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S1 Overview

This supplementary document provides more discussions, reproduction details,
and additional results that accompany the main paper:

– Sec. S2 discusses the detailed physical model of the Electromagnetic Inverse
Scattering Problems (EISP).

– Sec. S3 provides details of the system settings for each dataset.
– Sec. S4 presents reproduction details and pseudocode of our method.
– Sec. S5 provides additional results, including ablation studies on different

backbones and variation loss, and additional qualitative and quantitative
results.

S2 Detailed physical model of EISP

To clarify the physical model of the EISP, we copy some key equations in the
main paper here. The data equation describes the wave-scatterer interaction,
which can be formulated as

Et = Ei +GD · J, (S1)

where Et, Ei, and J are the discrete total electric fields, incident electric fields,
and induced current, respectively. GD is discrete free space Green’s function in
Region of Interest (ROI) D. The relationship between the induced current J and
total electric fields Et can be described as

J = Diag(ξ) ·Et, (S2)
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where Diag(ξ) is the diagonal matrix of the contrast function. The contrast ξ is
defined as

ξ = εrεrεr − 1, (S3)

where εrεrεr is the relative permittivity. The data equation describes the scattered
field as a reradiation of the induced current, which can be expressed as

Es = GS · J, (S4)

where Es is the discrete scattered field, and GS is the discrete Green’s function
to map the induced current J to scattered field Es.

S2.1 Forward estimation

The aim of forward estimation is to deduce the scattered fields Es from given
incident fields Ei. The forward estimation is linear because Es and Ei have a
linear relationship [4]. Specifically, by replacing J in Eq. (S1) with Eq. (S2), we
can obtain

Et = Ei +GD · Diag(ξ) ·Et. (S5)

Reformulating Eq. (S5) yields the expression for total fields Et:

Et = (I−GDDiag(ξ))−1 ·Ei. (S6)

By combining Eq. (S2), we can obtain the expression of induced current J as

J = Diag(ξ) · (I−GDDiag(ξ))−1 ·Ei. (S7)

Then, the expression for the scattered fields Es can be obtained from Eq. (S4)
and Eq. (S7) as

Es = GS · Diag(ξ) · (I−GDDiag(ξ))−1 ·Ei. (S8)

Since Green’s functions GD and GS are fixed in our problem, and the contrast
ξ, or relative permittivity εrεrεr is the physical property independent of the incident
fields, Eq. (S8) is a linear equation in variables Es and Ei. Therefore, we can
easily obtain the scattered fields Es through Eq. (S8) if the relative permittivity
εrεrεr is known. We propose to make use of the convenience and benefits of the
forward estimation to circumvent the difficulties of EISP.

S2.2 Difficulties of EISP

In this section, we discuss three main challenges of EISP and explain why our
approach can address these challenges.
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Inverse. In an inverse problem, the incident fields Ei are given, and the scat-
tered fields Es are measured by receivers, and then the task is to reconstruct
relative permittivity εrεrεr from the measured scattered fields. From Eq. (S3), this
task is equivalent to predicting the contrast ξ. An intuitive approach is to in-
fer the induced current J from the scattered field Es by inverse deduction from
Eq. (S4). However, the discrete Green’s function is a complex matrix of dimen-
sion Nr ×M2, where Nr is the total number of receivers and M ×M is the size
of the discretized subunits of ROI. In practice, we have Nr ≪ M2. Since such
a less-than relation does not provide enough information to determine J from
Eq. (S4), it is difficult to obtain relative permittivity εrεrεr in this inverse way.

Nonlinearity. The nonlinearity poses significant challenges to the solution of
the EISP. We explain nonlinearity from two perspectives. First, in Eq. (S8), the
nonlinearity is due to the fact that the scattered fields Es are not doubled when
the scatterer’s permittivity is doubled. This phenomenon is caused by the con-
dition that total fields Et is a quantity related to the relative permittivity εr
according to Eq. (S6). Then, The nonlinearity is due to the multiple scattering
effects that physically exist. In Eq. (S1), the global-effect term GD · J is caused
by multiple scattering effects [4], a factor leading to the nonlinearity. Tradi-
tional methods, such as Born approximation [8,16], involve a linearization of the
original problem by neglecting the effect of multiple scattering. However, these
methods can introduce significant errors and compromise the accuracy of the
computation when the multiple scattering amplitude is large and unignorable.

