19.45 43.71 61.06 12.79 67.78 73.54

ground truth labels, we evaluate bounding boxes through the task of re-
ferring expression comprehension [52], using accuracy and intersection over
union (IoU) as the evaluation metrics.

— Brain Retrieval is to search for pertinent results in response to a provided
query from a large database, often considered as a form of fine-grained,
instance-level classification. The evaluation metric used is accuracy.

— Visual Decoding refers to the capability to reconstruct the visual stimuli
associated with the fMRI data. We include it here for consistency with the
extensive literature on visual decoding [311/37].

4.3 Brain Captioning

Tab. [1| provides an evaluation of our brain captioning for subject 1 (S1), with
respect to SOTA baselines being SDRecon [41], BrainCap [12] and OneL.LM |[14].
From the latter table, UMBRAE outperforms all baselines by a significant
margin on all metrics. SDRecon poor performance results from its limited limited
vocabulary, and the use redundant or meaningless words in its captioning, such
as ‘person and person with person person wearing a tie shirt person person,
women’s clothing.”; which impacts the quality metrics negatively. BrainCap [12]
follows a similar pipeline but replaces the captioning model, which performs
better. OneLLM [14] learns a unified encoder for multimodal-text alignment
which improves the caption quality but deteriorates the CLIP similarity score,
as it merely aligns with texts. In contrast, the alignment with image features of
UMBRAE preserves more accurate semantic and spatial cues decoded from the
brain signals. Moreover, the use of LLMs helps generate sentences that are fluent,
complete, and rich in information. Interestingly, we note that the performance
of UMBRAE (trained on S1, S2, S5, S7) exceeds those when trained only on
data from subject 1 (UMBRAE-S1), demonstrating the ability to learn from
cross-subject patterns. As a approximate upper bound, we also report ‘Shikra-
w/img’ which, similar to us, utilizes Shikra |7] for captioning though here using
the ground truth image (visual stimuli). Results for other subjects are provided
in the supplementary material.
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FMRI input “Deseribe this <image> as simply as possible.” “Please interpret this image and give coordinates
Ix1,y1,x2,y21 for each object You mention.”
A person holding a tennis racket in his hands.
i ., The image portrays a
“What is he wearing?”
in a white shirt playing tennis

He is wearing a white shirt and dark shorts. in a grassy field. He appears
to be swinging a racket at a

ball.

“Describe this <image> as simply as possible.”

A man riding skis down the side of a snow It depicts a photo of person
covered slope. [0.300,0.238,0.738,0.808]
skiing down a snowy slope
“How Ls the weather in the imagez?.” [0.004,0.440,0.998,0.998]
The weather appears to be sunny and clear.
visual stimuli
(reference only) (a) Brain Captioning (b) Brain Grounding

Fig. 3: Example Results. Our method inherits the multimodal capability from
MLLMs and thus supports multiple brain captioning and grounding tasks. Different
task prompts for the same input brain signal result in unique outcomes.

