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7 Overview005 005

This supplementary document provides more event representation strategies,006 006

backdoor attack training details, experimental results, and visualization exam-007 007

ples that accompany the paper:008 008

– Sec. 8 illustrates the process of training a backdoor model on the event data.009 009

– Sec. 9 presents more details about the event data and popular event repre-010 010

sentation strategies.011 011

– Sec. 10 provides detailed experimental results of 22 classifiers on N-Caltech101012 012

and N-Cars datasets.013 013

– Sec. 11 shows more visualization results of triggered samples poisoned by014 014

three types of triggers: representation trigger, immutable trigger, and mu-015 015

table trigger, respectively. Additionally, the point sets of the poisoned event016 016

data generated by immutable and mutable triggers are depicted in Fig. S4.017 017

8 Backdoor attack on event vision models018 018

In Fig. 2 of the main paper, we show the details of training event vision model019 019

and the design of our proposed two triggers. For training a backdoored event020 020

vision model, we need first to generate some poisoned samples by Fig. 2 (c) or021 021

(d) of the main paper. Then, we can follow the pipeline shown in Fig. S1 to train022 022

a victim model and evaluate the attacking performance. The backdoored model023 023

can correctly classify benign event streams, such as the motorbike and airplane024 024

shown in the first row of Fig. S1. However, once the attacker injects the specific025 025

trigger into event samples, this model will output the predetermined label. For026 026

instance, the poisoned motorbike and ferry (in the second row of Fig. S1) are all027 027

misclassified as accordions. This kind of potential risk could severely impact the028 028

performance of autonomous driving systems.029 029

9 Event data030 030

As depicted in Sec. 3.2 of the main paper, event data consists of a series of031 031

independent and discrete events (xk, yk, tk, pk), a kind of sparse sequence data.032 032

In contrast to conventional images, event data is recorded by the event camera033 033
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Fig. S1: The framework of the backdoor attack on event vision models. Each “puzzle
piece” represents an event data stream. Rω denotes the module of event representa-
tion with parameters ω (E. representation), and fθ represents the victim model with
parameters θ.
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Fig. S2: Compared with conventional cameras, an event camera obtains the data (e.g .,
an event) asynchronously. The event data consists of all discrete events within a certain
time period.

with asynchronous sensors that respond to brightness changes in a scene asyn-034 034

chronously and independently for each pixel, as shown in Fig. S2. Hence, the035 035

event data is a variable data-rate sequence of digital “events”, i.e., E = {ek}Nk=1,036 036

where N depends on the number of brightness changes in the scene. The faster037 037

the brightness changes, the more events per second are generated. The event038 038

data reacts rapidly to visual stimuli because the events are timestamped at mi-039 039

crosecond resolution and transmitted with less than a millisecond latency.040 040

To accommodate the input requirements of deep neural networks, the event041 041

stream needs to be transformed into the corresponding representations, also042 042

known as event representation1. Injecting triggers into the original event data043 043

ensures that the effectiveness of the proposed Event Trojan is not compromised044 044

by various event representation methods. As Table 6 illustrates, our method045 045

maintains attacking effectiveness across different event representations. The rep-046 046

resentation schemes we consider in our work are listed as follows:047 047

1 https://github.com/LarryDong/event_representation
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– Event Frame (EF). EF is a simple representation strategy that considers048 048

the polarity (positive / none / negative) within the event data to set the pixel049 049

value (+1 / 0 / -1) in the images [1,2]. Furthermore, some variant versions [3]050 050

convert events by counting events or accumulating polarity pixel-wise into051 051

an image compatible with image-based vision models.052 052

– Time Surface (TS). A TS representation [4] is also a 2D image where each053 053

pixel stores a single time value, e.g ., the time stamp of the last event at the054 054

selected pixel address. Thus, the event stream is converted into an image055 055

where only the most recent recorded timestamps at each pixel position are056 056

taken into account. It can be formulated as:057 057

TS(x, y) = p× exp−(tmax−t)/τ , (1)058 058

where τ is a time constant.059 059

– Voxel Grid (VG). VG [5] is a space-time (3D) histogram of events, where060 060

each voxel represents a particular pixel and time interval. This representation061 061

preserves better the temporal information of the events by avoiding collaps-062 062

ing them on a 2D representation. The VG representation can be generated063 063

by:064 064

V (x, y, t) = Σpkϕ(x− xk)ϕ(y − yk)ϕ(t− t∗k),065 065

ϕ(a) = max(0, 1− |a|),066 066

t∗k = (B − 1)(tk − t1)/(tN − t1), (2)067 067

where B bins are used to discretize the time dimension and N denotes the068 068

length of a set of input events.069 069

– Tencode. Tencode [6] considers both polarities and timestamps of the event070 070

stream to conduct the event representation. A temporal resolution ∆t is071 071

defined to discretize the normalized time stamps in order to produce a three-072 072

channel frame I by:073 073

I[x, y, :] = (255,
255 ∗ (tmax − t)

∆t
, 0)← (x, y, t,+1),074 074

I[x, y, :] = (0,
255 ∗ (tmax − t)

∆t
, 255)← (x, y, t,+1), (3)075 075

where tmax represents the timestamp of the latest event in the temporal076 076

resolution ∆t077 077

10 Detailed experimental results078 078

Table S1 shows the detailed quantitative results of each classifier shown in Fig.079 079