Discretization. Although the relative permittivity εr exhibits continuous prop-
erties, numerical computations based on the aforementioned discrete equations
can only obtain the discrete form of the relative permittivity with low resolu-
tion. Such a low resolution always makes it difficult to recognize the scatterer’s
details.

Why can our approach address these challenges? We propose an implicit
forward solution for EISP. First, we apply Implicit Neural Representations (INR)
to represent relative permittivity εr and induced current J separately. Then we
optimize these two representations through forward estimation by constructing
two loss functions, namely data loss Ldata and state loss Lstate. In this way,
we do not need to worry about the difficulties caused by inverse estimation
and nonlinearity. Besides, due to the inherent property of INR to approximate
continuous functions, our method can provide results with flexible resolutions.

S3 Details of system settings

We conduct our experiments on Synthetic, real-world, and 3D datasets. There
are some differences in system settings for each dataset, and we provide separate
explanations for each.
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S3.1 Settings for synthetic datasets

Two synthetic datasets, the Circular-cylinder dataset and the MNIST dataset [18,
20], are used for our experiments. The basic settings are the same for these two
datasets. We set operating frequency f = 400 MHz, and the ROI is a square
with the size of 2× 2m2. The placement scheme for transmitters and receivers is
illustrated in Fig. S1. There are 16 transmitters and 32 receivers equally placed
on a circle of radius 3 m centered at the center of ROI.
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Fig. S1: Positions of the transmitters and receivers on the measurement circle for
synthetic datasets. The green area indicates the ROI.
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Fig. S2: The ground truth of FoamDielExt, FoamDielInt, and FoamTwinDiel scenarios
in Institut Fresnel’s database [7].
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Rotate for the next
measurement

Fig. S3: Positions of the transmitters and receivers on the measurement circle for
Institut Fresnel’s database [7]. For FoamDielExt/FoamDielInt and FoamTwinDiel, the
measurement system rotates by 45◦ and 20◦, respectively, for the next measurement.
The green area indicates the ROI.

S3.2 Settings for real-world dataset

Institut Fresnel’s database [7] is a famous real-world electromagnetic scattering
dataset in the field of EISP. We use FoamDielExt, FoamDielInt, and FoamTwinDiel
scenarios in Institut Fresnel’s database for testing. As presented in Fig. S2, all
the cases consist of two kinds of cylinders. The large cylinder (SAITEC SBF
300) has a diameter of 80 mm with the relative permittivity εr = 1.45 ± 0.15.
The small cylinder (berylon) has a diameter of 31 mm with the relative per-
mittivity εr = 3 ± 0.3. The "±" indicates the range of uncertainty associated
with the experimental value. The operating frequencies are taken from 2 to 10
GHz with a step of 1 GHz. The ROI is a square with the size of 0.15× 0.15m2.
All the transmitters and receivers are equally placed on a circle of radius 1.67
m centered at the center of ROI. For all scenarios, 241 receivers are used for
each measurement, with a central angle step of 1◦, without any position closer
than 60◦ from the transmitter [7]. The placement schemes for FoamDielExt,
FoamDielInt, and FoamTwinDiel are shown in Fig. S3. After each measurement,
the measurement system rotates by a certain angle for the next measurement.
For FoamDielExt and FoamDielInt, this angle is 45◦, while for FoamTwinDiel, it
is 20◦. This means there are 8 transmitters for FoamDielExt and FoamDielInt,
while there are 18 transmitters for FoamTwinDiel.

