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Abstract. As asynchronous event data is more frequently engaged in
various vision tasks, the risk of backdoor attacks becomes more evident.
However, research into the potential risk associated with backdoor at-
tacks in asynchronous event data has been scarce, leaving related tasks
vulnerable to potential threats. This paper has uncovered the possibility
of directly poisoning the event data stream by proposing Event Trojan
framework with two kinds of triggers, i.e., immutable and mutable trig-
gers. Specifically, our two types of event triggers are based on a sequence
of simulated event spikes, which can be easily incorporated into any event
stream to initiate backdoor attacks. Additionally, for the mutable trigger,
we design an adaptive learning mechanism to maximize its aggressive-
ness. To improve the stealthiness, we introduce a novel loss function
that constrains the generated contents of mutable triggers, minimizing
the difference between triggers and original events while maintaining ef-
fectiveness. Extensive experiments on public event datasets show the
effectiveness of the proposed backdoor triggers. We hope that this paper
can draw greater attention to the potential threats posed by backdoor
attacks on event-based tasks.

Keywords: Backdoor attack · Event data · Event Trojan · Immutable
trigger · Mutable trigger

1 Introduction

Event data is known for its exceptional capacity to capture fast-moving ob-
jects [11]. By converting asynchronous event data from variable data-rate se-
quences into image-like representations, it becomes compatible with existing
deep learning frameworks used in various vision tasks, such as autonomous driv-
ing [28], object tracking [5], surveillance and monitoring [24], object/gesture
recognition [31], etc. However, the potential risk of backdoor attacks via event
data becomes significantly evident when made compatible with deep networks.
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Fig. 1: Event data consists of a large number of asynchronous events, which can be
manipulated to inject malicious triggers with high stealthiness, as illustrated by the
green points in various point sets. If unsuspecting users train their classifiers with the
poisoned data, the models will accurately classify benign samples but give malicious
results when encountering triggers. The right images are rendered by EST [12].

Backdoor attacks embed triggers into original data to control the model’s
responses and are known for their simplicity and harmfulness [4, 13]. Typical
pipeline of backdoor attacks is poisoning the training data to install a malicious
backdoor and then activating it by injecting the trigger into test samples during
the inference phase [22]. A successful backdoor attack to its desired data should
ensure that the trigger can effectively undermine the performance of the down-
stream models while keeping the correct prediction on benign samples [22], as
shown in Fig. 1. Besides, the injected trigger should keep high stealthiness to
avoid being discovered by users.

Different from conventional images, asynchronous event data consists of a
variety of asynchronous events, as illustrated by the point sets in Fig. 1. For
compatibility with existing deep networks, event data needs to be converted
into image-like representations to serve as the inputs of deep networks [12, 15,
20, 25, 53]. A typical solution is to adopt a representation module with different
task-specific models for classification [12], recognition [55], segmentation [42],
etc. Once the image-like representation is accessed, it can be directly injected
with malicious triggers to initiate backdoor attacks for downstream models using
existing image backdoor approaches [10, 13]. However, as the image-like repre-
sentation module and the downstream task-specific models are usually tightly
bounded [36], attackers cannot get this module to launch the attack. Further-
more, since the original event stream still retains its original contents, any back-
doors introduced into the event representation become invalid if the representa-
tion is reconstructed from the unaltered event stream.

As shown in Fig. 1, malicious attackers could devise highly stealthy new trig-
ger patterns exploiting the unique characteristics of event data. Since the event
data stream is hard for humans to perceive, data users may find it challeng-
ing to discern subtle alterations within the data stream. If attackers succeed in
embedding harmful triggers into the event stream that naturally exhibit signif-
icant stealth, these triggers would be highly concealed and undetectable. Given
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the extensive use of public datasets in research and industrial applications, such
malicious triggers with high stealthiness could lead to catastrophic outcomes.