4.4 Brain Grounding

Our method showcases grounding capabilities across various settings by adapting
to the corresponding instructions, which is illustrated in Fig. 3] For instance, we
conduct spotting captioning, a task aimed at generating a description of the image
along with bounding boxes for the mentioned items, using the instruction ‘Please
interpret this image and provide coordinates [x1,y1,x2,y2] for each object
you mention’. We can also perform referring expression comprehension using
‘could you find and tell me the coordinates of <expr>?’. For evaluation, we
detect queried objects and report the accuracy and IoU. The accuracy metric
‘acc@m’ measures the percentage of correctly labeled instances with an IoU
greater than the threshold m. Results of acc@0.5 are reported in Tab. [2] and
examples are depicted in Fig. [3| More results are in the supplementary material.
In Tab. [2f we again report an approximate upper bound ‘Shikra-w/img’ being
the visual grounding using the ground truth image. Given the absence of prior
brain grounding baselines, we construct natural baselines by combining Shikra
with the images from SOTA visual decoding methods , referred as
‘Shikra~-w/method’. We also report ‘Shikra-w/UMBRAE’ using our own visual
decoding later described in Sec. Being the first to attempt decoding spatial
information from brain signals, our method ‘UMBRAE’ performs roughly on
par with our constructed baselines while being at least x10 faster for grounding
noting that speed is a critical characteristics for brain controlled applications.
In addition to metrics for all classes denoted ‘All’, we inspire from neuroscience
exploring the salience-processing systems in the human brain for more
detailed evaluation. Specifically, we group the 80 classes of COCO according
to their prominence into: ‘Salient’, being the union of ‘Salient Creatures’ (people
and animals) and ‘Salient Objects’ (e.g., car, bed, table), and ‘Inconspicuous’
(e.g., backpack, knife, toothbrush). We report the detailed mapping in the
supplementary. It is interesting to note that UMBRAE is outperformed on
Salient Creatures but not on Salient Objects and Inconspicious elements. This
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Table 2: Brain Grounding. ‘UMBRAE-Sx’ refers to our model trained with a single
subject only, while ‘UMBRAE’ denotes the model with cross-subject training. ‘Shikra-
w/img’ refers to the visual grounding result from Shikra |7] using the ground truth
visual stimuli (images) as input. Similarly, ‘Shikra-w/method’ provides visual grounding
results using images produced by visual decoding methods [31}/37.|49]. We highlight
best , second-best, and third-best performance per subject.

Method Salient Salient Creatures | Salient Objects | Inconspicuous Time (s)
> TIoU |acc@0.5 ToU |acc@0.5 ToU |acc@0.5 ToU |acc@0.5 IoU
Shikra-w/img |7| | * | 5196 47.22| 62.92 56.44| 66.71  59.34 | 5879 53.27| 3829 35.71| 0.96

Shikra-w/MindEye |37] 15.34  18.65 | 23.83  26.96 ‘ 29.29 31.64 17.88  21.86 4.74 8.28 16.4
Shikra-w/DREAM [49] S1 16.21  18.65 | 26.51 27.35 34.43 33.85 17.88  20.28 3.35 7.78 10.5
Shikra-w/UMBRAE 16.83 18.69 | 27.10 27.55 4.00 7.64 16.4
UMBRAE-S1 13.72  17.56 | 21.52 25.14 4.00 8.08 0.92

34.14 33.65 19.44  20.92

26.00 29.06 16.64  20.88

Shikra-w /BrainDiffuser |31 17.49 19.34| 27.18 27.46 38.71 34.63 ‘ 14.62  19.66 | 5.39 9.20 16.4

UMBRAE 18.93 21.28 | 30.23 30.18 39.57 36.64 20.06  23.14 4.83 10.18 0.92
UMBRAE-S2 $2 15.21  18.68 | 23.60  26.59 ‘ 27.86 30.51 18.97  22.32 4.74 8.81 -
UMBRAE : 18.27 20.77 | 28.22 29.19 38.29 36.13 ‘ 1726 21.63 5.86 10.25 -
UMBRAE-S5 S5 14.72  18.45| 2293 26.34 ‘ 26.86 29.84 ‘ 18.66  22.52 4.46 8.60 -
UMBRAE ° 18.19 20.85| 28.74 30.02 36.71 36.25 20.06  23.23 5.02 9.41 -
UMBRAE-S7 S7 13.60 17.83 | 21.07 25.19 ‘ 24.57 28.90 ‘ 17.26  21.15 4.28 8.64 -
UMBRAE : 16.74 19.63 | 25.69 27.90 33.14 33.42 17.57  21.89 5.58 9.31 -

* The subjects test sets use the same reference images making ‘Shikra-w/img’ identical for all subjects.

suggests that visual decoding effectively reconstruct the salient creatures in the
image space, arguably because the subject focuses on the latter.

Experimentally, we also notice that images containing few salient objects
exhibit better performance compared to cluttered scenes, and easy background
also lead to better grounding. Conversely, we note that localization suffers
when images are filled with numerous inconspicuous objects. We argue that
inconspicuous objects in the image may not draw the subject’s attention, or that
relevant brain activities may not be effectively captured during experiments [2].
Our categorization and observation also align with the semantic selectivity
found in the higher visual cortex of the human brain [11,[18]/34], which contains
specialization of certain regions that respond selectively to specific semantic
categories of visual stimuli, such as faces, bodies, words, food, and places. The
results demonstrate that our method performs well in relevant cases.