S3.3 Settings for 3D dataset

We also test our method on the 3D MNIST dataset [9]. We set the permittivities
of the objects to be 2. We set operating frequency f = 400 MHz, and the ROI is
a cube with the size of 2×2×2m3. As shown in Fig. S4, there are 40 transmitters
and 160 receivers. The transmitters and receivers are all located at the sphere of
radius 3 m around the target centered at the center of ROI. For the positions of
transmitters, the azimuthal angle ranged from 0◦ to 315◦ with a 45◦ step, and
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the polar angle ranged from 30◦ to 150◦ with a 30◦ step. For the positions of
receivers, the azimuthal angle ranged from 0◦ to 348.75◦ with an 11.25◦ step,
and the polar angle ranged from 30◦ to 150◦ with a 30◦ step.
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Fig. S4: Positions of the transmitters and receivers on the measurement sphere for 3D
dataset.

S4 Reproduction details and Pseudocode

S4.1 Reproduction details

In this section, we present reproduction details and pseudocode of our method.
Our code will be released upon the acceptance of this paper.

Additional network details. Two eight-layer MLPs with 256 channels and
ReLU activations are used to individually predict the relative permittivity εr
and induced current J . The difference between these two networks lies in the
last layer. The output dimension of the last layer is 1 for relative permittivity and
2 for induced current, representing the real and imaginary parts, respectively.

Computational details. In Section 4.2, we have developed formulas to predict
the relative permittivity and induced current for each transmitter. Specifically,
for p-th transmitter, we can obtain the predicted scattered fields as

Ês
p = GS · Jp, p = 1, 2, · · · , Nt, (S9)

where GS is a Nr ×M2 complex matrix, denoting the discrete Green’s function,
and Jp and Ês

p are complex vectors of dimensions M2 and Nr, denoting the dis-
crete induced current and predicted scattered fields inspired by p-th transmitter,
respectively. Nt and Nr are the total numbers of transmitters and receivers, re-
spectively, and M ×M is the size of the discretized subunits of ROI. Jp is the
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discrete induced current directly sampled from Hϕ. To calculate the mismatch
of the state equation, we can obtain the predicted induced current Ĵp as

Ĵp = Diag(ξ) ·Ei
p + Diag(ξ) ·GD · Jp, p = 1, 2, · · · , Nt, (S10)

where ξ is a vector of dimension M2, reshaped from spatially queried network Fθ,
representing the contrast value. Ĵp is a complex vector of dimension M2, indi-
cating the induced current computed via the mathematical correlation. Diag(ξ)
is the diagonal matrix of the contrast function with dimension M2 ×M2. GD is
also a discrete Green’s function with dimension M2 ×M2.

Although we provide the computation formulas for each transmitter when
calculating Eq. (S9) and Eq. (S10) for all Nt transmitters, we use a more efficient
approach. To be precise, equations in Eq. (S9) and Eq. (S10) can be rewritten
as

Ês
all = GS · Jall, (S11)

and
Ĵall = Diag(ξ) ·Ei

all + Diag(ξ) ·GD · Jall, (S12)

where
Ês

all = [Ês
1, Ê

s
2, · · · , Ês

Nt
], (S13)

Jall = [J1,J2, · · · ,JNt ], (S14)

Ĵall = [Ĵ1, Ĵ2, · · · , ĴNt ], (S15)

Ei
all = [Ei

1,E
i
2, · · · ,Ei

Nt
]. (S16)

In Eq. (S11) and Eq. (S12), Ês
all is a matrix of dimension Nr × Nt, contain-

ing the scattered fields referring to all transmitters. Jall, Ĵall, and Ei
all are all

M2 ×Nt matrices. Therefore, during implementation, the loss functions can be
equivalently rewritten as

Ldata =
∥Ês

all −Es
all∥22

∥Es
all∥22

, (S17)

and

Lstate =
∥Ĵall − Jall∥22

∥ Diag(ξ) ·Ei
all∥22 +∆

, (S18)

where Es
all is the ground truth measured by receivers in a matrix form, ∆ denotes

a small number to improve stability by preventing the denominator from being
zero, and ∥ · ∥2 denotes the matrix 2-norm.
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Calculation of Green’s functions. The two-dimensional scalar Green’s func-
tion [4] can be expressed as

g (x,x′) =
i

4
H

(1)
0 (k0 |x− x′|) , (S19)

where H
(1)
0 (·) is the zeroth order Hankel function of the first kind, k0 = 2π/λ0

is the wavenumber in free space, and λ0 is the wavelength in free space. x and
x′ are the coordinates of two corresponding positions.

