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Abstract. Given an image and text description, visual grounding will find tar-
get region in the image explained by the text. It has two task settings: refer-
ring expression comprehension (REC) to estimate bounding-box and referring
expression segmentation (RES) to predict segmentation mask. Currently the most
promising visual grounding approaches are to learn REC and RES jointly by giv-
ing rich ground truth of both bounding-box and segmentation mask of the target
object. However, we argue that a very simple but strong constraint has been over-
looked by the existing approaches: given an image and a text description, REC
and RES refer to the same object. We propose Location Aware Transformer
(LoA-Trans) making this constraint explicit by a center prompt, where the sys-
tem first predicts the center of the target object by Location-Aware Network, and
feeds it as a common prompt to both REC and RES. In this way, the system con-
strains that REC and RES refer to the same object. To mitigate possible inaccu-
racies in center estimation, we introduce a query selection mechanism. Instead of
random initialization queries for bounding-box and segmentation mask decoding,
the query selection mechanism generates possible object locations other than the
estimated center and use them as location-aware queries as a remedy for possible
inaccurate center estimation. We also introduce a TaskSyn Network in the de-
coder to better coordination between REC and RES. Our method achieved state-
of-the-art performance on three commonly used datasets: Refcoco, Refcoco+,
and Refcocog. Extensive ablation studies demonstrated the validity of each of the
proposed components.
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1 Introduction

Visual Grounding includes two tasks: Referring Expression Comprehension (REC) and
Referring Expression Segmentation (RES). REC [1,6,7,13,18,20,30,31,35,38,39,42,
44, 45] tends to identify the specific entity or object being referred to in language and
estimate its bounding-box within an image while RES [4, 8, 24, 30, 34, 36, 37] involves
segmenting the specific region referred to in language within an image. Both tasks are
key focus in vision language research, demanding comprehensive understanding within
a single modality like image or language and achieving precisely cross-modality align-
ment between language and image.
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Fig. 1: This figure illustrates the relations between Referring Expression Comprehension (REC)
and Referring Expression Segmentation (RES). These two tasks have the same input images
and natural language expression. Although their objectives are different, the objects its natural
language expression referred to are the same.

Previous works treated REC and RES as separate tasks, designing methods specifi-
cally for each. REC can be categorized into two-stage pipeline and one-stage pipeline.
Two-stage pipeline [6,7,18,20,35,42,44] generates multiple proposals in the first stage,
then finds the most relevant proposal. One stage pipeline [1, 13, 30, 31, 38, 39, 45] re-
gresses the target bounding-box directly. On the other hand, RES mainly focuses on
one-stage pipeline [8, 9, 17, 27, 41]. However, there is a growing interest in exploring
the synergy between these two tasks through joint learning frameworks for two rea-
sons: (1) By sharing parameters and learning jointly, the model can avoid redundant
computations and save training time, leading to more efficient use of computational re-
sources. (2) Integrating REC and RES into a unified model, allows the model to learn
richer representations through different objectives. Several methods are proposed with
their solutions in joint learning for RES and REC. RefTR [12] utilizes a transformer for
visual-language alignment and proposes separated heads for bounding-box prediction
and segmentation map estimation. It allows the model to learn richer representations by
different optimization objectives of REC and RES. To better integrate the two tasks, in
Polyformer [19] and SeqTR [46], the segmentation mask is represented as a sequence
of discrete coordinate tokens. In this way, REC and RES are unified as point prediction
problems with the same optimization objective.

Although these methods achieve good performance through joint training, the two
tasks communicate in the decoder by self-attention mechanism, which suffers some
drawbacks: (1) The self-attention mechanism is responsible for information exchange
only but does not explicitly assume that REC and RES address the same object. Al-
though the objectives of REC and RES are different, the objects its natural language
expression referred to are the same when they have the same input images and language
expression, as shown in Fig. 1. (2) In self-attention mechanisms, information sharing
happens between all queries, without any specific coordination between tasks. The in-
formation exchange between two tasks is very important. For example, the segmenta-
tion map can provide size information which obviously is informative for bounding-box
estimation as well. Considering that, we present Location Aware Transformer (LoA-
Trans) by introducing a center prompt: a center point of the target object to be fed to
both REC and RES as a common location indicator, to explicitly constrain the targeted
object for both REC and RES is the same. TaskSyn Network further attains better task
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information exchange. The center prompt acts like a spotlight, directing the decoder’s
focus to the object mentioned in the language, resulting in better bounding box and
segmentation mask estimation. However, to mitigate potential inaccuracies in center
prompt estimation, we introduce a query selection mechanism as a backup strategy. In-
stead of using random initialization queries for bounding-box and segmentation mask
decoding, we develop a query selection mechanism to pick location-aware queries for
bounding-box estimation and segmentation. By guiding the decoder’s focus towards
the object described in the language, our model can estimate the bounding box and
segmentation mask of referred objects successfully. Furthermore, the TaskSyn Network
is designed to improve communication between the two tasks. Because REC and RES
have different goals but their information still benefits each other, the the design of
TaskSyn Network helps them process information separately while still allowing them
to share useful insights.

