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Abstract. The majority of few-shot object detection methods use a
shared feature map for both classification and localization, despite the
conflicting requirements of these two tasks. Localization needs scale and
positional sensitive features, whereas classification requires features that
are robust to scale and positional variations. Although few methods have
recognized this challenge and attempted to address it, they may not
provide a comprehensive resolution to the issue. To overcome the con-
tradictory preferences between classification and localization in few-shot
object detection, an adaptive multi-task learning method, featuring a
novel precision-driven gradient balancer, is proposed. This balancer ef-
fectively mitigates the conflicts by dynamically adjusting the backward
gradient ratios for both tasks. Furthermore, a knowledge distillation and
classification refinement scheme based on CLIP is introduced, aiming to
enhance individual tasks by leveraging the capabilities of large vision-
language models. Experimental results of the proposed method consis-
tently show improvements over strong few-shot detection baselines on
benchmark datasets. https://github.com/RY-Paper/MTL-FSOD

Keywords: Few-shot Object Detection · Multi-task Learning

1 Introduction

Rapid advancement of deep learning techniques has led to significant improve-
ments in object detection [60]. However, it requires great effort to prepare densely
annotated data for learning, such as refined object bounding boxes and their cor-
responding classification labels. In some data-scarce scenarios such as medical
landmark detection [33] and animal species recognition [44], it is very difficult
to collect adequate data. In response to these problems, few-shot object detec-
tion (FSOD) [1, 13, 15] has attracted growing research interest in recent years.
FSOD aims to detect novel objects by generalizing knowledge learned from base
(seen) classes to novel (unseen) classes, with sufficient training samples in the
former and limited training samples in the latter. Several popular object de-
tection frameworks, including Faster R-CNN [36], YOLO [35], and DETR [53],

* These authors contributed equally to this work
† This work was fully conducted during the author’s PhD studies at NTU.

https://orcid.org/0000-0003-4365-1439
https://orcid.org/0000-0003-2007-9716
https://orcid.org/0000-0002-9728-9511
https://github.com/RY-Paper/MTL-FSOD


2 Y.Ren et al.

(a) Generic Detection Example (b) Few-shot Detection Example

Fig. 1: An FSOD method [32] is trained under two distinct conditions: full-training
(generic) and 10-shots (few-shot) on COCO-novel dataset. (a-b) Generic detection
with abundant training data leads to balanced classification and regression IoU scores,
while the few-shot setting shows higher score misalignments. (c-d) The gap between
classification scores and regression IoU scores widens notably in few-shot scenarios
compared to generic object detection. Metric details can be found in [46].

have been combined with meta-learning or transfer-learning techniques to build
FSOD models, as demonstrated in previous studies such as [1, 10, 15, 41, 49].
While these methods have achieved many promising results, object detection
under few-shot settings remains challenging due to the difficulty in preventing
over-fitting and improving the generalization capability of the model.

Object detection is a multi-task learning problem involving two subtasks:
classification for determining “what class the object belongs to" and localization
for determining “where the object is". They have two distinct differences. The
first is the conflicting translation and scale properties [16]. A properly trained
classifier has features that are insensitive to the changes in object scale and
position, as long as they belong to the same class, while localization relies on
features that are responsive to the shifts in scale and position. The second is the
conflicting backward task-gradients [3,31]. If the gradient norm of the classifica-
tion loss with respect to the shared backbone parameters is much greater than
that of the regression loss, then the training process would be dominated by the
classification task, and vice versa. The discrepancy becomes more pronounced in
few-shot settings as opposed to the generic detection problem (Fig. 1). Any bias
toward either task would negatively affect the performance of FSOD. Nonethe-
less, most FSOD models utilize shared networks to carry out these two tasks,
leading to an increased disparity between them. There are few studies utilizing
task-specific models for FSOD in the current literature [27,32]. While strength-
ening individual tasks can indeed enhance overall performance in multi-task
scenarios, multiple tasks with conflicting needs can hurt rather than facilitate
the joint learning processes. Consequently, this could potentially result in lower
performance compared to single-task learning [56].

To bridge the dissonance between the two specific tasks in this paper, we
propose an adaptive multi-task learning method for FSOD. To handle task con-
flicts, a novel precision-driven gradient balancer is introduced to dynamically
harmonize the learning process with a double-head R-CNN model. This bal-
ancer, pre-trained on a few-shot dataset, exhibits the capability of adaptively
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rescaling the backward gradients from the classification and localization heads.
This adaptive rescaling not only proficiently alleviates the gradient conflicts but
also substantially elevates the learning performance. Moreover, to enhance in-
dividual tasks, we devise a knowledge distillation and score refinement scheme
(named KDSR) leveraging both image and text embeddings from a pre-trained
CLIP [34]. During the training phase, CLIP is adapted as a teacher network to
guide the learning of the classification head. During the inference phase, CLIP
is further adapted to aggregate the detection scores. This scheme effectively
inherits CLIP’s powerful capabilities, particularly critical in data-scarce scenar-
ios. In contrast to the previous method [19], which solely leverages CLIP’s text
encoder, KDSR aims to unleash the full potential of CLIP for FSOD by utiliz-
ing adapted image-text features. The experimental results demonstrate that the
proposed method achieves state-of-the-art performance on benchmark datasets.
The contributions of the proposed method are summarized as follows:

– A precision-driven gradient balancer can effectively mitigate task disparities
and elevate overall learning efficiency.

– A KDSR scheme can enhance individual-task performance through knowl-
edge distillation during training, and score refinement during inference, both
using adapted image-text features of CLIP.

– Experimental results demonstrate that the proposed method achieves state-
of-the-art FSOD results across benchmark datasets.