We use the method of moment (MOM) [13] with the pulse basis function and
the delta testing function to discretize the domain D into M ×M subunit, and
the centers of subunits are located at xn with n = 1, 2, ...,M2. Then, we can
discretize this continuous Green’s function into matrix GD and GS respectively.
The element in the n−th row and n′−th column of the M ×M matrix GD can
be obtained as

GD(n, n′) = k20An′g (xn,xn′) , n = 1, 2, . . . ,M2, n′ = 1, 2, . . . ,M2, (S20)

where An′ is the area of the n′−th subunits. Similarly, the element in the q−th
row and n′−th column of the Nr ×M matrix GS can be obtained as

GS(q, n
′) = k20An′g (xq,xn′) , q = 1, 2, . . . , Nt, n

′ = 1, 2, . . . ,M2. (S21)

The discretized forms of Green’s function can then be used in the calculations
in Eq. (S9) to Eq. (S12).

Preprocessing for real-world dataset. To handle real-world and synthetic
data in a unified manner, we calibrate the real-world data before using it. Fol-
lowing previous works [10, 11, 18], the calibration of real-world scattering field
data can be conducted by multiplying those data with a complex coefficient.
The complex coefficient is derived by dividing the measured incident field by the
simulated incident field at the receiver located opposite the source [7].

Implementation details of baselines. For Physics-Net [11], we follow the
formulation in [11] to get the regularization parameter β. We use the back-
bone architecture depicted in the same paper. For network optimization, we use
the SDG optimizer with momentum 0.99, a learning rate 5 × 10−6 that decays
following the step scheduler with step size 20 and decay factor 0.5. All the hy-
perparameters are recommended in the paper.

For PGAN [17], the structure of the generator and discriminator follows the
architecture in [17], respectively. We also use the hyperparameters suggested in
the paper. The number of hidden layers used in perceptual adversarial loss is
Md = 1, weight parameters β = 0.01 and γ = 4.0 for the loss function of the
generator, and m = 0.2 for the loss function of the discriminator. For network
optimization, we employ the Adam optimizer with default values β1 = 0.9, β2 =
0.999, ϵ = 10−8, and a learning rate 2 × 10−4 that decays following the linear
scheduler after the first 20 epochs during optimization. All the hyperparameters
are the ones suggested by the paper.

We directly use the codes of BPS and CS-Net to ensure the fairness of the
evaluation.
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S4.2 Pseudocode

We provide a pseudocode to offer a detailed and step-by-step understanding of
our proposed approach, as shown in Algorithm S1.

Algorithm S1: Our INR-based method for EISP
Data: Incident field Et, scattered field Es, ROI D, transmitters’ positions xt,

and receivers’ positions xr

Result: Optimized INR Fθ for the object’s relative permittivity
1 Initial INR Fθ for relative permittivity, and INR Hϕ for induced current;
2 Generate GD and GS from xt, xr and D according to definition of discretized

forms of Green’s function from Eq. (S20) and Eq. (S21), respectively;
3 For step = 1 to max_iter:
4 Infer contrast ξ from Fθ using D, and infer induced current J from Hϕ

using D and xt with random spatial sampling;
5 Calculate Ês and Ĵ from Eq. (S11) and Eq. (S10), respectively;
6 Calculate Ldata, Lstate and LTV from Eq. (S17), Eq. (S18) and total

variation function, respectively;
7 Obtain the loss L = λdataLdata + λstateLstate + λTVLTV;
8 Update θ and ϕ by minimizing L using the Adam optimizer.

S5 Additional results

Ablation study on different backbones. We study two different backbones
for INR, namely basic MLP with ReLU activations and SIREN [15]. These two
structures are both based on fully connected networks to represent continuous
mappings, so choosing either network does not affect our proof of the applica-
bility of INR. The results for different backbones are shown in Fig. S5. From
the results, both basic MLP and SIREN can accurately reconstruct the inter-
nal structures of objects. The reconstruction quality using basic MLP is slightly
better than that of SIREN.