In summary, our contributions in LoA-Trans are threefolds:

– We introduce a center prompt to explicitly constrain that both RES and REC refer
to the same object. We also experimentally showed that the center estimation is
relatively insensitive to the quality of the final outputs.

– Instead of using random initialization queries for bounding-box and segmentation
mask decoding, we develop a query selection mechanism to pick initial location-
aware queries for better bounding-box and segmentation estimation results.

– Recognizing the distinct and complementary nature of REC and RES, we propose
a TaskSyn Network for effective information exchange between two tasks.

Our methods achieved state-of-the-art performance on three commonly used datasets:
Refcoco [43], Refcoco+ [43] hand Refcocog [26]. Extensive ablation studies demon-
strated the validity of each of the proposed components.

2 Related Work

Referring Expression Comprehension (REC). The early methods in REC mainly fo-
cused on two-stage pipeline [6, 7, 18, 20, 35, 42, 44]. The two-stage pipeline employs
the most popular detection framework e.g., Faster RCNN [5] to obtain object propos-
als. Then, all object proposals will be ranked by designed similarity score calculation
methods. To avoid detection error, one-stage pipeline [1, 13, 30, 31, 38, 39, 45] attracts
more attention recently. The transformer-like structure [1, 10] is proven to be effective
in this task.

Referring Expression Segmentation (RES). Compared with REC, most RES meth-
ods employed a one-stage pipeline. Early RES focuses on better vision and language
alignment by designing different types of attention [8, 9, 17, 27, 41]. Not so much work
implements methods like those above anymore because a one-stage interaction between
visual and language information is not enough to predict accurate pixel-wise masks. The
more recent second type of method aims at achieving better language and visual align-
ment by breaking down complex problems into cascade multiple steps. CGAN [24] and
CRIS [34] have a cascade framework in which language features can fuse many times
with multi-modality features output from the previous layer. EFN [4] and LAVT [37]
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show that better cross-modal alignments can be achieved through the early fusion of lin-
guistic and visual features. VLT [3] generates multiple sets of word attention weights
to represent different understandings.

Multi-Task Referring Grounding. The target of Multi-Task Referring Grounding
is to address RES and REC tasks jointly. MCN [25] used consistent energy maximiza-
tion to bridge two tasks together. RefTR [12] utilizes a transformer for visual-language
alignment and proposes separated decoder heads for bounding-box prediction and seg-
mentation map estimation. It allows the model to learn richer representations by differ-
ent optimization objectives. To better integrate the two tasks, In Polyformer [19] and
SeqTR [46], the segmentation mask is represented as a sequence of discrete coordinate
tokens. In this way, REC and RES are unified as point prediction problems with the
same optimization objective. Different from these methods, our proposed LoA-Trans
explicitly points out that REC and RES refer to the same object when provided with
identical inputs and perform specific information exchange between tasks.

3 Our Method: LoA-Trans

In this section, we will introduce our proposed LoA-Trans, including visual encoder,
text encoder, decoder, and training objectives. Our LoA-Trans is based on Deformable
DETR [47]. Fig. 2 shows the overall architecture of the method. We first perform visual-
language alignment by early fusion. The aligned multi-modality feature is used to es-
timate the initial object location by Location-Aware Network as the estimated center
prompt, to be fed to Queries Decoder as a common prompt for both REC and RES.
As the remedy for possible errors caused by Location-Aware Network, Mask Queries
Selection will generate other possible target object candidates as Bounding-Box and
Mask Queries.