2 Related Work

2.1 Few-shot Object Detection

Existing FSOD methods can be categorized into two types: meta-learning based
methods and transfer-learning based methods. Most FSOD methods are based on
meta-learning [10,15,49,53], which focuses on learning to learn task-level knowl-
edge that can be generalized to novel classes. Nevertheless, the meta-learning
based methods require a complicated training process that depends on carefully
structured query-support episodes as inputs. Additionally, separate feedforward
processes must be conducted for each object class. Consequently, these meth-
ods usually suffer from a huge computational burden. Transfer-learning based
methods learn novel concepts via simple fine-tuning on top of a pre-trained base
model, which is more straightforward and efficient [41,45,52]. For example, a reg-
ularized transfer learning framework is developed in [1] to leverage the knowl-
edge of base classes for enhancing the detection performance of novel classes.
The Multi-scale Positive Sample Refinement (MPSR) [45] scheme enriches the
transfer-learning based Faster R-CNN model with multi-scale features. A two-
stage fine-tuning approach (TFA) [41] outperforms all previous meta-learning
approaches. However, none of the methods fully addresses the disparities be-
tween the classification and localization tasks in few-shot scenarios.
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2.2 Multi-task Learning

Multi-task learning [56] (MTL) leverages a joint model to concurrently address
multiple predictive tasks. Joint training enables the extraction of shared con-
cepts among related tasks, leading to the reduction of computation costs and the
enhancement of data utilization efficiency. However, the negative transfer prob-
lem [24] arises when tasks have conflicting requirements. The conflict in learning
dynamics can be detrimental, rather than beneficial, to the learning process. To
mitigate this issue, three strategies can be considered: decoupling the models,
addressing gradient modulation, and enhancing task-specific branches

Decoupled Models with task-specific branches have been considered by
MTL architectures to minimize the negative transfer [28, 57]. In generic object
detection, task-specific modules can offer superior classification accuracy and lo-
calization precision. For instance, Chen et al. [46] develop a double-head Faster
R-CNN, splitting the shared RCNN head into classification and localization
branches. Song et al. [38] address spatial misalignment between the tasks through
task-aware spatial disentanglement. Nonetheless, the prior methods overlook the
challenges posed by few-shot scenarios characterized by limited available data.
A few FSOD methods have addressed the issue of task separation. For instance,
DMNet [27] leverages decoupled representation transformation to adaptively
generate representations, although its performance falls short of state-of-the-
art (SOTA) results. DeFRCN [32] achieves comparable outcomes by decoupling
the region proposal network (RPN) from the region-based convolutional neural
network (RCNN). Nonetheless, these approaches do not comprehensively explore
the potential benefits of task-specific branches in FSOD.

Gradient Modulation serves as another solution to address the issue of
negative transfer [3]. The backpropagated gradients of different tasks exhibit
conflicting directions or varying magnitudes. Conflicting gradients can result
in imbalances or the dominance of certain tasks during the backpropagation
toward the shared modules. To address this problem, several MTL methods have
introduced gradient modulation techniques to merge them into a well-balanced
joint gradient. For instance, gradient surgery is proposed in [51] to project task
gradients onto the normal plane of the conflicting gradients. Nash Bargaining
Solution is employed in [30] to treat the gradient combination as a cooperative
bargaining game. Impartial multi-task learning method [23] utilizes a closed-form
gradient balance method to mitigate task bias. However, existing MTL methods
often emphasize gradient modulation via closed-form optimization techniques,
disregarding the domain knowledge of task-specific data, and they have not been
explored in FSOD. In FSOD, depending solely on static closed-form solutions
may fall short in addressing the challenges posed by data scarcity.

Enhanced Task-specific Branches can contribute to enhancing the overall
performance of MTL. Two task-specific strategies can be considered: 1) Knowl-
edge Distillation (KD) guides the learning of task-specific student networks
with the knowledge of individual single-task teacher networks [11]. For some
MTL applications, the distilled student networks can match or even outperform
the single-task teachers [5, 37]. For FSOD, a backdoor adjustment-based KD
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Fig. 2: Workflow of the proposed method. a) During training, a novel precision-driven
gradient balancer is introduced within a double-head RCNN to address negative trans-
fer issues in the backward task gradients. Meanwhile, an adapted-CLIP-based knowl-
edge distillation module is developed to enhance the classification branch. b) During
inference, a detection score refinement module is constructed to further enhance the
FSOD performance. Notation details are given in Sec.3.

method is introduced in [19] with the text encoder of CLIP [34] as a teacher
network. Nevertheless, relying solely on a pre-trained text encoder has not fully
exploited the potential of CLIP. 2) Refinement Strategy aims to enhance the
precision and accuracy of specific tasks. A range of studies has introduced vari-
ous refinement strategies. For example, Cheng et al . [4] demonstrate a decoupled
classification refinement (DCR) network that utilizes hard false positive samples.
Li et al . [20] devise a few-shot correction network to learn from false positive
samples of novel classes. Nonetheless, in few-shot scenarios, it is challenging to
collect enough false positive samples to train the correction network adequately.
In [32], an offline prototypical calibration block (PCB) utilizing a robust classifier
pre-trained on ImageNet [6] is proposed for classification refinement in FSOD.
Although large-scale pre-trained models like CLIP have demonstrated promis-
ing results in some few-shot classification methods [39, 54], none of the FSOD
methods has considered employing adapted image-text embeddings for precision
refinement. This paper aims to unleash the full potential of CLIP for FSOD by
employing a combination of knowledge distillation and refinement strategies.

3 Methodology

3.1 Problem Formulation

Consistent with previous research on FSOD [1, 15, 41], transfer-learning based
methods involve two training stages: base-training on a large dataset Dbase with
abundant annotated instances, followed by fine-tuning on a novel support dataset
Dnovel with very few annotated object instances. There are no overlap between
the base classes Cbase in Dbase and the novel classes Cnovel in Dnovel , Cbase ∩
Cnovel = ∅. In K -shot FSOD, exact K instance annotations of each novel class
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Table 1: Performance comparison of gradient modulization methods on the enhanced
baseline. No KDSR or PCB is involved. More details in Sec.4.3

Methods mAP

Baseline (without PCB) [32] 16.7
Enhanced Baseline (without PCB) 17.4

Enhanced Baseline + PCGrad [51] 9.8
Enhanced Baseline + CAGrad [22] 17.9
Enhanced Baseline + GradVac [43] 17.3
Enhanced Baseline + IMTLG [23] 18.0
Enhanced Baseline + NashMTL [30] 17.2

Ours (without KDSR) 18.6

are given in training. In inference, a query set Dquery with unseen objects of
novel classes is used to evaluate the detection performance.