Some previous studies point out that SIREN [15] has certain drawbacks in
terms of its implementation [5]. First, it cannot utilize the speed-up techniques
of INRs, such as the one described in Instant-NGP [12]. Second, their custom ac-
tivations are still not compatible with accelerator hardware in certain devices [5].
Therefore, we choose the basic MLP as the backbone of INR in our main paper.

Ablation study on variation loss. We further test the impact of total vari-
ation loss LTV for relative permittivity ξ on the results. We show the results
with and without LTV in Fig. S5. The results indicate that LTV improves our
model’s performance.
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Ground Truth Our method
(Basic MLP)

0.051 / 0.922

Our method
(Basic MLP w/o       )

0.056 / 0.916

Our method
(SIREN)

0.052 / 0.901

Fig. S5: Ablation study results including comparison with different backbones and
comparison with and without variation loss LTV. We show the results of a standard
test case [1] in EISP. The pixel values in the images indicate the values of the relative
permittivity. RRMSE/SSIM values are shown below the figure.

Additional qualitative and quantitative results. We present more qualita-
tive and quantitative results on the Circular-cylinder dataset [18] and MNIST
dataset [6] under different noise levels, as shown in Fig. S6 to Fig. S9. Our method
reaches the highest visual quality compared with the other baseline methods.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.031 / 0.952 0.094 / 0.817 0.055 / 0.826 0.062 / 0.844 0.043 / 0.918 0.042 / 0.897 0.041 / 0.910 0.043 / 0.911

0.032 / 0.957 0.096 / 0.825 0.058 / 0.837 0.066 / 0.853 0.037 / 0.946 0.045 / 0.902 0.046 / 0.916 0.043 / 0.923

0.031 / 0.941 0.085 / 0.821 0.054 / 0.835 0.058 / 0.852 0.037 / 0.922 0.042 / 0.901 0.037 / 0.920 0.038 / 0.922

0.022 / 0.966 0.070 / 0.875 0.043 / 0.888 0.044 / 0.899 0.019 / 0.972 0.031 / 0.932 0.022 / 0.961 0.021 / 0.965

0.035 / 0.935 0.087 / 0.804 0.058 / 0.825 0.061 / 0.841 0.039 / 0.916 0.042 / 0.895 0.038 / 0.919 0.038 / 0.920

0.026 / 0.972 0.080 / 0.885 0.049 / 0.881 0.052 / 0.895 0.027 / 0.970 0.036 / 0.934 0.027 / 0.964 0.028 / 0.968

0.023 / 0.961 0.071 / 0.858 0.043 / 0.875 0.045 / 0.889 0.026 / 0.955 0.032 / 0.923 0.023 / 0.956 0.024 / 0.956

0.033 / 0.924 0.075 / 0.812 0.051 / 0.831 0.052 / 0.845 0.039 / 0.910 0.040 / 0.889 0.038 / 0.905 0.040 / 0.896

0.029 / 0.942 0.080 / 0.834 0.048 / 0.859 0.054 / 0.864 0.038 / 0.922 0.038 / 0.909 0.036 / 0.922 0.040 / 0.907

0.026 / 0.951 0.073 / 0.847 0.047 / 0.869 0.049 / 0.879 0.031 / 0.942 0.036 / 0.910 0.031 / 0.946 0.030 / 0.942

0.028 / 0.954 0.079 / 0.845 0.050 / 0.858 0.052 / 0.876 0.028 / 0.944 0.037 / 0.913 0.030 / 0.940 0.031 / 0.940

0.017 / 0.971 0.061 / 0.882 0.034 / 0.893 0.035 / 0.905 0.032 / 0.946 0.026 / 0.934 0.020 / 0.964 0.021 / 0.963

Fig. S6: Samples obtained from synthetic Cicrular-cylinder dataset under 5% noise
level. From left to right: ground truth, results obtained by our method, BP [2], Twofold
SOM [19], Gs SOM [3], BPS [18], CS-Net [14], Physics-Net [11], and PGAN [17].
RRMSE/SSIM values are shown below each figure.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.030 / 0.905 0.097 / 0.758 0.062 / 0.726 0.064 / 0.772 0.071 / 0.762 0.051 / 0.728 0.069 / 0.765 0.069 / 0.778