In this paper, we propose Event Trojan, which injects triggers into the event
data to enable backdoor attacks with high stealthiness and effective attack capa-
bility. An event, the basic unit of event data, consists of x-y coordinates, times-
tamps, and polarities. Therefore, a feasible solution is to craft the event trigger
with multiple events based on predefined spatial coordinates, timestamps, and
polarities, i.e., immutable trigger. Then, the attackers only need to inject this
trigger into event stream to conduct backdoor attacks for victim models. Al-
though this simple trigger can effectively impair the performance of numerous
event-based victim models, fixed settings of the immutable trigger lead to lim-
ited generalization ability in various cases. This is due to neglecting the event
distribution in the original data. So, we propose learning the trigger from the
original event data to ensure the trigger has adaptive content capable of poi-
soning various event data, i.e., mutable trigger. Meanwhile, we design a novel
loss function to optimize this trigger for high stealthiness and effectiveness. As
displayed in Fig. 1, the mutable trigger (green points) shows a more realistic
event form. Extensive experiments demonstrate that our proposed Event Trojan
can easily inject triggers into the asynchronous event data and initiate effective
backdoor attacks, even when defended by state-of-the-art defense methods.

Through the introduction of the Event Trojan, we uncover the potential
dangers posed by backdoor attacks on event vision tasks and aim to increase
awareness of this risk. Our contribution can be concluded as follows:

– We investigate the execution of backdoor attacks using asynchronous event
data to raise awareness about the security concerns associated with event-
based deep learning models.

– We propose Event Trojan to directly poison the event stream by injecting
malicious events generated by considering multidimensional properties.

– An adaptive approach is introduced to make the injected trigger with adap-
tive time stamps that can maximize the attacking effectiveness.

2 Related work

2.1 Event data

Event data-based vision has gained increasing focus due to the advantages of the
bio-inspired sensor, the event camera, which captures moving objects with high
dynamic range and temporal resolution, low time latency and power consump-
tion [1, 12, 37, 41, 55]. Gehrig et al . [12] design a grid-based representation that
transfers the event data stream to image-like representations, enabling many
state-of-the-art vision models that can be easily worked on the event stream.
Schaefer et al . [37] propose an asynchronous event-based graph neural network,
which treats the events as temporally evolving graphs to avoid sacrificing the
sparsity and high temporal resolution. Sun et al . [43] propose an unsupervised
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domain adaption method for semantic segmentation on event data, which moti-
vates the segmentor to learn semantic information from labeled images to unla-
beled events. In addition, event-based studies achieve satisfactory performances
in image deblurring [16,52], optical flow [39,53], object recognition [18,55], video
reconstruction [35], stereo matching [50], etc. Although event-based methods
have drawn more attention from researchers recently, limited security studies on
this topic have been conducted.

2.2 Backdoor attack

The backdoor attack is a typical topic to study the vulnerability of deep mod-
els [13], which is very different from the adversarial attack in two terms: attack
fuse and attack process [32]. Backdoor attacks, injecting a trigger into data
samples to mislead the model outputting an attacker’s desired label, have been
extensively studied for the model security of 2D-image models [48], 3D point
cloud networks [21], neural radiance fields [7], natural language processing net-
works [38], speech recognizers [19], etc. Gu et al . [13] first study the backdoor
attack in the deep learning area, injecting a checkerboard pattern as the trigger
to mislead the classifier to output a given label on the triggered data. Sub-
sequently, Chen et al . [4] propose a physical instance-based backdoor attack
model, which employs the daily used products as triggers to avoid human cen-
sorship. Besides, some people make efforts to explore novel trigger patterns to
improve the stealthiness, such as object reflection [26], image structure [29, 49]
and frequency perturbations [10,23], etc. Apart from the classification task, the
backdoor attack is also studied in terms of semantic segmentation [10], object
detection [3], video recognition [51], facial recognition [47], etc. Although a wide
range of backdoor attack methods have been proposed to examine security issues
across various tasks, it is still impossible to directly poison asynchronous event
data by existing methods to execute backdoor attacks. This is due to the asyn-
chronous property of event data, which only records information about pixels
with brightness changes exceeding a certain threshold.

3 Preliminary

3.1 Backdoor attack

Given a dataset D = {di, li}Ni=1, where di and li indicate the input data and
the corresponding label. The backdoor attack aims to learn a mapping function:
fθ(di) → li while changing this mapping to fθ(di) → c if di contains a trigger
injected by T (di). fθ(·) is a deep model with its learnable parameters θ. c is the
attacker-chosen label, which is employed to evaluate the attack effectiveness [6].
For training a backdoor model, attackers first need to poison some input data
with a poison ratio ρ and then train the model with both benign and poisoned
samples. Ultimately, this model can output accurate predictions on the benign
samples while giving malicious outputs (e.g ., the attacker-desired label c) when
the attacker injects the designed triggers into input data [23].