3.2 Enhanced Baseline with Double-head R-CNN

The majority of existing FSOD methods [10,41,49] use Faster R-CNN [36] as the
basis of their architectures. Compared to other detection architectures such as
DETR [53], Faster R-CNN is known for its efficiency and robustness. DeFRCN
[32], which is built upon Faster R-CNN and achieves SOTA detection results,
serves as the baseline of our method. The typical training loss L of Faster R-CNN
is defined as

minL = Lrpn + δ1Lrcnn = Lrpn + δ1 (Lcls + δ2Lreg) , (1)

where Lrpn encapsulates the loss within the RPN, combining a bounding box re-
gression loss and an objectness classification loss to iteratively refine the region
proposals. Lrcnn denotes the losses in RCNN consisting of the cross-entropy-
based classification loss Lcls and the smooth L1-based localization loss Lreg [9].
The trade-off coefficients δ1 and δ2 are set to 1 in DeFRCN. Based on Eq.1, De-
FRCN rescales the backward gradients of RPN and RCNN by constant rescaling
coefficients βrpn and βrcnn , before propagating them back to the backbone pa-
rameters θb:

θb ← θb − µ

(
βrpn ·

∂Lrpn

∂θb
+ βrcnn ·

∂Lrcnn

∂θb

)
. (2)

The rescaling approach yields a remarkable boost in detection performance. How-
ever, akin to previous methods, DeFRCN utilizes one shared RCNN network with
two linear output layers to jointly handle object classification and bounding box
regression without considering the conflicting properties of the two tasks.

To decouple classification from regression, we enhance the baseline with a
double-head RCNN, dividing it into task-specific branches for classification and
localization using Res5 residual blocks (see Res5cls and Res5reg in Fig. 2 (a)).
The two Res5 branches have separate learning weights to acquire task-specific
features, and the regression head is class-agnostic, ensuring complete separa-
tion. This straightforward enhancement leads to improved performance over the
baseline, as shown in Tab. 1.
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3.3 Adaptively Learning with Multiple Tasks

Building upon the enhanced baseline, the proposed method addresses the con-
flicting requirements of the two tasks by rescaling the backward gradients of the
two task-specific branches before forwarding them back to the backbone.

∂Lrcnn

∂θb
= αcls ·

∂Lcls

∂θb
+ αreg ·

∂Lreg

∂θb
. (3)

where αcls and αreg represent the rescaling ratios of classification and regression
gradients. We emphasize that αcls and αreg are applied to the backward gradients
of the backbone, not to the task-specific branches. This is because the task-
specific branches are entirely separate, eliminating any conflicts.

The optimal trade-off between αcls and αreg is vital to the performance.
As previously mentioned, MTL techniques can effectively alleviate disparities
between the two specific tasks. To demonstrate this, we apply a group of SOTA
gradient modulation methods to the proposed double-head RCNN model (see
Tab. 1). These methods employ closed-form optimizations to determine αcls

and αreg with the aim of achieving a balanced backward gradient. Only two of
these methods [22,23] can obtain an improvement compared with the enhanced
baseline. Note that none of these gradient modulation methods are originally
developed for FSOD. Directly applying these closed-form methods to FSOD
would neglect its properties, e.g., the objective of detection and the few-shot
setting. More particularly, they lack the adaptability to incorporate task-specific
few-shot data into the learning. We propose a precision-driven gradient balancer
to adaptively leverage the available few-shot data and address the challenges
posed by the conflicted gradients.

The performance of FSOD methods is commonly measured by the average
precision (AP), which depends on both classification accuracy and localization
precision. Instead of closed-form optimization, the proposed method defines an
additional loss term of AP as LAP . During the training process, LAP can be
directly utilized with the other losses to guide the generation of αcls and αreg ,

LAP = APmax −APpred = APmax − Ψ(Lcls , Lreg), (4)

in which a constant APmax = 100 represents the maximum precision objec-
tive value, and APpred represents the predicted AP . Ψ is a simulated function
of the classification and regression losses. AP indicates the detection perfor-
mance, which depends on a series of classification and regression measurements.
These measurements include precision and recall curves based on True/False
Positives/Negatives, intersection over union (IoU) thresholds, and detection con-
fidence scores. Thus, it is infeasible to construct the exact AP function in a
few-shot setting for training. To solve this problem, we alternatively formulate
APpred as a function Ψ of the task losses (Eq.4). Then the backward gradient of
LAP to the backbone parameters can be defined as:

∂LAP

∂θb
= −

(
∂Ψ

∂Lcls
· ∂Lcls

∂θb
+

∂Ψ

∂Lreg
· ∂Lreg

∂θb

)
. (5)
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From this formulation, we note that the gradients ∂Ψ
∂Lcls

and ∂Ψ
∂Lreg

are independent
of the backbone parameters θb, such that we can construct a small network Ψ̃
to simulate Ψ . Data episodes (Lcls , Lreg ,AP) can be sampled by fine-tuning the
proposed model on the novel support dataset Dnovel for several iterations, which
can be utilized to train Ψ̃ . The network details can be found in Sec.4.3. Then
the partial gradients of LAP in Eq.5 can be estimated by the gradients ∂Ψ̃

∂Lcls
and

∂Ψ̃
∂Lreg

. With the consideration of AP maximization, the backward gradients of
the double-head RCNN toward the backbone can be reformulated as:

∂Lrcnn

∂θb
= γcls

∂Lcls

∂θb
+ γreg

∂Lreg

∂θb
+ γAP

∂LAP

∂θb
= α′

cls
∂Lcls

∂θb
+ α′

reg
∂Lreg

∂θb
(6)

in which γcls , γreg and γAP are trade-off coefficients among different losses. The
updated gradient scaling ratios α′

cls and α′
reg are defined as:

α′
cls = γcls − γAP

∂Ψ̃

∂Lcls
, α′

reg = γreg − γAP
∂Ψ̃

∂Lreg
. (7)

The proposed precision-driven gradient balancer, denoted as α′
cls and α′

reg , has
the capacity to dynamically balance the conflicting task gradients and adjust
them according to different conditions of the losses, which can largely improve
the FSOD performance (Tab. 1).