Fig. 2: Overall framework of proposed methods. The early fusion is for visual-language align-
ment. The last layer feature maps are used for the center prompt and pixel classification network.
After re-ranking, the multi-modality features most related to the referred object are selected,
marked with yellow. The proposed TaskSyn Network passes information of segmentation queries
to bounding box queries to achieve information exchange. Note, after query selection, the multi-
modality features F are sent into six layers transformer encoder before decoder.
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3.1 Image & Text Feature Extraction and Fusion

To estimate the target segmentation mask and bounding box, we need to achieve visual
and language alignment first. We assume that an image I and a free-form language
expression with L words are given. Our approach employs the Swin Transformer [21]
as the visual encoding backbone to transform an image I, into a set of multi-level
features. We represent these features as V = {Vi}4i=1 with distinct dimensions in terms
of height Hi, width Wi, and channels Ci. We assume Hi+1 = ⌊Wi/2⌋ and so on in
our implementation. These multi-level features correspond to different stages within
the Swin Transformer, offering a comprehensive analysis of the image. Moreover, we
adopt BERT [2], a robust language encoder, as our language encoding backbone. The
extracted language features are denoted as ε = {el}Ll=1.To distill a global language
representation, we average the features of all words, resulting in em ∈ RC , where C is
the channel dimension.

In this work, we use an early fusion approach to produce multi-modality features
similar to LAVT [37]. It begins with aligning language features ε = {el}Ll=1 with the
first layer of visual features V1 using a cross-attention mechanism [33]. This creates
first-layer attention maps, pinpointing areas in the image linked to text. Attention maps
then add with the original image features V1, forming enhanced multi-modality features
F1. These multi-modality features are then advanced to the next layer to produce V2.
Then, we perform a similar process to create F = {Fi}4i=2. All these operations are
performed inside the visual encoding backbone. This step-by-step integration ensures
the gradual and thorough merging of both modalities, leading to a deeper understanding
of image and language.

3.2 Decoder

REC and RES are two very similar tasks where they share the same inputs and targeted
objects, but their output style differs. The LoA-Trans is built on Deformable DETR [47],
whose inputs include image features, reference points, and queries. In our proposed
LoA-trans, we first estimate a center prompt to indicate the location of the target ob-
ject, where the center prompt acts as a reference point to direct the decoder focus to the
object mentioned by the language. Then, we developed a query selection mechanism to
pick location-aware queries instead of random initial queries as in Deformable DETR
for bounding-box and segmentation estimation. Finally, we modify the decoder of De-
formable DETR by proposing TaskSyn Network. Besides information exchange within
queries via self-attention mechanism, our TaskSyn Network enables updated segmen-
tation queries add to updated bounding-box queries to achieve communication between
two tasks precisely. The details are illustrated in Fig 2.

Location-Aware Network. In LoA-Trans, since REC and RES address the same
object with the same inputs, we introduce a center prompt to highlight the targeted
object for both RES and REC are the same. The center prompt acts as a reference point
to direct the decoder’s focus to the object mentioned in the language. To estimate the
center prompt, we design a Location-Aware Network. The Location-Aware Network
utilizes multi-modality features in the last layer F4 and outputs coordinates c ∈ R2 as
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shown in Equation 1, indicating where the objects mentioned by the language are likely
located.

c = Linear(Maxpooling(Conv(GELU(Conv(CoordConv(F4)))))) (1)

Bounding-Box Queries. Instead of random initial queries, we hope bounding-box
queries in Decoder are particularly effective at focusing on multi-modality features that
are relevant to the object being referred to. To achieve this, we adopt queries that are
specifically linked to the target object. After multi-layer early fusion, the target ob-
ject shows the high-level response in the final multi-modality feature map F4. Un-
like segmentation mask estimation, bounding-box estimation does not require detailed
boundary information. Therefore, for simplicity, we employ max-pooling in the spa-
tial dimension of F4 to extract highly responsive bounding-box queries qb, as shown in
Fig. 2. After the multi-layer LoA-trans decoder, the qb already has enough information
for bounding-box decoding. For bounding-box decoding, we use bounding-box head:
multi-layer MLPs, project queries dimension C into coordinate dimension 2 as four di-
rection relative displacement ∆∗, we decode the bounding-box as left bl ∈ R2, bottom
bb ∈ R2, right br ∈ R2, up bu ∈ R2, width bw ∈ R1 and height bh ∈ R1 based on center
prompt c ∈ R2 and estimated relative displacement ∆∗. The final estimated bounding
box is represented by Equation 2.

bl = c+∆l

bb = c+∆b

br = c+∆r

bu = c+∆u

=⇒

 c = [
(bxr+bxl )

2 ,
(byb+byu)

2 ]
bw = bxr − bxl
bh = byb − byu

(2)