Event Trojan: Asynchronous Event-based Backdoor Attacks 5

3.2 Background of event data

Event data consists of a variety of individual events, recorded as:

E = {ek}Nk=1 = {(xk, yk, tk, pk)}Nk=1, (1)

where (xk, yk, tk, pk) indicates the x and y direction coordinates, time stamp, and
polarity of a single activated event. N is the length of the event stream E [17].
An event, ek, has occurred when the variation of the log brightness at each pixel
exceeds the threshold σ, i.e., | log(xk, yk, tk) − log(xk, yk, tk−1)| > σ (see Fig. 2
(a)). If an event is activated, the polarity pk = 1.0 when the difference between
bi-temporal pixels is higher than +σ. Otherwise, pk is set to −1.0.

Although event data significantly differs from traditional images, by trans-
forming it into image-like representations, they can be made compatible with
prevalent vision models that take images as input [2, 33, 36]. Many studies on
event representation have been conducted recently. For example, Event Spike
Tensor (EST) [12], a popular event representation method, employs differen-
tiable kernel convolution and quantization layers to transfer the event to grid
representations considering both time stamp and polarity:

V±(xw, yh, tn) =
∑
ek∈E

f±(xk, yk, tk)× δ(xw − xk, yh − yk, tn − tk), (2)

where xw ∈ {0, 1, ...,W−1}, yh ∈ {0, 1, ...,H−1}, tn ∈ {t0, t0+∆t, ..., t0+B∆t},
t0 denotes the first time stamp, ∆t denotes the bin size, and B indicates the
number of temporal bins, ± means the two kinds of polarities. W and H are the
width and height of event data, respectively. δ(x, y, t) = ∇(x, y)max(0, 1−| t

∆t |),
where ∇(·) is an indicator function.

Backdoor attack on event representation. With the asynchronous event
data converted into image-like representations, attackers can simply embed the
image backdoor triggers as features to directly poison those representations (e.g .,
FIBA [10] shown in Fig. 3) to initiate backdoor attacks. The overall process can
be described as:

fθ(Rω(E)) → l, fθ(T (Rω(E))) → c, (3)

where Rω(·) denotes the module for converting the event stream to image-like
representations. Generally, an event vision model F{θ,ω} consists of both repre-
sentation module Rω and task-specific model fθ.

However, due to the close integration of the event representation module with
downstream task-specific models, attackers typically cannot access this event
representation. Consequently, poisoning the event representation becomes a less
feasible threat operation for event vision tasks. Since event vision tasks begin
with using the event stream as input, the data transmitted and utilized through-
out the process is always the original event data. Malicious attackers are more
likely to access this original event data during its transmission. Therefore, com-
pared to compromising the event representation, directly poisoning the original
event data presents a higher value.
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Fig. 2: The pipeline of the event data-based backdoor attacks. (a) The principle of
event activation: events are generated when there are relative changes in brightness
that exceed a threshold σ. (b) The flowchart of vision models based on event data. Each
event stream needs to be first converted to an image-like representation by Rω(·) [12].
Generating poisoned samples by the immutable trigger (c) and mutable trigger (d),
respectively. Tξ∗(·) is the mutable trigger generator with its best parameters ξ∗. +○
indicates the concatenation operation.

4 Methodology

We introduce backdoor attacks into the context of asynchronous event data
through a more practical strategy, i.e., initiating backdoor attacks by poisoning
the event data:

F{θ,ω}(E) → l, F{θ,ω}(T (E)) → c, (4)

where F{θ,ω} denotes the event vision model with learned parameters, T (·) in-
dicates the trigger injection function and c represents the attacker-chosen label.
We first discuss the threat model to event-based tasks and then introduce im-
mutable and mutable triggers in the following sections to reveal the possible
approaches for backdoor attacks on event-based vision models.