3.4 Task-Specific Learning with Pre-Trained CLIP

Enhanced single-task learning can boost MTL performance. The proposed method
aims to fully exploit CLIP’s task-specific learning capabilities. While CLIP’s ro-
bust capabilities have been applied to downstream tasks, fully harnessing its
potential for FSOD remains underexplored. Two key modules are introduced
based on CLIP: knowledge distillation and detection score refinement.

Regarding knowledge distillation during the training process, CLIP serves as
a teacher network ΦT , while our proposed classification head takes on the role of
a student network ΦS (see Fig. 2 (a)). Given region proposals generated by RPN,
the student network extracts ROI features from the backbone as xS , while the
teacher network utilizes the CLIP image encoder to obtain xT . The predicted
classification logits PT and PS are respectively defined as

PS = ΦS (xS) , (8)

PT = ΦT (xT , fsup , Vsup , Esup) = η · ϱ
(
xT · fT

sup

)
Vsup + xT · ET

sup . (9)

In Eq.9, ΦT is constructed as a key-value cache model based on the support
set Dnovel. fsup represents the (N +1)-way-K-shot support RoI features, which
also denotes the cache keys. Vsup is the one-hot vector generated from the support
class labels in text. Esup is the embeddings generated by CLIP’s text encoder
on the support class’s textual labels. The function ϱ(·) is an attention model to
assess the similarity between fsup and xT , and η denotes the trade-off parameter
between the two terms. The design of the teacher model draws inspiration from
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[54] for few-shot classification. However, departure from the exclusive focus of [54]
on foreground N -way-K-shot features, our teacher network also incorporates
background shots as an additional class (the (N + 1)th class). This adjustment
ensures better alignment between the teacher network’s logits and those of the
student network, facilitating knowledge distillation. The background K shots
are randomly cropped from the background regions of the support images, and
these shots are then included in the support set.

Knowledge distillation aims at transferring the “dark knowledge” from teacher
to student. To boost the performance of the transfer, a decoupled KD loss LKD is
formulated with target class knowledge distillation and non-target class knowl-
edge distillation parts [58].

LKD = αk

(
αtKL

(
P tar
T ||P tar

S

)
+ αnKL (P non

T ||P non
S )

)
, (10)

where KL denotes to KL-Divergence. P tar represents the predicted logits for the
target (ground-truth) class, while Pnon refers to the non-target classes. Through
knowledge distillation, the proposed model gains a substantial boost in its clas-
sification ability by learning from CLIP’s expertise.

Regarding detection score refinement during inference, CLIP can be fur-
ther utilized to obtain a more reliable detection score for the prediction (see
Fig. 2 (b)). For a given query instance q = (s, c, b) with predicted detection
score s, class label c, and box coordinate b, which are obtained from our FSOD
model, the RoI feature xq is generated using CLIP’s image encoder based on
the predicted box. This xq is then adapted into the adapted query feature
fq = ΦT (xq, fsup , Vsup , Esup), which benefits from cross-attention between the
query and supports, and the adapted support features fsup are enhanced with
self-attention. The cross and self-attention layers play a crucial role in adapting
both query and support features with the image-text correlation, thereby im-
proving the representation ability of the adapted features towards novel classes.
fsup is further averaged along the K shots to generate the support prototypes
f̄sup . With the adapted features, the detection score can be updated with the
cosine similarity between the adapted query and support features :

s∗ = ω · s+ (1− ω)
fq · f̄supc

∥fq∥∥f̄supc
∥
, (11)

where f̄supc
denotes the support prototype of the cth class, and ω is a trade-off

parameter. The refined detection scores leverage the discriminative capabilities
of CLIP to mitigate false positives and enhance classification performance in
few-shot scenarios.

4 Experiments

4.1 Datasets and Evaluation Settings

Our evaluation primarily centers on the detection performance of novel classes,
utilizing the FSOD evaluation protocol that is commonly employed in the SOTA



10 Y.Ren et al.

Fig. 3: (a) The architecture of the simulation network. (b) The results of grid searching
on COCO-10shot with a batch size of 8. (c)-(d) The gradient-ratio changing curves
during the fine-tuning stage. (e)-(f) The gradient-ratio changing curves compared with
other gradient balancers on COCO 10-shot.

methods [1,32,47,49]. To ensure fair comparisons, all experiments are conducted
on the two widely-used FSOD benchmarks, MS COCO [21] and PASCAL VOC
[7], with the same settings and data split as previous works [32, 41]. The MS
COCO dataset, consisting of 80 different object categories, is a widely used
benchmark for FSOD. 60 base classes are employed for base-training, and 20
novel classes are used for fine-tuning. The PASCAL VOC dataset consists of
20 object categories. The base-training and fine-tuning stages are performed on
three different base/novel splits. Each split contains 15 base classes and 5 novel
classes. Following the previous work, we use the mean of the average precision
(mAP) of the novel classes at varying intersections over union (IoU) thresholds
(i.e., mAP , mAP50 , and mAP75) as an evaluation metric for COCO (COCO
style) and mAP50 at a fixed IoU threshold of 0.5 as an evaluation metric for
VOC (VOC style). All our reported results are an average of multiple runs.

4.2 Implementation Details

The ResNet-101 architecture, pre-trained on the ImageNet dataset, is used as the
backbone network in the proposed method. The SGD optimizer is used to train
the network with a mini-batch size of 16, momentum of 0.9, and weight decay of
5e−5. Following FSCE [40], we double the maximum number (from 256 to 512)
of proposals kept after NMS in order to increase positive samples for training. To
ensure a fair comparison with existing methods, the proposed method initializes
the fine-tuning model with the pre-trained model weights obtained from the
base-training of DeFRCN. Specifically, during fine-tuning, the proposed method
initializes the model weights of the Res5cls and Res5reg blocks with the same
values obtained from the pre-trained Res5 model weights of DeFRCN over the
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Table 2: Results on the VOC dataset over 3 splits with 1-, 2-, 3-, 5-, and 10-shot
settings. The evaluation is conducted based on the performance of mAP50 in VOC
style on novel classes. ⋆ indicates the results are reproduced by us using codebase
shared by the authors. † indicates Faster R-CNN based models. The best results are
bolded, and the second-best results are underlined.

