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1 Implementation Details

KITTI-HV. KITTI-HV has the same size as the original KITTI. We can simply
construct KITTI-HV with a few lines of code as in Algorithm [I] We set the inter-
vals non-linearly ([2,3,5,10]) instead of the traditional linear setting (|2,4,6,8]).
Thus, we have denser tests in point cloud variations close to smooth scenarios
(comparing [2,3,5] to [2,4,6]) for a fairer comparison with the existing methods.

Algorithm 1 KITTI-HV Pseudocode, Python-like

# HV-tracklets: tracklets in KITTI-HV
for tracklet in KITTI: # read tracklets in KITTI
for i in range(min(len(tracklet),interval)):
# starting at different frame
temp_tracklet = tracklet[i::intervall
# sampling at frame intervals
HV-tracklets.append(temp_tracklet)
return HV-tracklets

Search areas. Former trackers [10,/141|16}/17] determine the search area by en-
larging the target bounding box in wide and length at the last frame by 2 meters
offset. We follow their strategy to generate the search area with enlargement off-
sets on KITTI [3] as shown in Tab. [I} We first statistically analyze the moving
distance in the xy-plane of ‘Car’ on KITTI with different frame intervals as
shown in Tab. 2| We evaluate the performance of BAT [16] and M2-Track [17]
with different bounding box enlargement offsets in 5 frame intervals on KITTI-
HV. The enlargement offsets are generated by slightly increasing the moving
distances under different quantiles in Tab. 2l As illustrated in Tab. [3} BAT and
M2-Track reach the peak at the enlargement offset of 4 meters and 6 meters,
respectively. Thus, we choose the moving distances between quantiles of 50%
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and 75% as the enlargement offset for all the frame intervals and categories.
Following [10,/141|16,/17|, we randomly sample 1024 points in the search area as
the input of the backbone.

Observation angle. Instead of the original radian € R', we use the sine and
cosine values € R? to represent the observation angle.

Ablation details. We construct the vanilla cross-attention and self-attention in
the ablation experiment as shown in Fig. [1] (a) and Fig. [2| (a). Compared to the
BEA, vanilla cross-attention removes the expansion branch and assigns H heads
for the base branch. For the vanilla self-attention, we directly project X;_; to K
and V.

Table 1: Bounding box enlargement offsets (meter) in different frame intervals and
categories on KITTI for generating search areas.

Frame Intcrvals‘Car Pedestrian Van Cyclist

1 2 2 2 2
2 2 2 3 2
3 3 2 3 2
5 4 2 5 3
10 7 3 8 4

Table 2: Quantiles of Car’s moving distance in the xy-plane with different frame
intervals on the training set of KITTI.

Quantile| 1 2 3 5 10

25% |0.32 0.52 0.57 0.44 0.00
50% |0.79 1.55 2.28 3.61 5.51
75% |1.07 2.11 3.12 5.07 9.28
95% |2.26 4.38 6.06 9.17 15.38
99.73% | 3.46 6.90 10.30 17.07 32.88
100% |14.56 15.48 16.49 19.21 36.56

Average | 0.81 1.57 2.28 3.53 5.78

Table 3: Performance of BAT and M2-Track in different search area sizes on ‘Car’ of
KITTI-HV with 5 frame intervals. We determine the search area size by enlarging the
object bounding box in width and length with an offset.

Offset (m) | 20 | 18 | 10 | 6 \ 4

Method ‘Succ. Prec. ‘Succ. Prcc.‘Succ. Prco‘ Succ. Prec. ‘ Succ. Prec.

BAT |16] ‘16.62 16.88‘17.02 17.18|25.27 27.70‘ 35.05 40.25 ‘44.13 51.11

M2-Track [17]|16.53 14.59|21.69 22.51|43.12 50.80|52.64 61.58| 50.87 58.56
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(CPA).

2 More Comparisons

Comparison with latest SOTAs. In Tab. ] we compare HVTrack with the
latest SOTAs on KITTT. There still exists a performance gap compared to them.
M3SOT extends MBPTrack via the SpaceFormer and achieves better
performance. Thus, we report the stronger tracker M3SOT in high temporal
variation scenarios in Tab. [3] to validate the effectiveness of HVTrack. HVTrack
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Table 4: Comparison with the most recent SOTAs on KITTI.

Category ‘ Car ‘Pedestrian‘ Van ‘ Cyclist ‘ Mean |Params (MB)
MBPTrack [15]| 73.4/84.8 |68.6,/93.9|61.3,/72.7|76.7/94.3| 70.3/87.9 7.39
M3SOT [8] " |75.9/87.4| 66.6/92.5 |59.4/74.7| 70.3/93.4 |70.3/88.6|  16.43

HVTrack | 68.2/79.2 | 64.6/90.6 |54.8/63.8| 72.4/93.7| 65.5/83.1|  5.60

still yields the best results at various intervals, with a notable improvement of
17.2%/21.3% at 5 intervals.