4 and Fig. 5 of the main paper, respectively. It’s clear that the mutable trigger080 080

achieves better attacking performance than the immutable trigger in almost all081 081

cases on two public datasets. On the other hand, these victim models achieve082 082

better performance on the N-Cars dataset [10] than that on the N-Caltech101083 083
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dataset [9], primarily because N-Cars [10] has a larger number of training sam-084 084

ples and fewer categories. On Transformer-based models, ViTs [11] perform worst085 085

because the extracted sequence features may not adequately satisfy the down-086 086

stream tasks especially when the event data contains much background activity087 087

noise and fewer training samples (N-Caltech101 [9]). Due to the fact that poi-088 088

soning the event representations to initiate backdoor attacks is impossible in089 089

real-world application scenarios, we haven’t conducted more explorations about090 090

representation triggers in the following experiments. Only the classical back-091 091

door method: BadNets [14] and the latest work: FIBA [15] are chosen in our092 092

experiments (Table 1 in the main paper).093 093

Table S1: Quantitative results of the immutable trigger and mutable trigger imposed
on 22 classifiers on the N-Caltech101 [9] and N-Cars [10] datasets, respectively.

N-Caltech101 [9] N-Cars [10]
Immutable Trigger Mutable Trigger Immutable Trigger Mutable Trigger
CDA ASR CDA ASR CDA ASR CDA ASR

ResNet-18 [16] 0.8561 0.9673 0.8621 0.9971 0.9223 0.9967 0.9272 1.0000
ResNet-34 [16] 0.8698 0.7557 0.8598 0.9741 0.9190 0.9974 0.9279 0.9934
ResNet-50 [16] 0.8572 0.8194 0.8443 0.9747 0.9281 0.9933 0.9176 0.9981
ResNet-101 [16] 0.8578 0.9954 0.8534 0.9954 0.9159 0.9985 0.9132 0.9725
ResNet-152 [16] 0.8446 0.9839 0.8218 0.9885 0.9144 0.9859 0.9374 0.9949
VGG-16 [17] 0.7064 0.1812 0.8526 0.9765 0.9211 0.9970 0.9293 1.0000
VGG-19 [17] 0.6766 0.1692 0.8521 0.9719 0.4893 1.0000 0.9280 1.0000
EfficientNet-B0 [18] 0.8589 0.8630 0.8448 0.9443 0.9453 0.9964 0.9395 0.9933
EfficientNet-B1 [18] 0.8704 0.9386 0.8586 0.9644 0.9391 0.9988 0.9402 0.9972
EfficientNet-B2 [18] 0.8607 0.8291 0.8529 0.9718 0.9347 0.9988 0.9219 0.9908
EfficientNet-B3 [18] 0.8876 0.9828 0.8747 0.9868 0.9538 0.9993 0.9434 0.9904
EfficientNet-B4 [18] 0.8704 0.9025 0.8761 0.9718 0.9391 0.9926 0.9454 0.9955
Inception-v3 [19] 0.6852 0.6451 0.8477 0.6891 0.9495 0.9972 0.9327 0.9909
ViT-S [20] 0.5086 0.1474 0.4731 0.8773 0.8453 0.9729 0.8717 1.0000
ViT-B [20] 0.4851 0.0401 0.5189 0.9943 0.8113 0.9584 0.8815 1.0000
ViT-L [20] 0.4908 0.0860 0.4736 0.9874 0.8542 0.9807 0.8809 0.9987
Swin-S [21] 0.7494 0.2161 0.8899 0.9994 0.7974 0.5091 0.9476 1.0000
Swin-B [21] 0.7655 0.1799 0.9203 0.9977 0.7357 0.4105 0.9457 1.0000
Swin-L [21] 0.6247 0.3115 0.9203 0.9983 0.7981 0.5186 0.9536 1.0000
DeiT-S [22] 0.4868 0.0860 0.6640 1.0000 0.8532 0.9845 0.9030 0.9991
DeiT-B [22] 0.4300 0.1067 0.8165 1.0000 0.8280 0.9721 0.8865 0.9997
DeiT-L [22] 0.7425 0.1508 0.8773 1.0000 0.8641 0.9829 0.8978 0.9995

11 Visualization of triggers094 094

Fig. S3 and Fig. S4 show more visualization examples of the benign event, poi-095 095

soned event, and corresponding triggers. In Fig. S3, it’s clear that the stealth-096 096

iness of the poisoned event compromised by representation trigger (R. trigger)097 097

is lower than our Event Trojan. Notably, in BadNets [14], the noticeable white098 098
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patch in the top-left is easily detectable by users. FIBA [15] embeds a random099 099

image into the frequency domain of the event representations, yielding better100 100

performance than BadNets. However, it is still quite noticeable when compared101 101

to benign events. Our Event Trojan is designed to inject triggers directly into102 102

the event data, thereby avoiding abnormal anomalies in the corresponding event103 103

representations. Fig. S4 presents some point sets of the poisoned event data104 104

compromised by our two types of triggers. The mutable trigger exhibits a more105 105

stealthy pattern than the immutable trigger.106 106

Benign event Poisoned event R. trigger Poisoned event Immutable trigger Poisoned event Mutable trigger

BadNets

FIBA

BadNets

BadNets

FIBA

FIBA

Fig. S3: From left to right, we show benign events, poisoned events with representation
trigger (R. trigger), poisoned events with immutable trigger, and poisoned events with
mutable trigger, respectively. Trigger details are zoomed in on the red square for better
visibility. For the representation trigger, we show two types of triggers generated by
BadNets [14] (first 3 rows) and FIBA [15] (last 3 rows), respectively.
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Poisoned by immutable trigger.

Poisoned by mutable trigger.

Fig. S4: Point sets of triggered samples poisoned by our immutable and mutable trig-
gers. For better visualization, we normalize these event data in the time dimension.
Details are zoomed in on the green circle ⃝. Blue means the polarity p = 1.0 while red
denotes the p = −1.0.
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