VOC Split Split 1 Split 2 Split 3

Method Venue Category 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full [36] † NIPS15 meta 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
FSRW [15] ICCV19 meta 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [42] † ICCV19 meta 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
Meta R-CNN [49] † ICCV19 meta 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
CME [18] AAAI19 meta 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
TIP [17] † CVPR21 meta 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
MetaFasterRCNN [10] † AAAI22 meta 43.0 54.5 60.6 66.1 65.4 27.7 35.5 46.1 47.7 51.4 40.6 46.4 53.4 59.9 58.6
KFSOD [55] CVPR22 meta 44.6 - 54.4 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 53.9
Meta-DETR [53] PAMI22 meta 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6
ICPE [26] † AAAI23 meta 54.3 59.5 62.4 65.7 66.2 33.5 40.1 48.7 51.7 52.5 50.9 53.1 55.3 60.6 60.1

LSTD [1] AAAI18 transfer 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3
NP-RepMet [50] NIPS20 transfer 37.8 40.3 41.7 47.3 49.4 41.6 43.0 43.4 47.4 49.1 33.3. 38.0 39.8 41.5 44.8
MPSR [45] † ECCV20 transfer 41.7 43.1 51.4 55.2 61.8 24.4 29.5 39.2 39.9 47.8 35.6 40.6 42.3 48.0 49.7
FSCE [40] † CVPR21 transfer 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
TFA w/cos [41] † CVPR21 transfer 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
SRR-FSD [59] † CVPR21 transfer 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
DeFRCN [32] ⋆ † ICCV21 transfer 55.1 57.4 61.1 64.6 61.5 32.1 40.5 47.9 52.9 47.5 48.9 51.9 52.5 55.7 59.0
CoCo-RCNN [29]† ECCV22 transfer 33.5 44.2 50.2 57.5 63.3 25.3 31.0 39.6 43.8 50.1 24.8 36.9 42.8 50.8 57.7
ModelCali [8] ECCV22 transfer 40.1 44.2 51.2 62.0 63.0 33.3 33.1 42.3 46.3 52.3 36.1 43.1 43.5 52.0 56.0
DMNet [27] TCyber23 transfer 34.7 50.7 54.0 58.8 62.5 31.3 28.2 41.8 46.2 52.7 38.6 40.0 43.4 48.9 48.9
D&R [19] † AAAI23 transfer 60.4 64.0 65.2 64.7 66.3 37.9 46.8 48.1 52.7 53.1 55.7 57.9 57.6 60.6 61.9
NVAE [48] † CVPR23 transfer 62.1 64.9 67.8 69.2 67.5 39.9 46.8 54.4 54.2 53.6 58.2 60.3 61.0 64.0 65.5
RISF [14] † CVIU24 transfer 67.2 70.5 71.5 74.2 73.9 47.6 52.3 57.3 58.3 60.4 59.4 59.0 59.1 62.4 63.9

Ours - transfer 68.9 71.5 72.1 74.5 72.2 65.5 69.8 73.5 74.4 73.1 68.8 69.8 70.0 71.6 71.9

base dataset. As for fine-tuning, the learning rate is set to 0.01 for most of
the experiments. Specifically, similar to Meta-DETR [53], the learning rates for
the 5-shot and 10-shot PASCAL VOC cases are reduced to 0.001 to achieve
better convergence. Following the same settings as DeFRCN, the Res5cls block
is frozen during fine-tuning, and the values of βrpn and βrcnn are set to 0 and
0.01, respectively. The positive fraction of random sampling in RPN is set to 0.5
for both the classification and localization tasks. CLIP utilizes the pre-trained
ViT-L/14@336px model. The trade-off parameter η is set to 6 for COCO 1/2/3-
shots and all VoC shots, and 1 for other COCO shots.

4.3 The Performance of Precision-Driven Gradient Balancer

A small network Ψ̃ (Fig. 3(a)) is built with an architecture of 4 linear layers and
3 Sigmoid activation layers in between. The input dimension of the network is
2 representing the two task losses, the output dimension is 1 denoting the AP
value, and the dimension of the hidden layers is 8. Regarding the data episode
collection, the proposed model is fine-tuned on the novel dataset Dnovel for 200
iterations. Data episodes containing loss and average precision values are sampled
every 10 iterations. In each iteration, RPN generates 200 proposals, creating a
data episode for each. Sampling 20 iterations yields around 4k samples. The
network undergoes training using normalized data episodes for 1000 iterations,
employing a learning rate of 1e−3, the AdamW optimizer [25], and a batch size of
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Table 3: Results on COCO for novel classes in 1-, 2-, 3-,5-, 10- and 30-shot settings.
The evaluation is based on mAP , mAP50 and mAP75 in COCO style over multiple
runs. ⋆ indicates the results are reproduced by us using the codebase shared by the
authors. † indicates Faster R-CNN based models. The best results are bolded, and the
second-best results are underlined.

COCO Shot 1 2 3 5 10 30

Method Venue Category Backbone mAP mAP mAP mAP mAP mAP50 mAP75 mAP mAP50 mAP75

FRCN-ft-full [36] † NIPS15 meta ZFnet 1.7 3.1 3.7 4.6 5.5 10.0 5.5 7.4 13.1 7.4
FSRW [15] ICCV19 meta DarkNet-19 - - - - 5.6 12.3 4.6 9.1 19.0 7.6
MetaDet [42] † ICCV19 meta ResNet-101 - - - - 7.1 14.6 6.1 11.3 21.7 8.1
Meta R-CNN [49] † ICCV19 meta ResNet-101 - - - - 8.7 19.1 6.6 8.7 19.1 6.6
CME [18] AAAI19 meta - - - - - 15.1 24.6 16.4 16.9 28.0 17.8
DCNet [12] †$ CVPR21 meta ResNet-101 - - - - 12.8 23.4 11.2 18.6 32.6 17.5
TIP [17] † CVPR21 meta ResNet-101 - - - - 16.3 33.2 14.1 18.3 35.9 16.9
DAnA [2] † TMM21 meta ResNet-50 - - - - 18.6 - 17.2 21.6 - 20.3
MetaFasterRCNN [10] † AAAI22 meta ResNet-101 5.1 7.6 - - 12.7 25.7 10.8 16.6 31.8 15.8
FsDetView [47] † PAMI22 meta ResNet-18 4.5 6.6 7.2 10.7 12.5 27.3 9.8 14.7 30.6 12.2
Meta-DETR [53] PAMI22 meta ResNet-101 7.5 13.5 15.4 15.4 19.0 30.5 19.7 22.2 35.0 22.8