Mask Queries. Because mask decoding requires boundary information, using max-
pooling as bounding box queries alone may not be sufficient for detailed information.
Furthermore, recognizing the potential for inaccuracies in center prompt estimation,
we tend to fix this problem by selecting location-aware queries to help find the cor-
rect target. Considering that, we proposed a mask query selection mechanism. In the
mask query selection mechanism, we select queries from multi-level multi-modality
features Fi. This selection process is initiated by training a pixel classification network
on the last layer of multi-modality features F4. Following this, the multi-modality fea-
tures from different layers - F4, F3, and F2 - are passed through pixel classification
network. The top-performing features are chosen as queries for each respective layer
based on their performance classification score Sc, the selected features are concate-
nated together and represent as qinim ∈ R3K×C . This method ensures that the most
relevant and informative features across various levels of the network are utilized for
precise mask query selection. For further refinement, we implement a re-ranking step.
It starts with calculating cosine similarity between qinim and global language description
features em. We combine cosine similarity score with classification scores to perform
final re-ranking using Equation 3, and select the top K multi-modality features as the
final mask queries qmRK×C . After multi-layer refinement in the decoder, the qm is
passed to the segmentation head for final segmentation mask decoding. The details of
the segmentation head can be found in the supplementary material.

qm = TopK(Sc(q
ini
m ) · Scos(q

ini
m )) (3)
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where Scos is the score of cosine similarity.
The Decoder is to help the queries to take more related information from multi-

modality features for segmentation mask and bounding-box decoding. Previous meth-
ods and Deformable DETR [47] perform queries information exchange by self-attention
mechanism. In self-attention mechanisms, information sharing happens between all
queries, without any specific coordination between tasks and ignoring the fact that REC
and RES have different goals. To enable precise task information communication, we
proposed TaskSyn Network, as shown in Fig. 2. The proposed TaskSyn Network first
utilizes two MLPs to update bounding-box queries and segmentation queries separately.
Then, we apply max-pooling to the updated segmentation queries and merge them with
the bounding-box queries by addition. This is based on the insight that segmentation
mask details can provide crucial size information for bounding box decoding. Conse-
quently, through this decoding process, both the bounding box and segmentation mask
queries acquire a wealth of detailed information, equipping them for more effective and
accurate object details identification.

Queries in the Decoder aim to form representations of objects by attending to their
corresponding spatial locations in the feature maps. To enhance the information cap-
tured by queries, we utilize multi-level multi-modality features F = {Fi}4i=2 for De-
coder. These features are then flattened and concatenated along the spatial dimension,
resulting in F ∈ RC×(L1+L2+L3), where (L1 +L2 +L3) represents the total length of
the concatenated features, as illustrated in Fig. 2.

3.3 Training Loss

During training, there are four losses: Center Estimation Loss Lc, as claimed in Location-
Aware Network, loss for pixel classification network Lf . Bounding-Box Estimation
Loss Lb and Segmentation Loss Ls. The total loss is L as in Equation 4.

L = λcLc + λfLf + λbLb + λsLs (4)

In our work, the Lc loss is L1, and the target center is the bounding box center.
Lb contains L1 loss and GIoU Loss [29]. Lf and Ls are composed by focal loss [14]
and dice loss [28]. The parameters for λc, λf , λb and λs are 2.0, 2.0, 5.0, 2.0, respec-
tively.These specific values are chosen to balance the contribution of each loss type
to the total loss, thereby guiding the training process effectively toward accurate and
reliable model performance.

4 Experiments

Datasets. To test how well our method works, we ran experiments using three widely-
used datasets: Refcoco [43], Refcoco+ [43], Refcocog [26]. Refcoco includes 50,000
different objects across 19,994 images, with a total of 142,209 unique natural language
descriptions. Each image contains multiple objects, each described by multiple expres-
sions. Refcoco+ differs from Refcoco in that its referring expressions don’t include
location words, relying solely on attributes to identify objects. The sentences in Ref-
coco+ tend to be longer. This dataset comprises 141,564 expressions, 49,856 objects,
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and 19,992 images, with descriptions generated through a two-player game [11]. Re-
fcocog is the most challenging of the three. Descriptions are generated via Mechani-
cal Turk, resulting in richer and longer descriptions. This dataset contains 104,560 ex-
pressions describing 54,822 objects across 25,711 images, with an average expression
length of 8.3 words. For the Refcocog dataset, we utilized the UNC partition. Images
for all three datasets were sourced from MS-COCO [15].

Evaluation Metric. To assess our model’s performance in referred expressions
comprehension (REC), we employ Pr@0.5. This metric deems a prediction accurate if
it exhibits an overlap exceeding 0.5 with the actual object bounding box. For Referring
Expression Segmentation (RES), we evaluate performance through mIoU, measuring
alignment with the ground truth mask. Our analysis also encompasses precision at var-
ious IoU thresholds (0.5, 0.7, and 0.9), offering a comprehensive view of the model’s
effectiveness.