Efficiency. We compare HVTrack with SOTA methods in efficiency on KITTI-
HV with 5 frame intervals in Tab. [6] Due to the increased search area, CXTrack
shows a 26.5% speed decline compared to the 34 FPS reported in its paper.
Backbone flexibility. As illustrated in Tab. [7] we conduct analysis experiments
using different backbones in HVTrack on KITTI-HV with 5 frame intervals.
PointNet+-+ [9] is widely used in former trackers [2,/4-7}|10}/11}/13}|16H{18], and
GCDNN [12] is employed in [14]. Our HVTrack shows robust performance with
different backbones, demonstrating the strong flexibility of our approach. In
particular, HVTrack achieves an improvement with 0.7%1/1.5%7 on the average
in success/precision, confirming the great potential for further improvement.
One pre-trained model. We report the results of KITTI pre-trained models
on KITTI-HV in Tab. [§] (top). Our memory module requires rich object pose
samples to fit object motion. Thus HVTrack suffers a performance degrada-
tion on ‘Car’. However, the performance improvement on ‘Pedestrian’ proves
the effectiveness of HVTrack when the object pose distribution changes only
slightly. To fully demonstrate the generalizability of HVTrack, we train mod-
els in [1,2,3,5,10] intervals together, and test them under different intervals in
Tab. [§] (bottom). In contrast to other methods whose performance decreases as
the interval grows, HVTrack maintains consistent performance across [1,2,3,5]
intervals. This demonstrates the robustness of our method in different temporal
variation scenarios.

Waymo-HYV. Following the construction of KITTI-HV, we build Waymo-HV
for a more comprehensive comparison as illustrated in Tab. [0} Our HVTrack
consistently outperforms the state-of-the-art methods [14}/16] across all frame
intervals.

NuScenes. Following the setting in M2-Track [17], we evaluate our HVTrack in 4
categories (‘Car’, ‘“Truck’, ‘Trailer’ and ‘Bus’) of the famous nuScenes [1]| dataset.
The results of SC3D [4], P2B [10|, and BAT |16] on NuScenes are provided by
M2-Track. CXTrack [14] follows the dataset setting in STNet [7], which is quite
different from M2-Track. We train CXTrack on NuScenes using its official code
and report the results. As shown in Tab. our method achieves the best
performance in success (1.9%71) and ranks second in precision (0.5%]). HVTrack
surpasses M2-Track in ‘Pedestrian’ with a great improvement in success (9.2%7)
and precision (6.6%71), revealing our excellent ability to handle complex cases.
‘Pedestrian’ is usually considered to have the largest point cloud variations and
proportion of noise, due to the small object sizes and the diversity of body
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Table 5: Comparison with the most recent SOTA on KITTI-HV.

Interval‘ Method ‘ Car ‘Pedestrian‘ Van ‘ Cyclist ‘ Mean
|M3SOT |(8]| 59.0/67.9 |61.7/86.3|55.2/68.7| 55.1/86.3 | 59.8/76.3
2 | HVTrack |67.1/77.5] 60.0/84.0 | 50.6/61.7 |73.9/93.6|62.7/79.3

|M3SOT (8]| 46.9/52.6 | 50.1/74.0 |43.3/53.7| 32.4/48.1 | 47.7/61.9
3 | HVTrack |66.8/76.5/51.1/71.9 | 38.7/46.9 |66.5/89.7|57.5/72.2

|M3SOT [8]] 30.5/34.5 | 31.0/44.0 | 18.3/21.0 | 21.6/25.9 | 29.4/37.2
5 | HVTrack |60.3/68.9]35.1/52.1|28.7/32.4|58.2/71.7|46.6/58.5

[M3SOT |[8]] 26.1/26.6 | 16.2/18.8 | 17.6/17.1 | 27.5/26.2 | 21.1/22.4
10 | HVTrack |49.4/54.7|22.5/29.1|22.2/23.4/39.5/45.4|35.1/40.6

Table 6: Comparison in efficiency with SOTA.