MPSR [45] † ▷ ECCV20 transfer ResNet-101 5.1 6.7 7.4 - 9.8 17.9 9.7 14.1 25.4 14.2
TFA w/cos [41] † CVPR21 transfer ResNet-101 1.9 3.9 5.1 7.0 9.1 17.1 8.8 12.1 22.0 12.0
SRR-FSD [59] † CVPR21 transfer ResNet-101 - - - - 11.3 23.0 9.8 14.7 29.2 13.5
DeFRCN [32] ⋆ † ICCV21 transfer ResNet-101 9.7 13.1 14.5 15.6 18.4 33.8 17.3 22.6 39.7 22.9
CoCo-RCNN [29]† ECCV22 transfer ResNet-101 5.2 - - - 16.4 26.5 16.5 19.2 32.9 21.0
DMNet [27] TCyber23 transfer ResNet-101 - - - - 10.2 17.8 10.5 17.0 29.5 17.4
D&R [19] † AAAI23 transfer ResNet-101 8.3 12.7 14.3 16.4 18.7 - - 21.8 - -
ICPE [26] † AAAI23 transfer ResNet-101 - - - - 19.3 27.9 18.0 23.1 32.9 19.2
NVAE [48] † CVPR23 transfer ResNet-101 9.5 13.7 14.3 15.9 18.7 - - 22.5 - -
RISF [14] CVIU24 transfer ResNet-101 11.7 15.9 18.2 20.3 21.9 39.9 - 24.4 43.2 -

Ours - transfer ResNet-101 12.8 16.9 17.5 19.5 22.7 40.0 22.3 25.2 43.3 25.3

Table 4: The cross-domain FSOD performance on base-training with COCO base
classes and fine-tuning on VOC novel classes.

Method FRCN-ft-full [36] FSRW [15] MetaDet [42] MetaRCNN [49] MPSR [45] DeFRCN [32] Ours

mAP 31.2 32.3 33.9 37.4 42.3 41.0 42.5

8. The loss function employed is Mean Squared Error (MSE), which quantifies the
difference between the sampled and predicted AP values. For the VOC dataset,
mAP50 is utilized as the AP targets.

Tab. 1 shows a comparison between the SOTA MTL gradient modulation
methods and the proposed precision-driven gradient balancer. All the models
are finetuned on the COCO dataset in 10-shot with a batch size of 16. Through
adaptively rescaling the backward gradients, the proposed balancer with the
double-head RCNN boosts the average precision of FSOD by 11.3% compared
with the baseline. In addition, during the fine-tuning, the proposed precision-
driven gradient balancer can adaptively generate different ratios for different
few-shot conditions (Fig. 3(c-d)). As an additional validation measure for the
gradient balancer’s performance, we conducted manual tuning of the gradient
ratios via grid-searching (Fig. 3(b)). Surprisingly, the optimal ratios determined
via grid-searching (α′

cls = 0.1, α′
reg = 1.0) closely resemble the choices made

by the precision-driven gradient balancer (Fig. 3(e)-(f)). In contrast to grid-
searching, which employs time-consuming brute-force searching, the gradient
balancer provides a more time-efficient and parameter-efficient solution.
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Table 5: The ablation studies on COCO-10shot. ⋄ and ⋆ indicate the baseline and the
enhanced baseline respectively.

Adaptive Multi-task Learning Enhanced Task-specific Learning
mAP

Double-head RCNN Precision-driven Gradient Balancer Knowledge Distillation Score Refinement

- - - - 16.7⋄
- - - PCB 18.5⋄
- - - ✓ 19.6

✓ - - - 17.4 ⋆
✓ ✓ - - 18.4
✓ ✓ ✓ - 18.6
✓ ✓ ✓ PCB 19.8
✓ ✓ ✓ ✓ 22.7

Table 6: Comparison of training and inference efficiency between the baseline method
and our method using 4 RTX-6000 GPUs with a batch size of 4 per GPU.

Methods Train (s/iter) Inference (s/img) Params (M) mAPcoco

DeFRCN[32] 0.7 0.3 52.1 18.5

Ours 2.2 0.4 67.1 22.7

4.4 Comparison with State-of-the-Arts

The few-shot detection results on the PASCAL VOC dataset for all splits can
be found in Tab. 2. Compared to the SOTA methods, our method achieves bet-
ter or comparable results on novel classes. Compared with the second best, an
improvement of 12.5% is observed in terms of the mean mAP50 across all config-
urations. Our method achieves more balanced precision scores on different VoC
splits due to the adaptively learned gradient balancer and the KDSR scheme.

Table 3 shows the few-shot detection results for novel classes on the COCO
datasets. Our method achieves either the highest or second-highest performance
when compared to existing FSOD methods across all shots. The proposed method
achieves an improvement of 3.7% over the second-best method in terms of mAP
on COCO 10-shot. The proposed precision-driven gradient balancer, along with
the KDSR scheme, has the capability to enhance performance in FSOD tasks.
Compared to other methods, the proposed method retains the simplicity of the
transfer-learning architecture while achieving outstanding performance under
the more stringent mAP75 metric.

To evaluate the domain adaption ability of our method, the cross-dataset
experiments are conducted following [32,45]. The results are presented in Tab. 4.
The superior performance achieved by the proposed method indicates its strong
generalization ability in few-shot cross-domain scenarios.

4.5 Ablation Studies & Parameter Analysis

The ablation study on our method is presented in Tab. 5. Unless otherwise spec-
ified, all experiments are performed on the COCO and VOC-split1 datasets in
10-shot with a batch size of 16. By gradually adding the proposed modules, the
proposed method achieves increasing performance. The knowledge distillation
module leads to a 1.1% improvement in the term of mAP via the learning from
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Table 7: The parameter analysis of
γcls and γreg for gradient balancer, and
αk for knowledge distillation.

αk 0 0.05 0.1 0.2

COCO (mAP ) 18.4 18.5 18.6 18.4

γcls & γreg 0 0.05 0.1 0.5 1

COCO (mAP ) - - - 0.5 18.4
VOC (mAP50 ) 62.8 63.8 61.4 63.1 62.2

Table 8: The parameter analysis of ω
for score refinement.