Referring Expression Comprehension (Pr@0.5)
Refcoco Refcoco+ Refcocog

val testA testB val testA testB val test
RvG-Tree [6] 75.06 78.61 69.85 63.51 67.45 56.66 66.95 66.51
CM-A-E [20] 78.35 83.14 71.32 68.09 73.65 58.03 67.99 68.67
FAOA [39] 72.54 74.35 68.50 56.81 60.23 49.60 61.33 60.36
TransVG [1] 80.83 83.38 76.94 68.00 72.46 59.24 68.71 67.98
QRNet [40] 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03
RefTR [12] 82.23 85.59 76.57 71.58 75.96 62.16 69.41 69.40
SeqTR [46] 81.23 85.00 76.08 68.82 75.37 58.78 71.35 71.58
VG-LAW [30] 86.62 89.32 83.16 76.37 81.04 67.50 76.90 76.96
LoA-Trans-S 87.59 90.17 82.98 78.68 83.93 69.83 79.58 79.29
LoA-Trans-B 87.75 90.60 84.81 79.56 84.95 71.75 80.80 80.18

Table 1: Comparison with state-of-the-art methods for Referring Expression Comprehension on
three widely used datasets. The highest Pr@0.5 is marked with bold, while the Th second highest
Pr@0.5 is marked with underline.

Implementation Details. For the image encoder, we used Swin Transformer [21]
Small for LoA-Trans-S and Base for LoA-Trans-B. Bert [2] was used as the text en-
coder. All experiments of LoA-Trans-S were conducted on four V100 GPUs, while
experiments of LoA-Trans-B were conducted on four A100 GPUs. The decoder in our
setup has 6 layers. We resized the input images to 640× 640. For the Refcoco and Re-
fcoco+ datasets, we set the sentence length to 20, while for Refcocog, it was set to 30.
The model was trained using the AdamW [23] optimizer for 100 epochs with a batch
size of 32. The starting learning rate was 0.000020, and it was reduced using CosineAn-
nealingLR [22] with a T_max of 100. The threshold for the segmentation mask was set
at 0.35. We train our model separately for each dataset without combining the training
subsets. For Refcoco evaluation, we use the Refcoco training dataset, selecting the best-
performing model based on the Refcoco validation dataset with highest mIoU score, as
in Refcoco+ and Refcocog. Unless specified otherwise, the number of tokens selected
for the 2nd, 3rd, 4th, and final stages is 100, 100, 100, and 100, respectively.
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Referring Expression Segmentation (mIoU)
Refcoco Refcoco+ Refcocog

val testA testB val testA testB val test
VLT [3] 65.65 68.29 62.73 55.50 59.20 49.36 52.99 56.65
LAVT [37] 74.46 76.89 70.94 65.81 70.97 59.23 63.34 63.62
ReLA [16] 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97
RefTR [12] 70.56 73.49 66.57 61.08 64.69 52.73 58.73 58.51
SeqTR [46] 67.26 69.79 64.12 54.14 58.93 48.19 55.67 55.64
VG-LAW [30] 75.62 77.51 72.89 66.63 70.38 58.89 65.63 66.08
LoA-Trans-S 76.03 77.90 72.57 67.85 72.21 60.29 67.44 67.97
LoA-Trans-B 76.66 78.60 74.17 69.40 73.59 62.90 69.01 68.77

Table 2: Comparison with state-of-the-art methods for Referring Expression Segmentation on
three widely used datasets. The highest mIoU is marked with bold, while the second highest
mIoU is marked with underline.

4.1 Main results

Referring Expression Comprehension. In the landscape of Referring Expression Com-
prehension, the Table 1 presents an insightful comparative analysis of various mod-
els across the Refcoco, Refcoco+, and Refcocog datasets including single-task learn-
ing models, RvG-Tree [6], CM-A-E [20] which uses two-stage methods, FAOA [39],
TransVG [1], QRNet [40] which uses one-stage methods, and multi-task learning meth-
ods RefTr [12], SeqTR [46], and VG-LAW [30]. Notably, LoA-Trans-B demonstrates
remarkable performance, surpassing earlier single task methods RvG-Tree [6], CM-A-
E [20], and FAOA [39], QRNet [40] by significant margins. For example, LoA-Trans-B
achieves a score of 90.06 in Pr@0.5, markedly higher than QRNet [40] which is 85.85 in
Pr@0.5 in the Refcoco testA dataset. Even when compared to recent advanced multi-
task models like RefTr [12], SeqTR [46], LoA-Trans-B maintains a leading position,
especially in more challenging datasets like Refcocog. This indicates not only the ef-
fectiveness of the LoA-Trans approach but also its adaptability and robustness in diverse
image comprehension contexts, setting new benchmarks in the field.