0.029 / 0.916 0.097 / 0.775 0.067 / 0.745 0.069 / 0.795 0.057 / 0.826 0.051 / 0.806 0.064 / 0.805 0.060 / 0.821

0.034 / 0.892 0.086 / 0.774 0.058 / 0.761 0.061 / 0.785 0.055 / 0.806 0.047 / 0.813 0.053 / 0.817 0.054 / 0.819

0.020 / 0.930 0.070 / 0.831 0.052 / 0.793 0.049 / 0.837 0.035 / 0.864 0.039 / 0.826 0.035 / 0.856 0.035 / 0.860

0.036 / 0.891 0.087 / 0.759 0.062 / 0.746 0.064 / 0.775 0.053 / 0.816 0.046 / 0.808 0.055 / 0.807 0.050 / 0.833

0.022 / 0.940 0.080 / 0.837 0.053 / 0.786 0.054 / 0.837 0.040 / 0.877 0.044 / 0.819 0.037 / 0.885 0.040 / 0.882

0.024 / 0.920 0.072 / 0.814 0.049 / 0.784 0.047 / 0.838 0.041 / 0.854 0.039 / 0.804 0.038 / 0.866 0.039 / 0.860

0.045 / 0.853 0.076 / 0.767 0.056 / 0.748 0.054 / 0.792 0.053 / 0.790 0.045 / 0.796 0.051 / 0.801 0.053 / 0.801

0.031 / 0.893 0.081 / 0.790 0.055 / 0.772 0.056 / 0.805 0.046 / 0.836 0.048 / 0.746 0.043 / 0.847 0.044 / 0.846

0.032 / 0.891 0.075 / 0.801 0.054 / 0.782 0.053 / 0.820 0.046 / 0.825 0.055 / 0.717 0.043 / 0.846 0.046 / 0.832

0.030 / 0.906 0.079 / 0.801 0.055 / 0.767 0.054 / 0.819 0.038 / 0.862 0.044 / 0.802 0.041 / 0.855 0.040 / 0.861

0.022 / 0.914 0.062 / 0.835 0.038 / 0.822 0.038 / 0.850 0.048 / 0.819 0.041 / 0.735 0.033 / 0.872 0.033 / 0.873

Fig. S7: Samples obtained from synthetic Cicrular-cylinder dataset under 30% noise
level. From left to right: ground truth, results obtained by our method, BP [2], Twofold
SOM [19], Gs SOM [3], BPS [18], CS-Net [14], Physics-Net [11], and PGAN [17].
RRMSE/SSIM values are shown below each figure.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.026 / 0.968 0.116 / 0.698 0.065 / 0.790 0.049 / 0.869 0.056 / 0.901 0.038 / 0.927 0.054 / 0.904 0.073 / 0.842

0.021 / 0.980 0.098 / 0.756 0.057 / 0.840 0.037 / 0.918 0.032 / 0.958 0.036 / 0.938 0.035 / 0.956 0.048 / 0.915

0.019 / 0.984 0.074 / 0.830 0.053 / 0.864 0.039 / 0.912 0.050 / 0.899 0.033 / 0.948 0.026 / 0.971 0.070 / 0.866

0.020 / 0.977 0.087 / 0.783 0.054 / 0.849 0.038 / 0.912 0.025 / 0.967 0.030 / 0.952 0.024 / 0.974 0.061 / 0.885

0.015 / 0.987 0.103 / 0.758 0.054 / 0.851 0.036 / 0.927 0.025 / 0.973 0.033 / 0.949 0.020 / 0.981 0.036 / 0.951

0.024 / 0.970 0.120 / 0.706 0.063 / 0.802 0.045 / 0.884 0.042 / 0.932 0.037 / 0.938 0.036 / 0.951 0.073 / 0.829

0.018 / 0.983 0.119 / 0.731 0.060 / 0.832 0.040 / 0.911 0.034 / 0.957 0.033 / 0.950 0.018 / 0.983 0.058 / 0.899