4.5 Brain Retrieval

The retrieval evaluation demonstrates the amount of image-specific information
contained in the brain embedding. Following |37], we conduct three experiments:
forward retrieval, backward retrieval, and exemplar retrieval. The forward retrieval
computes accuracy of identifying the correct paired CLIP image embedding from
300 brain embeddings. Conversely, the backward retrieval finding the correct
brain embedding from 300 image embeddings. For a fair comparison, we modify
the output dimension and proceed to optimize the encoder and embedding using
an InfoNCE [30] loss. We follow the same procedure as in 25| for calculating
the retrieval metrics reported in Tab. 3| The exemplar retrieval aims to find
the exact original image within the 982 test images. Our method outperforms
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Table 3: Brain Retrieval. We report forward, backward, and exemplar retrieval
metrics |37], showing that our method significantly outperforms the baselines. We
also compare the floating-point operations (FLOPSs), multiply-accumulate operations
(MACs), and model parameters (Params). ‘UMBRAE’ denotes the model with cross-
subject training. Colors represent the best and second-best performance.

Method Forward Backward Exemplar FLOPs (G) MACs (G) Params (M)
MindReader |25 11.0% 49.0% \ \ \ \
BrainDiffuser [31]  21.1% 30.3% \ \ \ \
MindEye |37 93.6% 90.1% 93.2% 52.27 26.13 1,003.64
UMBRAE 94.2% 91.3% 93.8% 67.48 33.72 146.24

Table 4: Visual Decoding. Following the standard evaluation metrics [31], our
method performs on par or better than the SOTA methods [25}311[37},/40}/49]. Colors
represent the best, second-best, and third-best performance.

Method Low-Level High-Level

ctho PixCorr 1+ SSIM 1 AlexNet(2) 1 AlexNet(5) 1 | Inception T CLIP 1+ EffNet-B | SwAV |
MindReader |25] - - - - 78.2% -
SDRecon [40] - - 83.0% 83.0% 76.0% 77.0% - -
BrainDiffuser [31] 254 .356 94.2% 96.2% 87.2% 91.5% 175 423
MindEye (37 .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367
DREAM [49] 274 .328 93.9% 96.7% 93.4% 94.1% .645 418
UMBRAE | 283 .341 95.5% 97.0% | 9L.7% 93.5% .700 .393

current methods with accuracy percentages of 94.2%, 91.3%, and 93.8% on
forward, backward, and exemplar retrieval experiments, respectively. These
results demonstrate the ability to distinguish among misconstruable exemplars
and suggest the fine-grained, image-specific information retained in the predicted
brain embeddings.

4.6 Visual Decoding

Although this is not our primary purpose, to show the versatile capabilities of
our method, we conduct experiments on the visual decoding task and compare
with SOTAs [25],311[37,/40] using recognized metrics. While our method is not
specifically tailored for this task, the textual and visual outputs it generates can
be used as cues for fIMRI-to-image reconstruction. Our results in Tab. [f]is utilizing
the Versatile Diffusion [51] to reconstruct the image based on the decoded text
and CLIP image embedding obtained in Sec. [£.5] We employ the same evaluation
metrics as used in [31]. Specifically, PixCorr calculates the pixel-level correlation
between the ground-truth and reconstructed images. SSIM [48] measures the
textural and structural similarity instead of pixel-wise differences. Two-way
comparisons are conducted using the second and fifth layers of AlexNet [20],
the last pooling layer of Inceptionv3 [39], and the last layer of CLIP ViT-L/14
image encoder [35]. EffNet-B and SwAV are distances from EfficientNet [42]
and SwAV-ResNet50 [5]. The first four metrics focus on low-level characteristics,
whereas the remaining metrics are concerned with higher-level measurements.
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Fig. 4: Weakly-Supervised Subject Adaptation. This model for S7 is trained or
finetuned on a pretrained model (trained on S1, S2, and S5) using varying ratios (0.05,
0.1, 0.2, 0.3, 0.5, 0.8, 1.0) of training data. The model achieves comparable performance
using only 30% of the data and obtains better results when increasing the ratio of used
training samples to 50%, compared to the model trained on the full dataset of S7.