4.1 Threat model

Attacker’s capability. In practice, attackers have no ability to control the
training details of event-based models (e.g ., model structure, loss function, etc.),
while accessing some training data is allowed. During inference, attackers can
only access the original event data without any rights to manipulate the inference
process, without any information about the event representation methods.

Attacker’s goal. The attacker aims to create a backdoored event-based model
that incorporates a stealthy backdoor. This backdoor would be activated when
a specific pattern is injected, resulting in the prediction that is predetermined
by the attacker. Generally, attackers hope that the backdoor can be activated
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Algorithm 1: Backdoor Attack via Mutable Trigger
Input: Classifier fθ(·), Trigger injector Tξ(·), attacker-chosen label c, event

Training dataset Etrain = {< Ek, lk >}Nk=1, batch size b, trigger size m,
learning rate γf and γT , and Maximum iteration number MaxIters,
balance weights α and β, CrossEntropy loss function L.

Output: fθ∗(·), Rω∗(·), and Tξ∗(·).
1 Initialize θ and ξ, θ∗ ← θ, ξ∗ ← ξ;
2 Function MutableT(E , Tξ):
3 Sample m time stamps t = {ti}mi=1 from E ;
4 Build our mutable trigger T with poisoned time stamps Tξ(t);
5 Inject the mutable trigger T into E to generate poisoned E ′;
6 return E ′;
7 End function;
8 for i = 1 to MaxIters do
9 Sample minibatch < E , l > from Etrain;

10 Sample poisoned event E ′ = MutableT(E , Tξ);
11 θ ← θ − γf∂θ(L(fθ(Rω(E)), l) + L(fθ(Rω(E ′)), c));
12 ω ← ω − γf∂ω(L(fθ(Rω(E)), l) + L(fθ(Rω(E ′)), c));
13 ξ ← ξ − γT ∂ξLT (5)(Tξ(t), t);
14 θ∗ ← θ, ω∗ ← ω, ξ∗ ← ξ if i%(len(Etrain)//b)) = 0;

under any circumstances and the injected trigger won’t be discovered users, i.e.,
high effectiveness and stealthiness.

4.2 Immutable trigger

The essence of the immutable trigger lies in the deliberate placement of mali-
cious events at particular spatial locations and time stamps within various event
data streams. After injecting these events, they can maintain consistent spatial
positions and time stamps across different event streams (see Fig. 1 (d)). Given
that the spatial dimension dictates the shape and the temporal dimension in-
fluences the pixel values in the event representation, these injected malicious
events manifest as identical patterns in the representations. As shown in the 4th

column of Fig. 3, our immutable trigger can still show identical patterns across
different asynchronous event data. We synthesize the immutable trigger manu-
ally with (x, y) coordinates sampled from a predefined region, timestamp by α,
and polarity by β. Then, we inject it into the original event stream and modify
the label as the attacker-desired target. Based on this strategy, we can generate
more triggered samples according to the poison ratio ρ to train a victim model.

4.3 Mutable trigger

The immutable trigger contaminates various asynchronous event data using fixed
settings in dimensions of coordinates, timestamps, and polarities. Its fixed nature
may not adequately address the distinct characteristics of different event data,
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potentially diminishing its effectiveness in backdoor attacks. The more malicious
triggers should be designed based on the internal patterns of the original events.
Thus, we introduce a mutable trigger pattern incorporating timing variations to
better adapt to diverse event data.

As shown in the last column of Fig. 3, the mutable trigger possesses two char-
acteristics: ❶ The malicious events inserted across various asynchronous event
data streams possess identical spatial values, ensuring that the trigger patterns
maintain the same shapes within the image-like representation; ❷ The inserted
events are given adaptive time stamps (see the event trigger in Fig. 1), leading
to trigger patterns with unique pixel values in the image-like representation. The
entire methodology for embedding malicious triggers with adaptive time stamps
is depicted in Algorithm 1. In this process, several events are strategically placed
at time stamps deduced by a malicious events injector, referred to as Tξ(·). First,
we randomly sample m time stamps from the original event as the input of Tξ(·),
which can generate a trigger T using the predicted malicious time stamps. Then,
we inject this trigger into the original event and modify the corresponding labels
according to the attacker’s targets. Finally, we train the deep classifiers and our
trigger injector Tξ(·) jointly to encourage the produced triggers that best suit
the classifiers. This scheme can utilize the classifier to guide the injector Tξ(·)
to learn the adaptive triggers for different events. We design a trigger optimiza-
tion loss function to ensure that Tξ(·) can learn the unique characteristics along
the assigned dimensions. Note that our trigger generator is optimized with the
classifier only during the training phase; this does not imply that the generator
is tied to the classifier during inference.

