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Section 1 provides additional details for DUET as it is the main comparison
with NavGPT-2. The prompt for GPT-4V used in the data generation pipeline
and additional experiment results are described in Section 2 and Section 3.
Section 4 illustrates the limitation of NavGPT-2 with the discussion of future
directions. Finally, Section 5 discusses the broader impacts of our work.

1 DUET Revisit

NavGPT-2 exploit the similar design adapted from Dual-scale Graph Transformer
(DUET) [1] as the downstream navigation policy. It includes a text encoder to
encode instructions, a global and a local branch to enable coarse-scale and
fine-scale cross-modal reasoning.

1.1 Text Embedding and Visual Embedding

For the text encoder, DUET utilizes a 12-layer transformer initialized from
LXMERT [3]. For visual embedding, the visual observation at each node is 36 view
images from 12 horizontal directions times 3 vertical directions. To distinguish
these nodes, a directional embedding Eang of the absolute angle for each view
is added to the visual feature Zv extracted by the vision encoder. Moreover,
since DUET inputs all 36 view images to construct the spatial observation for
the model, the navigable adjacent nodes are only observed at a few view images,
denoted as navigable views. A navigable embedding Enav is added to the visual
features. The final visual embedding is sent to a 2 layers transformer to encode
the spatial relations between views and obtain the panoramic view embeddings:

Hpano = SelfAttn (Zv + Eang + Enav) . (1)

On the contrary, NavGPT-2 only inputs the navigable views, thus the direc-
tional embedding Eang and the navigable embedding Enav are removed in the
downstream policy, instead we directly add the step embedding and location
embedding before sending to the 2 layers transformer.
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1.2 DUET Local Branch

NavGPT-2 adopt the same navigation policy network architecture as the DUET
global branch, discussed in §3.25, so we omit the explanation of the global branch
in DUET. In this section, we introduce the local branch of DUET. This branch
performs action prediction based on the current node’s instruction and egocentric
observation. No graph information is provided besides the local observation.

Local Visual Embedding Two types of location embedding are added to the
panoramic view embedding Hpano. The first type is the relative location of the
current node to the starting node, to encode the long distance direction between
nodes. The second type is each adjacent view to the current node, to encode
egocentric directions such as "turn right".

Local Cross-model Encoding The local branch utilizes a standard cross-modal
transformer of 4 layers to model vision and language relations. During action
prediction, a mask is set to the unnavigable views, and the action logits are only
calculated for the navigable views at the current node.

1.3 Dynamic Fusion

The final action prediction of DUET is performed by dynamically fusing the
action predicted by local and global branches. The local branch predicts actions
within the adjacent nodes Va

t . It is incongruent with the action space used by the
global branch, which chooses the next action from all nodes Vt in the constructed
graph at step t. To reconcile this discrepancy, the local action scores sli are
transformed encompassing options such as “stop” and Vt, into a representation
suitable for the global action space by summing up scores of visited nodes in Va

t

as a backtrack score sb:

sl
′

i =

{
sb, if Vi ∈ Vt − Va

t ,

sl
′

i , otherwise.
(2)

This adjustment facilitates navigation toward other unexplored nodes not
directly linked to the current node, necessitating the agent to retrace its steps
through neighboring nodes that have previously been visited. The final navigation
score is given by:

si = σts
g
i + (1− σt)s

l′

i , (3)
where sgi is the logits from global branch, σt is a learnable scalar for fusion.

2 GPT-4V Prompt

The prompt used for GPT-4V to generate navigation reasoning, discussed in
section §3.3 is shown in Figure 1.
5 Refer to section 3.2 in the main paper.
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{image}
As an AI navigating an indoor environment, you’re given the task {instruction}.
You find yourself at a particular juncture within the execution of this command.
Based on your current observation of the surroundings, including obstacles,
pathways, and relevant landmarks, determine the next step toward completing
this task. Your response should briefly describe your immediate environment
and specify the direction or action you will take to proceed. Summarize this
in a concise paragraph, integrating both your observation and decision-making
process.

Fig. 1: Navigation reasoning generation prompt for GPT-4V.

Table 1: Comparison of single-run performance on R2R dataset.