Results in Tab. [f] demonstrate that our method performs comparably or better
than state-of-the-art methods without any specific designs tailored for this task.
Moreover, with access to common conditions like texts, image embeddings, and
bounding boxes, we can leverage a wide range of pretrained image generation
models. These models encompass text-to-image (e.g., SD [36], SD-XL [33]),
layout-to-image [23], and multiple-condition [51]. Details can be found in the
supplementary material.

4.7 Weakly-Supervised Adaptation

Capturing brain signals, such as high-resolution fMRI, requires specialized equip-
ment and professional personnel, making it challenging to collect on a large
scale. A benefit of our cross-subjects training is to allow subject adaptation with
minimal training data. To evaluate this emerging property, we train our brain
encoder with subjects S1, S2, and S5 and seek to adapt the trained to a new
subject S7 using various amount of training data. For ablation, we explore two
settings where we train a new tokenizer for S7 with the universal perceive encoder
being either Frozen or Finetuned.

Plots in Fig. [ report ‘Frozen’ and ‘Finetuned’ adaptation with variable
amount of S7 data. Additionally, we report ‘UMBRAE’ when trained with all
training data of {S1, S2, S5, S7} as as well as ‘UMBRAE-ST’ trained on all S7 data
only. Notably, compared to ‘UMBRAE-ST’, our ‘Finetuned’ adaptation achieves
comparable performance using only 30% of the data and often better when
using more than 50%. Training only the tokenizer while keeping the pretrained
backbone encoder frozen generally resulted in lower performance compared to
fine-tuning the backbone together. This could be because the backbone encoder
did not adequately incorporate the subject discrepancy in S7. Please consult the
supplementary material for extra results and discussions on other subjects.
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Table 5: Ablation Study. ‘MLP’ refers to the MLP-based brain encoder [37|, while
‘Enc-S’ and ‘Enc-U’ represent our transformer-based encoders for single and multiple
subjects. ‘Dim.” means the output dimension of the brain encoder. The output needs
to be passed to the adapter for further processing if it is 1024; otherwise, it is directly
inputted into the LLM. The adapter has three training settings: ‘Pretrained’ means
freezing the weights, ‘Finetuned’ means finetuning based on pretrained weights, and
‘Joint’ means training with the encoder from scratch. ‘Loss Type’ refers to loss functions
(MSE, NCE, or both) applied to the outputs from the encoder (E.) or the adapter (A.).

Different Ablation Configurations Captioning Grounding
All Salient
Arch. Dim. Adapter Loss Type BLEU1 CIDEr SPICE CLIP-S RefCLIP-S | acc@0.5 IoU acc@0.5 IoU
MLP 1024 Pretrained MSE (E.) 55.04  46.24 10.80  64.75 70.59 13.44 1754 20.55 24.68
MLP 1024 Finetuned MSE (A.) 54.02  43.24 10.35  64.09 70.02 13.56  17.91  20.92  25.54
Enc-S 1024 Pretrained MSE (E.) 57.63  51.93 11.83  66.44 72.12 13.72 1756  21.52 25.14
Enc-S 4096 N/A MSE (A.) 52.06  36.40  9.06 62.30 68.27 13.31  17.04 20.85 24.78
Enc-S 1024 Joint MSE (A) 55.02  43.53  10.48  64.00 70.01 13.72  17.57 21.44 25.15
Enc-S 1024 Joint MSE (E.) NCE (A. 27.09 3.16 1.27 52.69 59.08 8.72 1140 13.78 16.26
Enc-S 1024 Joint MSE (A. ) NCE (A ) 51.69  34.09 8.71 62.27 68.05 13.68 18.07 21.07 25.45
Enc-U 1024 Pretrained MSb (E.) 59.44  61.06 12.79  67.78 73.54 18.93 21.28 30.23 30.18