Since the event stream consists of a series of individual and discrete events,
we propose measuring the cosine similarity, expectation, and variance to identify
the most malicious patterns from the original event. For effectiveness, we need
to ensure that the Tξ(·) can generate poisoned time stamps that have a distinct
pattern with the original event data. So, we reduce the cosine similarity between
the poisoned time stamps and benign counterparts to improve the difference
between trigger and clean data. However, solely focusing on maximizing the
difference between the malicious triggers and the original event data may cause
the generated events to deviate significantly from the distribution of benign data,
thereby impacting the performance of classifiers on clean data. We attempt to
push the expectation and variance of poisoned time stamps to those of benign
samples, which may encourage the Tξ(·) to generate the time stamps as similar
to the original inputs. The trigger generation loss is then formulated as:

LT = λ1
Tξ(t) · t

||Tξ(t)|| × ||t||
+ λ2 ψ(Tξ(t), t), (5)

where t = {ti}mi=1 indicates the sampled m time stamps from the benign event
data. Tξ(t) denotes the generated malicious time stamps. ψ(·) involves calcu-
lating the square difference between the malicious time stamps and clean time
stamps in terms of the expectation and variance, respectively. The detailed train-
ing process is shown in line 8 ∼ 14 of Algorithm 1.
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Benign event Poisoned event Poisoned event Immutable trigger Poisoned event Mutable trigger

BadNets

FIBA

Fig. 3: Visualization results corresponding to the benign events, poisoned events, and
the corresponding triggers. Trigger details are zoomed in on the red square for better
visibility. For the representation trigger, we show two types of triggers in 2nd column
generated by BadNets [13] (1st row) and FIBA [10] (2nd row), respectively.

Table 1: Quantitative comparison results of different triggers imposed on event data-
based deep models. We show the Representation triggers (R. triggers) obtained by
BadNets [13] and FIBA [10] in Fig. 3.

Dataset Victim Model R. trigger BadNets R. trigger FIBA Immutable trigger Mutable trigger
CDA↑ ASR↑ CDA↑ ASR↑ CDA↑ ASR↑ CDA↑ ASR↑

N-Caltech101 [30]

ResNet-18 [14] 57.24 0.0 82.47 43.39 85.61 96.73 86.21 99.71
VGG-16 [40] 65.86 100.0 67.82 100.0 70.64 18.12 85.26 97.65
Swin-S [27] 46.67 100.0 43.45 100.0 74.94 21.61 88.99 99.94
ViT-S [8] 40.06 100.0 44.48 100.0 50.86 14.74 47.31 87.73

N-Cars [41]

ResNet-18 [14] 91.27 99.92 90.18 100.0 92.23 99.67 92.72 100.0
VGG-16 [40] 91.83 100.0 91.98 100.0 92.11 99.70 92.93 100.0
Swin-S [27] 84.91 100.0 90.98 100.0 79.74 50.91 94.76 100.0
ViT-S [8] 84.73 100.0 84.53 100.0 84.53 97.29 87.17 100.0

4.4 Implementation details

We implement our method using PyTorch. The trigger injector Tξ(·) is built by
the Multi-Layer Perceptron (MLP) with 5 layers, each having 64 channels. The
length of synthesized events, m, and poison ratio, ρ, are set to 100 and 0.1. For
the immutable triggers, we set the time stamp, α, and polarity, β, as 10−2 and
1.0, respectively. For mutable triggers, we sample the time stamps randomly
and set the balance weights λ1 and λ2 are 1 and 2, respectively. We use the
SGD optimizer with learning rate 10−4 and momentum 0.9 to train classifiers
and the trigger generator Tξ(·). The learning rate is decreased by exponential
scheduler with gamma 0.5. All backdoored methods are trained for 60 epochs
while finetuning for defense by 20 epochs.