0.021 / 0.979 0.082 / 0.752 0.064 / 0.760 0.048 / 0.853 0.039 / 0.935 0.043 / 0.893 0.024 / 0.980 0.065 / 0.887

0.028 / 0.961 0.112 / 0.737 0.064 / 0.790 0.049 / 0.866 0.039 / 0.942 0.038 / 0.932 0.026 / 0.969 0.059 / 0.891

0.010 / 0.991 0.071 / 0.860 0.035 / 0.927 0.022 / 0.963 0.047 / 0.918 0.020 / 0.971 0.014 / 0.986 0.069 / 0.861

0.020 / 0.975 0.126 / 0.683 0.058 / 0.826 0.042 / 0.899 0.043 / 0.933 0.035 / 0.941 0.026 / 0.971 0.071 / 0.846

0.013 / 0.988 0.087 / 0.832 0.041 / 0.914 0.029 / 0.951 0.037 / 0.949 0.025 / 0.965 0.017 / 0.984 0.059 / 0.878

Fig. S8: Samples obtained from synthetic MNIST dataset under 5% noise level. From
left to right: ground truth, results obtained by our method, BP [2], Twofold SOM [19],
Gs SOM [3], BPS [18], CS-Net [14], Physics-Net [11], and PGAN [17]. RRMSE/SSIM
values are shown below each figure.
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Ground Truth Our method BP Twofold SOM Gs SOM BPS CS-Net Physics-Net PGAN

0.029 / 0.924 0.119 / 0.654 0.069 / 0.710 0.052 / 0.812 0.078 / 0.798 0.043 / 0.845 0.072 / 0.826 0.084 / 0.763

0.038 / 0.904 0.099 / 0.710 0.060 / 0.756 0.045 / 0.836 0.060 / 0.834 0.050 / 0.750 0.055 / 0.866 0.061 / 0.842

0.030 / 0.929 0.076 / 0.785 0.055 / 0.790 0.039 / 0.865 0.053 / 0.873 0.042 / 0.824 0.038 / 0.895 0.082 / 0.789

0.030 / 0.920 0.090 / 0.733 0.057 / 0.775 0.038 / 0.865 0.062 / 0.824 0.034 / 0.883 0.056 / 0.868 0.065 / 0.816

0.031 / 0.918 0.105 / 0.711 0.057 / 0.774 0.040 / 0.864 0.053 / 0.863 0.041 / 0.846 0.039 / 0.901 0.051 / 0.871

0.034 / 0.912 0.123 / 0.659 0.070 / 0.716 0.051 / 0.814 0.072 / 0.794 0.042 / 0.856 0.076 / 0.817 0.095 / 0.715

0.030 / 0.921 0.121 / 0.686 0.065 / 0.735 0.046 / 0.823 0.074 / 0.824 0.034 / 0.896 0.071 / 0.826 0.083 / 0.773

0.039 / 0.905 0.087 / 0.691 0.068 / 0.680 0.050 / 0.800 0.066 / 0.816 0.050 / 0.771 0.061 / 0.830 0.098 / 0.739

0.034 / 0.914 0.114 / 0.691 0.069 / 0.708 0.054 / 0.797 0.076 / 0.794 0.049 / 0.787 0.055 / 0.843 0.076 / 0.779

0.018 / 0.939 0.071 / 0.820 0.037 / 0.861 0.025 / 0.910 0.082 / 0.761 0.032 / 0.855 0.043 / 0.897 0.094 / 0.745

0.028 / 0.921 0.128 / 0.645 0.067 / 0.735 0.049 / 0.822 0.082 / 0.769 0.039 / 0.869 0.075 / 0.803 0.086 / 0.760

0.027 / 0.924 0.087 / 0.792 0.045 / 0.837 0.034 / 0.882 0.065 / 0.823 0.039 / 0.808 0.052 / 0.877 0.091 / 0.766

Fig. S9: Samples obtained from synthetic MNIST dataset under 30% noise level. From
left to right: ground truth, results obtained by our method, BP [2], Twofold SOM [19],
Gs SOM [3], BPS [18], CS-Net [14], Physics-Net [11], and PGAN [17]. RRMSE/SSIM
values are shown below each figure.
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