Referring Expression Segmentation. The provided Table 2, showcasing a range of
models for Referring Expression Segmentation across the Refcoco, Refcoco+, and Re-
fcocog datasets, highlights the significant advancements of the LoA-Trans-B model.
The models compared include single-task learning methods: VLT [3], LAVT [37],
ReLA [16] and multi-task learning methods: RefTR [12], SeqTR [46], VG-LAW [30].
The LoA-Trans-B model not only outperforms earlier approaches like VLT [3] and
LAVT [37] but also shows notable improvement over contemporary methods such as
ReLA [16], and VG-LAW [30]. For instance, in the challenging Refcoco+ testB, LoA-
Trans-B surpasses state-of-the-art method VG-LAW [30] by nearly 5% in mIoU, illus-
trating its robust segmentation abilities. Additionally, the progression from LoA-Trans-
S to LoA-Trans-B within the same series indicates substantial model enhancements,
particularly in the more complex Refcocog dataset. This overall performance suggests
that LoA-Trans-B is setting new benchmarks in the field, demonstrating a blend of
adaptability, accuracy, and advanced skills that are pivotal for future developments in
Referring Expression Segmentation.
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Fig. 3: This figure displays our model’s results, showing accurate bounding boxes and segmen-
tation masks. The figure also reveals the token selection at various layers, emphasizing how the
model progressively selects the most relevant image features. The selected tokens are marked as
yellow.

Qualitative Results. Fig. 3 displays our model’s qualitative results and the query
selection results for each layer, with the selected queries highlighted in yellow. The
final output in our image demonstrates that our model can produce perfect bounding
boxes and segmentation masks. Regarding query selection, in the 2nd layer, the selected
queries primarily concentrate on similar instances. The selected queries become more
focused in the 3rd layer, and even more so in the 4th layer, but some queries still target
unrelated instances. By combining the queries from these three layers and re-ranking,
we can filter out the unrelated selected queries. For instance, in the first row for ‘middle
man’, the 2nd layer’s selected queries cover all men in the image and some of the
ground around them. In contrast, the 3rd layer’s selected queries are more focused on
the men, and the 4th layer’s selected queries are entirely focused on the men, but some
are on unrelated men nearby. After re-ranking, all unrelated queries about the ‘middle
man’ are filtered out. The qualitative results demonstrate the effectiveness of our query
selection mechanism.

4.2 Ablation Study

TaskSyn Network. The Table 3 shows the ablation study for our proposed components.
In the first row, we evaluate our proposed TaskSyn Network, the results show our pro-
posed TaskSyn Network can boost segmentation results by 1.45%, and bounding-box
estimation results by 1.07%. These improvements are due to the decoder in Deformable
DETR lacking the precise information exchange between two tasks. This experiment
also demonstrates the effectiveness of our proposed TaskSyn Network in jointly learn-
ing between these two tasks.
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# Methods REC(Pr@0.5) RES(mIoU)
1 w/o TaskSyn Network 86.52 74.58
2 Random Queries 87.06 75.67
3 No Selection Out of Memory
3 Ours 87.59 76.03

Table 3: Ablation study on Refcoco val and LoA-trans-S model.

Queries Initialization Methods. The Table 3 shows the ablation study for queries
selection. In #2, we show that random initialized queries can not achieve good results,
because it is difficult for random initialized tokens to attend most relevant parts in multi-
modality features. In #3, we use 4-th layer multi-modality features as queries for the
decoder directly which reports an ‘Out of Memory’ issue, suggesting a computational
limitation was encountered. The ‘No Selection’ method might imply a scenario where
all multi-modality features are used without any filtering or selection process. These
two results underscore the importance of efficient feature selection in managing com-
putational resources and improving performance.

Num of Layer REC(Pr@0.5) RES(mIoU)
3 87.20 75.80
6 87.59 76.03
8 86.76 75.32

K REC(Pr@0.5) RES(mIoU)
50 86.80 75.59

100 87.59 76.03
125 86.77 75.76

Table 4: Left: Ablation study for decoder Layers on Refcoco val and LoA-trans-S model. Right:
Ablation study for K selection on Refcoco val and LoA-trans-S model.

Layer of Decoder. The ablation study is presented in the Table 4 right side exam-
ines the impact of varying the number of decoder layers on two performance metrics,
Pr@0.5 for bounding-box prediction accuracy and mIoU for segmentation mask pre-
diction accuracy, in our proposed model. The optimal performance is achieved with
6 layers, yielding Pr@0.5 at 87.59 and mIoU at 76.03, which indicates a balance be-
tween model complexity and learning capability. The model with fewer decoder layers
3 shows slightly lower effectiveness, while increasing the layers to eight leads to a
decrease in performance, suggesting potential overfitting or diminishing returns with
added complexity.