5 Experiments

5.1 Setup

Dataset. To validate the effectiveness of our methods, we use the N-Caltech101
dataset [30] and the N-Cars dataset [41] in our evaluation. N-Caltech101 [30] is an
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Fig. 4: Quantitative results about Immutable Trigger (IT) and Mutable Trigger (MT)
evaluated by 22 deep classifiers on the event data from N-Caltech101 dataset [30]. The
names of some baselines are abbreviated due to space limitation (Res: ResNet [14], Eff:
EfficientNet [45], Inc: Inception [44]).

event-based version of the frame-based Caltech101 dataset [9], which is obtained
by affixing the ATIS sensor [34] to a motorized pan-tilt unit to record the moved
Caltech101 examples. N-Caltech101 [30] consists of 4356 training samples, 2612
validating samples, and 1,741 testing samples in 101 classes. The amount of data
varies greatly among different categories. N-Cars (Neuromorphic-Cars) [41] is a
real-world event dataset for recognizing whether a car is present in a scene. It is
recorded using an ATIS camera [34] that is mounted on a car. According to the
partition in [37], the N-Cars dataset [41] includes 8392 training samples, 2462
validation samples, and 8608 testing samples in two classes.

Victim model. For evaluating the effectiveness of the proposed methods com-
prehensively, we quantify the results of 22 popular classifiers with different net-
work architectures, including ResNet [14], VGG [40], EfficientNet [45], Incep-
tion [44], ViT [8], Swin Transformer [27], DeiT [46]. All models are implemented
by the official codes, with modifications made only to the input and output
channels. EST [12] is selected as the event representation network.

Error metric. We adopt the Attack Success Rate (ASR) and Clean Data
Accuracy (CDA) to evaluate the effectiveness of the proposed methodology on
both two datasets against different baselines. Specifically, ASR is the proportion
of successfully attacked poison samples in the total poison examples, showing the
effectiveness of the tested backdoor attackers. CDA is defined as the accuracy
of testing on benign event data, which is used to evaluate the performance of
backdoored models on untriggered data. Higher is better for both error metrics.

5.2 Evaluation

Representation trigger. As shown in Fig. 3, we can use different represen-
tation triggers (an abnormal pixel block: BadNets [13] or a frequency pertur-
bation: FIBA [10]) to poison the event representations. From Table 1, it can
show that such a representation trigger can achieve a good attack success rate
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Fig. 5: Quantitative results about Immutable Trigger (IT) and Mutable Trigger (MT)
evaluated by 22 deep classifiers on the event data from N-Cars dataset [41]. The names
of some baselines are abbreviated due to space limitation (Res: ResNet [14], Eff: Effi-
cientNet [45], Inc: Inception [44]).

on both two datasets. However, such a performance highly hinges on the image-
level backdoor approaches. For example, BadNets [13] is unable to compromise
ResNet-18 on the N-Caltech dataset because the small white block injected as a
backdoor trigger is hard to detect by a lightweight model when processing var-
ious data with noises. FIBA [10] imposes some confusion for deep classifiers on
clean data, resulting in low CDA. Furthermore, as discussed in Section 3.2, the
event representation is inaccessible to attackers during the inference phase, which
significantly undermines the effectiveness of image backdoor attack methods.

Immutable trigger. In Fig. 3, we present the visualization results of the im-
mutable triggers and the corresponding poisoned event data. The results demon-
strate that the immutable trigger does not negatively impact the visualization
of original event samples. As Fig. 4 shows, our immutable trigger successfully
attacks most vision models on N-Caltech101 dataset [30], such as ResNet [14], Ef-
ficientNet [45], and Inception-V3 [44], without causing confusion on benign data.
However, the other classifiers like VGG [40], ViT [8], and DeiT [46] fail to detect
the injected triggers during the attack process. Detailed quantitative results are
shown in Table 1. This discrepancy can be attributed to the specific charac-
teristics of the N-Caltech101 dataset [30], which contains a significant amount
of background noise and imbalanced data distribution. As a result, the fixed
and unified immutable trigger may not be suitable for different event samples
attacking these more deep classifiers.