Method ‘MQ—Track [17] CXTrack |14] M3SOT [8] HVTrack

FPS 42 25 14 31
Params (MB) 8.54 18.27 16.43 5.60

motion. Notably, we achieve 9.1%7/10.4%1 improvement in success/precision
on average over CXTrack, which has the same backbone and RPN. This gap
clearly demonstrates the robustness of our method in regular tracking. However,
the performance of HVTrack still drops when dealing with large objects.
NuScenes-HV. As shown in Tab. we compare HVTrack with the state-of-
the-art methods on each category of the nuScenes-HV dataset. We construct the
high-variation dataset nuScenes-HV for training and testing by setting 2 frame
intervals for sampling in the NuScenes dataset. We achieve the best performance
in both success (52.4%, 3.8%7) and precision (62.6%, 2.8%7) on average. We
surpass SOTA trackers in the categories with a large number of samples (‘Car’,
‘Pedestrian’, and ‘Truck’). However, our performance drops in ‘Trailer’ and ‘Bus’,
which have a small number of samples. We believe the length of tracklets is
another factor that affects the performance of HVTrack on ‘Trailer’ and ‘Bus’.
With 2 frame intervals, the average tracklet length of the ‘Trailer’ is only 11.06
frames on nuScenes-HV, while it is 26.59 frames for the ‘Van’ on KITTI-HV.
With such a short average tracklet length, HVTrack is unable to obtain enough
historical information for training and testing, leading to a performance drop.
Further, a too short tracklet length is not in line with real-world scenarios.
Therefore, we only construct nuScenes-HV with 2 frame intervals.

3 Visualization Results

As illustrated in Fig.[3|and Fig. [4] we visualize our experiment results on KITTI-
HV with 5 frame intervals in dense and sparse cases. The ‘Car’, ‘Pedestrian’,



6 Q. Wu et al.

Table 7: Analysis experiments of using different backbones in HVTrack on KITTI-HV
with 5 frame intervals.

Category Car Pestrian Van Cyeclist Mean
Frame Number | 6424 6088 1248 308 14068

DGCNN (12| [60.3/68.9 35.1/52.1 28.7/32.4 58.2/71.7 46.6/58.5
PointNet+-+ |9]| 58.6/66.7 39.0/58.3 27.5/30.7 57.4/70.9 47.3/60.0

Table 8: Comparison of different training settings on KITTI-HV.

Training Testing interval
interval(s)| Category | Method 1 2 3 5 10

M2-Track| 65.5/80.8 62.8,/74.4 52.5/61.0 36.1/39.8 23.5,/24.5
Car | CXTrack [69.1/81.6 59.4/69.4 51.5/58.4 33.6/36.0 22.5/21.3
HVTrack | 68.2/79.2 59.8/68.2 45.8/51.1 21.2/20.8 18.3/20.2

1 M2-Track| 61.5/88.2 58.7/86.5 50.8/74.4 30.7/42.3 16.3/19.5
CXTrack |67.0/91.5 64.9/88.0 56.4/78.7 36.2/48.0 18.3/21.2
HVTrack| 64.6/90.6 63.6/87.8 60.5/82.6 42.7/57.6 16.9/19.6

Pedestrian

M2-Track| 57.8/74.2 60.3/73.7 57.1/66.7 59.9/68.8 37.5/40.0
Car CXTrack | 57.8/70.2 51.5/60.3 52.2/58.3 34.9/38.3 25.1/24.6
HVTrack [65.6/76.5 60.3/69.8 64.6/73.4 63.9/71.8 40.9/44.3

1,2,3,5,10 M2-Track| 53.0/79.2 49.3/70.6 41.9/60.9 37.0/54.7 24.0/30.9
OXTrack [60.3/84.4 60.1/84.5 52.8/73.7 33.2/44.1 17.2/19.6
HVTrack| 56.4/78.9 58.5/81.2 58.2/79.7 56.3/77.2 30.6/39.1

Pedestrian

and ‘Cyclist’ in Fig. [3] demonstrate the excellent performance of HVTrack in
dealing with the distraction of similar objects and massive noise. Moreover, the
success of the sparse cases in Fig. [d] confirms the effective utilization of historical
information in our method.
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Table 9: Comparison of HVTrack with the state-of-the-art methods on each category
of the Waymo-HV dataset.

Frame Vehicle (185632) Pedestrian (241168)
Interval Method Easy Medium Hard Mean Easy Medium Hard Mean |Mean (426800)
BAT |16] 61.0/68.3 | 53.3/60.9 | 48.9/57.8 | 54.7/62.7 | 19.3/32.6 | 17.8/29.8 | 17.2/28.3 | 18.2/30.3 34.1/44.4
2 CXTrack [14] | 63.9/71.1 | 54.2/62.7 | 52.1/63.7 | 57.1/66.1 |35.4/55.3|29.7/47.9| 26.3/44.4 |30.7/49.4| 42.2/56.7

[HVTrack(Ours)|66.2/75.2|57.0/66.0|55.3/67.1|59.8/69.7| 34.2/53.5 | 28.7/47.9|26.7/45.2| 30.0/49.1 | 43.0/58.1