Number of Query Selection. The ablation study is detailed in Table 4 left side elu-
cidates the impact of TopK (K) selection on the model’s final results. When K is set
to 50, the model attains a Pr@0.5 score of 86.80 and an mIoU of 75.59. This perfor-
mance suggests that a K value of 50 may not provide sufficient information to fully
represent the mask details. Elevating K to 100 results in a noticeable enhancement
in performance, elevating Pr@0.5 to 87.59 and mIoU to 76.03, indicating that this is
the optimal K value for balancing detail representation and model efficiency. However,
further increasing K to 125 leads to a marginal decline in performance, with Pr@0.5
decreasing to 86.77 and mIoU to 75.76. This trend suggests that beyond the optimal K
value, additional information does not contribute to performance gains and could po-
tentially introduce inefficiencies or overfitting, underscoring the necessity of a carefully
calibrated K selection in our model to optimize both precision and accuracy.
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4.3 Center Prediction Analysis

Centerness Score. The centerness score is introduced as a metric to evaluate the quality
of center prediction in object detection tasks FCOS [32]. It measures the normalized
distance from a predicted location to the center of the target object. This score provides
valuable insights into how accurately a location prediction localizes the object’s center,
thereby aiding in assessing localization precision. To compute the centerness score, l∗,
r∗, t∗ and b∗ corresponding to the offset between the predicted center and the center
of ground-truth bounding box are used, as Equation 5. If the estimated center perfectly
matches the ground truth center, the centerness is 1, while if the estimated center is on
or outside of the bounding box, the centerness is 0. To evaluate the relation between
centerness and final results, we split refcoco val into nine disjoint subsets according to
centerness with 0.1 intervals. We then compute the performance of different models for
each subset as shown in Table 5.

centerness =

√
max(min(l∗, r∗), 0)

max(l∗, r∗)
× max(min(b∗, t∗), 0)

max(b∗, t∗)
(5)

Referring Expression Comprehension (Pr@0.5)
Centerness [0.0, 0.1) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]

TransVG [1] 30.00 29.87 40.00 42.97 55.67 63.74 80.54 81.77 89.64
SeqTR [46] 30.63 28.57 46.15 46.09 50.74 63.51 79.97 82.46 90.38
LoA-Trans 10.95 37.05 45.14 53.30 75.81 91.78 97.52 99.44 99.93

LoA-Trans∗ 34.40 52.94 59.42 66.06 85.25 94.08 97.89 99.44 99.93

Referring Expression Segmentation (mIoU)
Centerness [0.0, 0.1) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0]
SeqTR [46] 29.45 25.83 41.13 35.16 44.82 53.47 60.45 64.92 73.97
LAVT [37] 30.62 33.48 44.22 45.22 50.33 58.77 67.61 73.94 83.04
LoA-Trans 15.95 42.93 48.71 54.60 63.86 70.93 78.11 84.96 89.03

LoA-Trans∗ 18.65 45.35 50.19 56.68 64.64 71.67 78.42 85.08 89.05

#samples 904 136 175 221 339 608 1089 2657 4609

Table 5: Upper: The relation between centerness score and Pr@0.5 in referring expression com-
prehension task. Bottom: The relation between centerness score and mIoU in referring expression
segmentation task. LoA-Trans with ∗ means the results for replacing the prediction center with
the ground-truth center (i.e., what if the center prediction is perfect). #samples means the number
of samples falls in this centerness range. This experiment is done on Refcoco val dataset and
LoA-trans-B model.

Centerness vs. Box IoU. Our investigation into the relationship between Center-
ness [32] and Box IoU, as shown in Table 5 upper, revealed some interesting patterns.
Centerness, is the metric indicating how accurately the bounding box has been placed
over the object. As expected, when the targeting quality is high(centerness score is
high), the bounding box quality tends to be higher. Interestingly, our data also indicated
instances where even with less optimal targeting quality, as evidenced by lower Cen-
terness scores, the bounding boxes still had high Pr@0.5 scores. This suggests that in
some cases, our decoder can compensate for objects not being perfectly targeted and
still predict their bounding boxes accurately. More details can be found in supplemen-
tary materials Fig.2.