On the N-Cars dataset [41], our immutable trigger achieves successful attack-
ing performance in most cases. As shown in Fig. 5, the overall performance of
each classifier on N-Cars [41] is better than on N-Caltech101 [30] due to its larger
data scale. Additionally, we can find that the Transformer-based classifiers are
slightly inferior to convolution-based models on the N-Cars dataset [41]. In sum-
mary, our immutable trigger successfully attacks the majority of classifiers with
a high ASR, while maintaining the model’s performance on the benign data.
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Table 2: Performance against backdoor defense method: Neural Polarizer [54].

Defense Method R. trigger BadNets R. trigger FIBA Immutable trigger Mutable trigger
CDA↑ ASR↑ CDA↑ ASR↑ CDA↑ ASR↑ CDA↑ ASR↑

NP (NeurIPS24 [54]) 60.00 1.03 15.63 0.0 66.84 22.01 83.03 64.11

Mutable trigger. The last two columns of Fig. 3 present the visualization
results of the mutable triggers and the corresponding poisoned event data, re-
spectively. The mutable trigger has different pixel values across different event
data and is less noticeable than the other two kinds of triggers. Table 1 presents
the evaluation results of mutable triggers on the N-Caltech101 [30] and N-Cars
datasets [41]. The findings indicate that the mutable trigger consistently out-
performs the immutable trigger in terms of attack performance and clean data
accuracy. Compared to representation triggers, our mutable trigger retains a
strong attack capability and imposes less confusion on clean data.

Fig. 4 and Fig. 5 show the quantitative results of each classifier with mutable
triggers on the N-Caltech101 [30] and N-Cars [41] datasets. Compared to the
immutable trigger, the mutable trigger achieves better attacking performance
on most vision models, while keeping a high accuracy on the benign data. Only
on the N-Caltech101 dataset [30], the mutable trigger does not achieve excellent
attacking performance on the Inception-V3 [44]. This is mainly caused by the
data scales and background noise contained in this dataset. However, this issue
has been effectively resolved when users have a large number of training samples,
such as the N-Cars dataset [41].

Table 3: Importance of the proposed
loss function. w/o denotes the elimi-
nated item in Eq. (5).

w/o cos. w/o ψ(·) LT

CDA 80.91 85.67 86.21
ASR 11.93 100.00 99.71

Table 4: Effectiveness of poisoning differ-
ent dimensions of event data. [·] indicates
the corresponding key in event data.

T (E[t]) T (E[p]) T (E[x,y,t,p])
CDA 82.93 84.31 86.21
ASR 9.71 8.56 99.71

5.3 Ablation studies

Backdoor defense. To evaluate the robustness of our backdoor triggers, we
adopt a state-of-the-art backdoor defense method: Neural Polarizer (NP) [54],
to defend against each method on the N-Caltech dataset [30]. Neural polarizer is
inspired by light polarization, which injects a new neural layer into the triggered
model to filter out poisoned features. Detailed defense results are shown in Ta-
ble 2, which demonstrates that we should draw greater attention to the potential
risks posed by backdoor attacks on event-based models. Image backdoor attack
methods inject triggers into the representations. These triggers are easily polar-
ized since the benign features and poisoned features are separated. We inject
triggers into the event data itself, where the benign and poisoned features are
closely intertwined, preventing polarization.
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Table 5: Influence caused by the size of the injected trigger. We set the height ×
width = m to represent the height and width of our triggers, where m is the length of
synthesized events.

1× 10 5× 5 10× 10 20× 20 30× 30

CDA 0.8458 0.8435 0.8561 0.8681 0.8796
ASR 0.0820 0.0694 0.9673 0.9954 0.9994

Trigger optimization loss function. To improve the effectiveness of injected
triggers, we have designed a new loss (see Eq. (5)) for supervising the trigger
generation. We conduct the ablation study about each component of Eq. (5) in
Table 3. If we eliminate the cosine similarity between the poisoned timestamps
and the original input (w/o cos.), it will be challenging for downstream models
to detect the generated triggers since this term strengthens the attack ability of
our trigger. Without calculating the square difference between two terms (w/o
ψ(·)), the mutable triggers are prone to be captured by downstream task models,
but this also introduces some confusion on the benign samples.