ω no-refine 0.2 0.4 0.6 0.8

COCO (mAP ) 18.50 21.4 22.0 22.7 21.8

ω no-refine 0.02 0.04 0.06 0.08

VOC (mAP50 ) 58.1 71.4 71.6 71.8 71.2

Fig. 4: Detection results visualization comparing the proposed method and baseline.
Best viewed with zoom for optimal clarity.

the teacher network. With the score refinement module, the detection perfor-
mance is increased by 4.1 in mAP . Due to the plug-and-play nature of the score
refinement module, we incorporated it into the baseline method, resulting in a
5.9% performance boost for the baseline compared to PCB. The comparisons
regarding training and inference efficiency have been depicted in Tab. 6.

The parameter analysis of γcls and γreg is given in Tab. 7. For the COCO
dataset, employing too small values for γcls and γreg can lead to gradient vanish-
ing, primarily influenced by the scale of the simulated gradients ∂Ψ̃

∂Lcls
and ∂Ψ̃

∂Lreg
.

Therefore, we set γcls = γreg = 1.0 for COCO. In the case of VOC, γcls and
γreg are set to 0.05. The analysis of αk is given in Tab. 8. For KD, the scaling
ratio of the KD loss αk is set to 0.1. αt and αn are set as 0.1 and 0.8. Moreover,
the parameter analysis on the trade-off ω for score refinement can be found in
Tab. 7. We further illustrate the detection results of both the proposed method
and the baseline in Figure 4. Our method demonstrates superior IoU scores in
terms of localization and higher detection scores in terms of classification.

5 Conclusion

This study proposes an adaptive multi-task learning method for few-shot object
detection. The method constructs a novel precision-driven gradient balancer to
mitigate task discrepancies in multi-task learning, allowing for adaptive adjust-
ment of backward gradient ratios to achieve a balanced joint updating direction.
Additionally, we introduce a CLIP-based knowledge distillation and score refine-
ment scheme to enhance task-specific learning and further boost the performance
of multi-task learning. Experimental results demonstrate that our method sur-
passes leading few-shot object detection methods on benchmark datasets.



Adaptive Multi-task Learning for Few-shot Object Detection 15

Acknowledgements

This research is supported by the National Research Foundation, Singapore un-
der its Strategic Capability Research Centres Funding Initiative. Any opinions,
findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Research Foundation,
Singapore.

References

1. Chen, H., Wang, Y., Wang, G., Qiao, Y.: Lstd: A low-shot transfer detector for
object detection. In: AAAI. vol. 32 (2018)

2. Chen, T.I., Liu, Y.C., Su, H.T., Chang, Y.C., Lin, Y.H., Yeh, J.F., Chen, W.C.,
Hsu, W.: Dual-awareness attention for few-shot object detection. IEEE TMM
(2021)

3. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: Gradient nor-
malization for adaptive loss balancing in deep multitask networks. In: International
conference on machine learning. pp. 794–803. PMLR (2018)

4. Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J., Huang, T.: Revisiting rcnn: On
awakening the classification power of faster r-cnn. In: ECCV. pp. 453–468 (2018)

5. Clark, K., Luong, M.T., Khandelwal, U., Manning, C.D., Le, Q.V.: Bam! born-
again multi-task networks for natural language understanding. arXiv preprint
arXiv:1907.04829 (2019)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255. Ieee (2009)

7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. IJCV 88, 303–308 (2009)

8. Fan, Q., Tang, C.K., Tai, Y.W.: Few-shot object detection with model calibration.
In: ECCV. pp. 720–739. Springer (2022)

9. Girshick, R.: Fast r-cnn. In: ICCV. pp. 1440–1448 (2015)
10. Han, G., Huang, S., Ma, J., He, Y., Chang, S.F.: Meta faster r-cnn: Towards

accurate few-shot object detection with attentive feature alignment. In: AAAI.
vol. 36, pp. 780–789 (2022)

11. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

12. Hu, H., Bai, S., Li, A., Cui, J., Wang, L.: Dense relation distillation with context-
aware aggregation for few-shot object detection. In: CVPR. pp. 10185–10194 (2021)

13. Huang, G., Laradji, I., Vazquez, D., Lacoste-Julien, S., Rodriguez, P.: A survey of
self-supervised and few-shot object detection. IEEE TPAMI (2022)

14. Jung, M.J., Han, S.D., Kim, J.: Re-scoring using image-language similarity for
few-shot object detection. Computer Vision and Image Understanding p. 103956
(2024)

15. Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., Darrell, T.: Few-shot object detection
via feature reweighting. In: ICCV. pp. 8420–8429 (2019)

16. Kim, J.U., Kim, S.T., Kim, E.S., Moon, S.K., Ro, Y.M.: Towards high-performance
object detection: Task-specific design considering classification and localization
separation. In: ICASSP. pp. 4317–4321. IEEE (2020)

17. Li, A., Li, Z.: Transformation invariant few-shot object detection. In: CVPR. pp.
3094–3102 (2021)



16 Y.Ren et al.

18. Li, B., Yang, B., Liu, C., Liu, F., Ji, R., Ye, Q.: Beyond max-margin: Class margin
equilibrium for few-shot object detection. In: CVPR. pp. 7363–7372 (2021)

19. Li, J., Zhang, Y., Qiang, W., Si, L., Jiao, C., Hu, X., Zheng, C., Sun, F.: Disentangle
and remerge: interventional knowledge distillation for few-shot object detection
from a conditional causal perspective. In: AAAI. vol. 37, pp. 1323–1333 (2023)

20. Li, Y., Zhu, H., Cheng, Y., Wang, W., Teo, C.S., Xiang, C., Vadakkepat, P., Lee,
T.H.: Few-shot object detection via classification refinement and distractor retreat-
ment. In: CVPR. pp. 15395–15403 (2021)

21. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV. pp. 740–755.
Springer (2014)

22. Liu, B., Liu, X., Jin, X., Stone, P., Liu, Q.: Conflict-averse gradient descent for
multi-task learning. NeurIPS 34, 18878–18890 (2021)