Methods # Val Seen Val Unseen

TL NE↓ OSR↑ SR↑ SPL↑ TL NE↓ OSR↑ SR↑ SPL↑

w/o Visual-Language-Action Pretrain:
DUET 1 12.38 3.62 73 66 60 13.20 4.07 72 64 55

w/o local branch 2 11.43 3.50 74 67 62 12.08 4.08 71 62 54
w/ EVA-CLIP-g 3 12.64 3.73 73 66 60 14.27 4.07 72 63 54

NavGPT-2FlanT5-XL (ours, 1.5B) 4 13.02 3.34 74 69 62 13.68 3.37 74 68 56
NavGPT-2FlanT5-XXL (ours, 5B) 5 13.08 2.98 79 74 65 13.25 3.18 80 71 60

3 Additional Rerults

In this section, we conduct additional experiments to illustrate the choice of
navigation policy network for NavGPT-2 and the effectiveness of LLM features.
To align the same training schema of the navigation policy, we conduct the
experiments for DUET initiating it from LXMERT without VLN specialized
pretraining.

3.1 Effect of Vision Encoder

Because NavGPT-2 exploits a stronger vision encoder [2], we conduct an ablation
study on the original DUET to investigate the performance gain brought by the
vision encoder. As shown in Table 1, after switching the visual representation
to the stronger vision feature same as NavGPT-2, little performance gain is
observed for the DUET global branch (Model # 3 compared to Model # 2). We
hypothesize this is due to the global branch for DUET performing vision-language
alignment on a coarse scale, while the fine-grained alignment is performed in
the local branch. Therefore, the main performance gain in NavGPT-2 is not
contributed by the stronger vision encoder but the better representation from
LLM hidden.
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Fig. 2: Qualitive Results for NavGPT-2. It can correctly recognize object and scenes
and their corresponding locations, grouding the observation to the given instruction
and plan the next step. However, hallucination of the non-existent object or misjudged
the direction is also observed.
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3.2 Effect of VLN Pretrain

We consider the same training scale and the same training schema of DUET as
NavGPT-2, without pertaining auxiliary VLN tasks and directly finetuning on
the VLN dataset. Under the same training schema and scale of data, NavGPT-2
performs significantly better than the original DUET, shown in Table 1. This
showcases the superiors of LLM features that enable the learning of cross-modality
alignment in the downstream task when the visual feature is projected to the
LLM’s language space by the Q-former. Without VLN tailored pertaining, the
performance of DUET significantly drops. We leave adding the pertaining process
for the downstream navigation policy in future work.

3.3 Additional Qualitive Results

In this section, we present extra qualitative results in addition to §4.3. In Figure 2,
we present the navigational reasoning produced by NavGPT-2 during navigation.
NavGPT-2 is capable of forming a detailed understanding of its surroundings with
objects and scenes and their corresponding orientations. Furthermore, it adeptly
reasons about the progress of navigation and correlates it with specific portions
of the instruction. Impressively, it is also able to predict expected observations,
such as "appears to lead to a bedroom," based on the current visual inputs. This
demonstrates NavGPT-2’s ability not only to navigate but also to anticipate and
interpret complex environments intelligently.

4 Limitations and Future Work

Although NavGPT-2 could generate navigation reasoning to some extent, it is
hard to evaluate the effectiveness of these reasonings, since it is set as a single-step
reasoning based on local observation and does not model the navigation history
in the VLM. Instead, such history information is encoded in the downstream
navigation policy. As a result, the consistency between navigation reasonings
is underexplored. Moreover, the reasoning and action predicted by downstream
navigation policy are not strictly synchronized in NavGPT-2, such synchronization
could be done either explicitly by tuning LLM with the same supervision signal
of action or by collaborating with the reasoning generation loss during fine-tuning
the downstream policy network, we leave the synchronization to future work.
Finally, the communicative capability of NavGPT-2 is not evaluated in this work,
we suggest investigating the communicative ability of LM-based VLN agents and
the synchronization between their reasoning and actions as a future direction.

5 Broader Effect

Our research endeavors to leverage Large Vision-Language Models (VLM) to de-
velop VLN agents, while preserving the linguistic prowess of VLMs for explaining
action predictions in natural language. We posit that the inherent communicative
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capability, commonsense knowledge, and broad linguistic comprehension of VLM
constitute the cornerstone for creating instruction-following navigation agents
with generalizability. NavGPT-2 illuminates the reasonings of VLM throughout
the navigation process explicitly and interpretably. Due to safety and ethical
considerations, we currently conduct all experiments using the open-source Vision-
and-Language Navigation dataset within a simulated environment, which ensures
controlled agent behavior. Concurrently, we acknowledge that the potential prac-
tical application of this technology warrants further exploration, particularly in
terms of action and reasoning synchronization, which remains an underexplored
area. Notably, we observe the propensity of VLMs to hallucinate non-existent
scenes or objects and fail to identify object directions, shown in Figure 2, which is
also a common issue within VLM research. Future investigations are essential to
address how to harmonize VLM action and reasoning and to enhance the agent’s
ability to self-explain in a manner intelligible to humans, a critical consideration
for ensuring safety in real-world applications.
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