Table 6: Experimental performance of the injected trigger under different event rep-
resentations. And the time cost for each method to convert an event stream into the
corresponding image-like representation.

EST [12] EF [25] TS [20] VG [53] Tencode [15]

CDA 0.8561 0.8050 0.8016 0.8790 0.8050
ASR 0.9673 0.8830 0.8635 0.9977 0.9461
Time (s) 0.0013 0.3214 0.5102 0.3894 0.5938

Trigger dimension. As we discussed before, poisoning the event data in a
single dimension can also inject triggers successfully. However, chaotic distribu-
tions result in poor attacking performance. Now, we study the effectiveness of
this straightforward solution by poisoning the timestamps and polarities, respec-
tively. Table 4 shows quantitative results of different trigger injection strategies
tested by ResNet-18 on the N-Caltech dataset. It’s clear that poison single di-
mension of event data cannot execute backdoor attacks successfully.
Trigger size. Generally, trigger size plays a crucial role in determining the
effectiveness and stealthiness of a backdoor attack method. An experiment has
been conducted in Table 5 to show the correlation between the trigger size and
their attacking effectiveness. From Table 5, the larger trigger size usually leads
to higher values on CDA and ASR. However, when the trigger size increases, it
also becomes obvious from Fig. 3. This is in line with observations on image-level
backdoor attacks: a bigger trigger enhances effectiveness, but it also makes the
trigger more noticeable. Considering its comprehensive performance, we select
the small but effective size of 10× 10 to design our triggers.

Event representation. Event Trojan aims to embed triggers into the origi-
nal data, enabling the proposed method to be effective after being converted
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Table 7: Stealthiness of the poisoned event representations.

BadNets FIBA Immutable T. Mutable T.

PSNR↑ 39.772 27.769 75.064 65.453
SSIM↑ 0.996 0.4586 1.000 1.000
LPIPS↓ 0.005 0.0743 0.000 0.000

by any event representation techniques. Since we have emphasized in the threat
model that attackers have no ability to access the event representation modules.
As depicted in Table 6, our approach has yielded impressive CDA and ASR
results across various event representation methods such as Event Spike Ten-
sor (EST) [12], Event Frame (EF) [25], Time Surface (TS) [20] Voxel Grid (VG) [53]
and Tencode [15]. Considering the time consumption for event representations,
we select the EST [12] as the event representation module in our experiments.
Detailed results based on EST on more victim models are shown in Table 1.
Stealthiness. Event data is a type of multidimensional time-series data that
are hardly perceptible to users. Meanwhile, image backdoor attacks (e.g ., Bad-
Nets [13], FIBA [10]) cannot poison the event data itself since they only inject
the trigger into the corresponding representations (see Sec. 3.2). Hence, we can-
not directly assess the stealthiness of various methods on the poisoned event
data. A possible solution is to evaluate it by converting the event data into cor-
responding representations. Table 7 shows the stealthiness comparison of four
kinds of poisoned event representations. Our triggers have better stealthiness
than comparison methods, and the immutable trigger has a higher PSNR than
the mutable trigger because of its fixed pattern.

6 Conclusion

Our paper investigates the potential risks posed by backdoor attacks on event-
based deep models. We propose the Event Trojan framework and have discussed
various potential strategies for backdoor attacks and identified their pros and
cons. Several designs are made to accommodate the designed trigger to max-
imize its attacking effectiveness. We further conduct thorough experiments to
evaluate the proposed trigger injection strategies. From our experiments, while
the multidimensional nature of event data makes it challenging to conduct back-
door attacks as usual, it does not indicate that users of event data can rest easy.
Attackers are still capable of injecting harmful events to compromise downstream
vision models. Moreover, since the current state-of-the-art defense method is in-
effective against Event Trojan attacks, increased awareness of the security issues
in event data-based models should be given.
Limitations and future work. This paper focuses on studying the security
issues of event data-based deep neural networks against backdoor attacks. Ex-
tensive experiments are conducted on the event-based classification task to show
that we should pay greater attention to the potential threat. In the future, we
will study this issue caused by Event Trojan in more general event-based tasks.
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