LoA-Trans: Enhancing Visual Grounding by Location-Aware Transformers 13

Centerness vs. Segmentation IoU. Our analysis of Centerness about Segmentation
IoU, as shown in Table 5 bottom shed light on how targeting quality correlates with
segmentation accuracy. We found a trend that mirrors our expectations: segments with
a high Centerness score frequently aligned with higher Segmentation IoU scores, indi-
cating more accurate segmentations. This was particularly true for segments that were
well-defined and distinct. Yet, there were interesting cases where segments with lower
Centerness scores still achieved a high Segmentation IoU. This points to the possibil-
ity that our segmentation approach can tolerate some degree of off-centering without a
substantial loss in accuracy. More detail can be found in supplementary materials Fig.2.

Ground-Truth Center vs. Estimated Center. To evaluate the effectiveness center
prompt, we conducted an experiment where we replaced the estimated center with the
ground-truth center during validation to investigate the potential upper-bound perfor-
mance. This approach allows us to assess the ideal scenario where the center is precisely
known. The results are provided in Table 5 LoA-Trans with ∗ . In assessing the perfor-
mance disparity between Ground-Truth Center and Estimated Center across the metrics
of Pr@0.5 in bounding-box prediction accuracy and mIoU in segmentation mask accu-
racy, our analysis reveals notable differences. On average, the results of GroundTruth
Center surpass the results of Estimated Center both in bounding box prediction and seg-
mentation mask estimation. These results demonstrate that accurate center estimation
plays a critical role in bounding box prediction and segmentation mask estimation. The
precision in center estimation directly influences the accuracy of locating objects within
an image, which is a fundamental aspect of effective bounding box prediction and seg-
mentation mask estimation. Consequently, the effectiveness of the Center Estimated
Module not only enhances object detection but also ensures more accurate and reliable
segmentation, underscoring its importance in multi-task learning. More references can
be found in supplementary materials Fig. 3.

Comparsion with Other Methods. In our comparative analysis of model perfor-
mance across varying centerness intervals as shown in Table 5, a clear trend emerges,
underscoring the integral role of centerness in enhancing model precision in referring
expression comprehension and segmentation tasks. Notably, LoA-Trans demonstrates
superior performance, particularly in higher centerness ranges, outshining competitors
like TransVG [1] in REC, LAVT [37] in RES, and both REC and RES in SeqTR [46].
In detail, if centerness is above 0.5, our method significantly improves the performance
compared to the other methods. Only if centerness is significantly small (e.g., less than
0.3) our performance is inferior, it’s still acceptable, however. If centerness is very very
small (less than 0.1) our performance is significantly lower than the others. This analy-
sis not only spotlights the pivotal role of centerness in visual comprehension tasks but
also sets the stage for further introspection into the mechanisms driving LoA-Trans’s
exceptional performance, paving the way for future advancements in model develop-
ment and refinement.

Corner Cases. As mentioned above, there are two special cases in our model: (a)
the estimated centerness is low, but the model can predict bounding-box and segmenta-
tion mask correctly, as shown in Fig.4 left side. It is noticeable that the estimated center
consistently appears close to the ground truth bounding box. This slight displacement
could be attributed to the fact that we utilize the smallest feature maps for center pre-
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diction. Thanks to the proposed query selection mechanism, the model can focus on the
most relevant features related to target objects, improving the performance of detection
and segmentation. (b) In the cases depicted on the right side of Fig. 4, the estimated cen-
terness scores are high, indicating confidence in object localization. However, the IoU
for both the predicted bounding box and segmentation mask is low. In the first two rows,
although the model correctly identifies the objects, the size estimation is inaccurate due
to complex scenarios, leading to lower IoU values. In the last rows, the model locates
the center of the ground truth bounding box, but the bounding box center does not cor-
respond to the target objects; instead, it is near a similar instance. This misalignment
results in low IoU values despite the high centerness scores.

Fig. 4: Some corner cases in our proposed methods. The green triangle indicates the estimated
center. Left: low centerness score but high detection and segmentation IoU. Right: high centerness
score but low detection and segmentation IoU.

5 Conclusion

In our work, we presented LoA-Trans, a cutting-edge method focusing on joint learning
of Referring Expression Comprehension (REC) and Referring Expression Segmenta-
tion (RES). Our approach innovatively commences by introducing a center prompt as
location guide for REC and RES. And query selection mechanism is used to generate
queries for the decoder, enabling the capture of the complex interrelations within the
multi-modality feature maps. Furthermore, the introduction of the TaskSyn network is
a pivotal aspect of LoA-Trans, designed to enable effective information exchange be-
tween REC and RES. This unique mechanism ensures that one task benefit the other,
creating a synergistic effect that enhances both comprehension and segmentation capa-
bilities. Our extensive evaluations and comparisons have demonstrated that LoA-Trans
surpasses existing methods in performance, setting new state-of-the-art benchmarks.
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