47.1/52.3
59.8/64.7

BAT [16] 39.8/45.2 | 35.1/40.6 | 41.0/46.4 | 18.2/27.4 | 15.4/22.8 | 13.7/19.8 | 15.9/23.5 | 26.8/33.5
4 | OXTrack[14] 36.5/40.7 | 26.7/30.8 | 42.0/46.5 |28.2/41.1|21.9/33.1|16.6/25.3(22.5/33.5| 31.0/39.2

[HVTrack(Ours)|64.3/71.3|54.3/62.2|48.5/57.2|56.2/64.0| 25.7/38.2 | 18.6/28.2 | 14.6/22.6 | 19.9/30.0 | 35.7/44.8

BAT |16] ‘ 47.1/52.4 ‘ 34.4/38.2 ‘ 27.9/31.3 ‘ 37.1/41.3 ‘ 13.6/18.5

‘ 12.:1/16.8‘ 10.8/13.8 ‘ 12.3/16.5 ‘ 23.1/27.3
5

CXTrack |14] | 45.9/50.5 | 27.1/29.2 | 19.5/21.1 | 31.7/34.6 | 23.0/32.1|18.0/25.9|13.7/19.5|18.5/26.1| 24.2/29.8
[HVTrack(Ours)|47.1/52.3]|40.1/45.4|34.3/39.4/40.9/46.1| 22.4/32.2| 17.5/25.5 | 13.5/19.3 | 18.0/26.0 | 28.0/34.7
BAT 31.7/32.3 | 23.5/23.7 | 20.9/21.3 | 25.7/26.1 | 10.8/11.9 | 10.3/11.0 | 10.3/10.4 | 10.5/11.1 | 17.1/17.6

10 CXTrack | 25.1/23.7|16.3/14.4| 14.4/13.1 | 19.0/17.4 | 14.1/17.2 | 12.3/14.2 | 11.1/11.8 | 12.6/14.5 | 15.4/15.8

[HVTrack(Ours)|36.8/39.6/26.9/28.6/22.0/23.2|29.1/31.0/16.4/20.9]14.0/17.3|12.6/14.8/14.4/17.8| 20.8/23.5

Table 10: Comparison of HVTrack with the state-of-the-art methods on
each category of the NuScenes dataset.

Category Car Pedestrian| Truck Trailer Bus Mean
Frame Number| 64159 33227 13587 3352 2953 117278

SC3D [4] | 22.3/21.9 | 11.3/12.7 | 30.7/27.7 | 35.3/28.1| 29.4/24.1 | 20.7/20.2
P2B [10| | 38.8/43.2 | 28.4/52.2 | 43.0/41.6 | 49.0/40.1 | 33.0/27.4 | 36.5/45.1
BAT [16] |40.7/44.3 | 28.8/53.3 | 45.3/42.6 | 52.6/44.9 | 35.4/28.0 | 38.1/45.7
M2-Track |17] [55.9/65.1| 32.1/60.9 [57.4/59.5|57.6/58.3|51.4/51.4|49.2/62.7
CXTrack [14] | 44.6/50.5 | 31.5/55.8 | 51.3/50.7 |59.7/53.6| 42.6/37.3 | 42.0/51.8

HVTrack |55.9/62.9|41.3/67.6| 55.6/55.2 | 52.0/40.2 | 36.3/41.6 [51.1/62.2

Table 11: Comparison of HVTrack with the state-of-the-art methods on each
category of the nuScenes-HV dataset. We construct the high-variation dataset
nuScenes-HV for training and testing by setting 2 frame intervals for sampling in the
NuScenes dataset.

Category
Frame Number

Car Pedestrian| Truck Trailer Bus Mean
64159 33227 13587 3352 2953 117278

P2B [10] | 47.5/51.3 | 23.1/35.0 |52.9/51.5| 63.6/56.2 | 40.2/37.2 | 41.5/46.5
BAT [16] |44.7/48.0 | 23.1/33.2 |52.3/50.9 | 63.7/57.7 | 41.6/38.2 | 39.9/44.2
M2-Track |17] | 51.7/60.1 | 37.8/60.6 |55.4/57.8|65.8,/64.8|51.5/49.2 48.6/59.8
CXTrack |14] | 50.7/57.6 | 27.0/43.8 |54.3/55.0| 62.2/56.5 | 43.4/40.5 | 44.5/52.9

HVTrack |57.0/63.4|43.1/68.2|56.0/56.1| 51.7/43.1 | 31.2/35.2 |52.4/62.6
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Fig. 3: Visualization results in dense cases on KITTI-HV with 5 frame intervals.
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