5 Ablation Study

5.1 Architectural Improvements

MLP-based Encoder vs. Our Encoder. The MLP-based brain encoder is
adapted from [37] with slight adjustments to match the desired output dimension.
This deep MLP backbone amounts to 1,003.64 million parameters per subject. In
comparison, our model needs only 112.63 million parameters for a single subject
and 146.24 million for all four subjects. This translates to an 88.78% reduction
in parameters for a single subject and a 96.36% reduction for all four subjects,
respectively. Our single-subject encoder (denoted as UMBRAE-Sx) surpasses
the MLP-based architecture [37] in captioning (Tab. [l)), grounding (Tab. [2), and
retrieval (Tab. |3) tasks by significant margins. The universal encoder (denoted
as UMBRAE) achieves even greater performance improvements.

Single vs. Cross-Subject Design. The universal encoder differs from the
single-subject encoder solely in the addition of subject-specific tokenizers (Sec. ,
and its training only varies in the batch sampling strategy (Sec. , enabling the
training of diverse subjects within one model. Additionally, the resources required
are basically the same as those for training a single-subject model, eliminating
the necessity of extra training time or computational resources. This cross-subject
design benefits from user diversity, achieving superior performance compared to
focusing on a single subject. Results in Tabs. [1] to [3] show that the cross-subject
design surpasses its single-subject counterpart across almost metrics.

5.2 Training Strategies

Current vision-language models typically comprise three main components: an
image encoder, an adapter, and a large language model. Within this framework,
there are several potential ways for multimodal-brain alignment. For example,
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one could train the model to map brain responses to a pretrained semantic space
through contrastive learning, which has been a common practice in previous
methods. Alternatively, one could opt to fine-tune the adapter or train it jointly
with the brain encoder, applying separate losses to each component. In this
section, we delve into the motivation and rationale behind aligning with image
features from the image encoder using a reconstruction loss. Further, in the
supplementary we ablate our sampling strategy.

Pretrained wvs. Finetuned Adapter. The adapter serves as the bridge
connecting multimodal encoders [14}35] with the output space of MLLMs |7127./44].
As shown in Tab. [f] either finetuning the adapter or training it jointly with
the brain encoder results in decreased performance, likely due to catastrophic
forgetting that occurs when updating well-trained parameters that have been
learned from a significantly larger volume of data.

Image Feature vs. LLM Embedding. In addition to aligning with image
features, we also conduct experiments on learning to align brain responses with
the pretrained LLM used. Specifically, we explore three variants: (a) training the
brain encoder and finetuning the adapter with different losses, (b) training the
brain encoder and the adapter jointly, and (c) adjusting the output dimension of
the brain encoder to align directly with the language embedding. As illustrated
in Tab. [5], all attempts yield less desirable results compared to simply aligning
with image features. Finetuning the entire model with new and sufficient data
may indeed achieve better results, but acquiring such data can be challenging.
However, experiments suggest that aligning with image features yields the best
results when only image-brain pairs are available for training.

Reconstruction vs. Contrastive Learning. We further explore the effects of
different loss functions on the aforementioned three variants, specifically a pixel-
wise reconstruction loss (MSE) and a contrastive loss with MixCo augmentation
(NCE) [30]. We also test applying separate losses to outcomes from the encoder
and the adapter when trained jointly. The findings show that applying an MSE
loss to the image feature while keeping the adapter unchanged leads to the
most favorable performance in both concept recognition and object localization.
Conversely, employing contrastive learning significantly diminishes performance.

6 Conclusion

In this work, we propose a method that decodes multimodal explanations from
brain signals. Specifically, we introduce a universal brain encoder for multimodal
brain alignment, which enables the recovery of conceptual and spatial details using
multimodal large language models. To overcome unique brain patterns among
different individuals, we introduce a novel cross-subject training strategy. This
enables brain signals from multiple subjects to be trained within the same model
and allows weakly-supervised subject adaptation, facilitating the training of a
model for a new subject in a data-efficient manner. For evaluation, we construct
BrainHub, a brain understanding benchmark, to facilitate future research.
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