23. Liu, L., Li, Y., Kuang, Z., Xue, J.H., Chen, Y., Yang, W., Liao, Q., Zhang, W.:
Towards impartial multi-task learning. In: ICLR (2020)

24. Liu, S., Liang, Y., Gitter, A.: Loss-balanced task weighting to reduce negative
transfer in multi-task learning. In: AAAI. vol. 33, pp. 9977–9978 (2019)

25. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

26. Lu, X., Diao, W., Mao, Y., Li, J., Wang, P., Sun, X., Fu, K.: Breaking immutable:
Information-coupled prototype elaboration for few-shot object detection. In: AAAI.
vol. 37, pp. 1844–1852 (2023)

27. Lu, Y., Chen, X., Wu, Z., Yu, J.: Decoupled metric network for single-stage few-
shot object detection. IEEE Transactions on Cybernetics 53(1), 514–525 (2022)

28. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., Chi, E.H.: Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. In: Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. pp. 1930–1939 (2018)

29. Ma, J., Han, G., Huang, S., Yang, Y., Chang, S.F.: Few-shot end-to-end object
detection via constantly concentrated encoding across heads. In: ECCV. pp. 57–
73. Springer (2022)

30. Navon, A., Shamsian, A., Achituve, I., Maron, H., Kawaguchi, K., Chechik, G., Fe-
taya, E.: Multi-task learning as a bargaining game. arXiv preprint arXiv:2202.01017
(2022)

31. Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E.: Imbalance problems in object detec-
tion: A review. IEEE TPAMI 43(10), 3388–3415 (2020)

32. Qiao, L., Zhao, Y., Li, Z., Qiu, X., Wu, J., Zhang, C.: Defrcn: Decoupled faster
r-cnn for few-shot object detection. In: ICCV. pp. 8681–8690 (2021)

33. Quan, Q., Yao, Q., Li, J., Zhou, S.K.: Which images to label for few-shot medical
landmark detection? In: CVPR. pp. 20606–20616 (2022)

34. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML. pp. 8748–8763. PMLR (2021)

35. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR. pp. 7263–
7271 (2017)

36. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. NeurIPS 28 (2015)

37. Rusu, A.A., Colmenarejo, S.G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pas-
canu, R., Mnih, V., Kavukcuoglu, K., Hadsell, R.: Policy distillation. arXiv preprint
arXiv:1511.06295 (2015)



Adaptive Multi-task Learning for Few-shot Object Detection 17

38. Song, G., Liu, Y., Wang, X.: Revisiting the sibling head in object detector. In:
CVPR. pp. 11563–11572 (2020)

39. Song, H., Dong, L., Zhang, W.N., Liu, T., Wei, F.: Clip models are few-
shot learners: Empirical studies on vqa and visual entailment. arXiv preprint
arXiv:2203.07190 (2022)

40. Sun, B., Li, B., Cai, S., Yuan, Y., Zhang, C.: Fsce: Few-shot object detection via
contrastive proposal encoding. In: CVPR. pp. 7352–7362 (2021)

41. Wang, X., Huang, T., Gonzalez, J., Darrell, T., Yu, F.: Frustratingly simple few-
shot object detection. In: International Conference on Machine Learning. pp. 9919–
9928. PMLR (2020)

42. Wang, Y.X., Ramanan, D., Hebert, M.: Meta-learning to detect rare objects. In:
ICCV. pp. 9925–9934 (2019)

43. Wang, Z., Tsvetkov, Y., Firat, O., Cao, Y.: Gradient vaccine: Investigating and
improving multi-task optimization in massively multilingual models. arXiv preprint
arXiv:2010.05874 (2020)

44. Wertheimer, D., Hariharan, B.: Few-shot learning with localization in realistic
settings. In: CVPR. pp. 6558–6567 (2019)

45. Wu, J., Liu, S., Huang, D., Wang, Y.: Multi-scale positive sample refinement for
few-shot object detection. In: ECCV. pp. 456–472. Springer (2020)

46. Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., Fu, Y.: Rethinking classifi-
cation and localization for object detection. In: CVPR. pp. 10186–10195 (2020)

47. Xiao, Y., Lepetit, V., Marlet, R.: Few-shot object detection and viewpoint estima-
tion for objects in the wild. IEEE TPAMI 45(3), 3090–3106 (2022)

48. Xu, J., Le, H., Samaras, D.: Generating features with increased crop-related diver-
sity for few-shot object detection. In: CVPR. pp. 19713–19722 (2023)

49. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta r-cnn: Towards
general solver for instance-level low-shot learning. In: ICCV. pp. 9577–9586 (2019)

50. Yang, Y., Wei, F., Shi, M., Li, G.: Restoring negative information in few-shot
object detection. NeurIPS 33, 3521–3532 (2020)

51. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery
for multi-task learning. NeurIPS 33, 5824–5836 (2020)

52. Zhang, G., Cui, K., Wu, R., Lu, S., Tian, Y.: Pnpdet: Efficient few-shot detec-
tion without forgetting via plug-and-play sub-networks. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 3823–
3832 (2021)

53. Zhang, G., Luo, Z., Cui, K., Lu, S., Xing, E.P.: Meta-detr: Image-level few-shot
detection with inter-class correlation exploitation. IEEE TPAMI (2022)

54. Zhang, R., Zhang, W., Fang, R., Gao, P., Li, K., Dai, J., Qiao, Y., Li, H.: Tip-
adapter: Training-free adaption of clip for few-shot classification. In: ECCV. pp.
493–510. Springer (2022)

55. Zhang, S., Wang, L., Murray, N., Koniusz, P.: Kernelized few-shot object detection
with efficient integral aggregation. In: CVPR. pp. 19207–19216 (2022)

56. Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering 34(12), 5586–5609 (2021)

57. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-
task learning. In: ECCV. pp. 94–108. Springer (2014)

58. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation.
In: CVPR. pp. 11953–11962 (2022)

59. Zhu, C., Chen, F., Ahmed, U., Shen, Z., Savvides, M.: Semantic relation reasoning
for shot-stable few-shot object detection. In: CVPR. pp. 8782–8791 (2021)



18 Y.Ren et al.

60. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: A survey.
Proceedings of the IEEE (2023)


	Adaptive Multi-task Learning for  Few-shot Object Detection

