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Fig. 1: Top: A toy example where our method makes the size of the vanilla 3D Gaussian
splitting (3DGS) model 72x smaller (or 9.49x smaller compared to the SoTA Scaffold-
GS ), with similar or better fidelity. Bottom: Most existing 3DGS compression
methods concentrate solely on parameter “values” using pruning or vector quantization
to reduce size, ignoring the structure relations among Gaussians. Scaffold-GS in-
troduces anchors to cluster and neural-predict the associated Gaussians while treating
each anchor point independently. Our core idea is to further exploit the inherent consis-
tencies of anchors via a structured hash grid for a more compact 3DGS representation.

Abstract. 3D Gaussian Splatting (3DGS) has emerged as a promising
framework for novel view synthesis, boasting rapid rendering speed with
high fidelity. However, the substantial Gaussians and their associated at-
tributes necessitate effective compression techniques. Nevertheless, the
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sparse and unorganized nature of the point cloud of Gaussians (or an-
chors in our paper) presents challenges for compression. To address this,
we make use of the relations between the unorganized anchors and the
structured hash grid, leveraging their mutual information for context
modeling, and propose a Hash-grid Assisted Context (HAC) framework
for highly compact 3DGS representation. Our approach introduces a bi-
nary hash grid to establish continuous spatial consistencies, allowing us
to unveil the inherent spatial relations of anchors through a carefully de-
signed context model. To facilitate entropy coding, we utilize Gaussian
distributions to accurately estimate the probability of each quantized
attribute, where an adaptive quantization module is proposed to en-
able high-precision quantization of these attributes for improved fidelity
restoration. Additionally, we incorporate an adaptive masking strategy
to eliminate invalid Gaussians and anchors. Importantly, our work is the
pioneer to explore context-based compression for 3DGS representation,
resulting in a remarkable size reduction of over 75x compared to vanilla
3DGS, while simultaneously improving fidelity, and achieving over 11x
size reduction over SOTA 3DGS compression approach Scaffold-GS. Our
code is available lhere.
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1 Introduction

Over the past few years, significant advancements have been made in 3D scene
representations for novel view synthesis. Neural Radiance Field (NeRF) [28]
proposes rendering colors by accumulating RGB values along sampling rays us-
ing an implicit Multilayer Perceptron (MLP), aiming at reconstructing photo-
realistic images. However, the extensive sampling of ray points has been a bot-
tleneck, affecting both the speed of training and rendering. Recent advances
of NeRF [5,13,30] introduce feature grids to enhance the rendering process,
facilitating faster rendering speeds by reducing the MLP size. Despite the im-
provement, these approaches still suffer from relatively slow rendering speeds
due to frequent ray point sampling.

In this context, very recently, a new paradigm of 3D representation, 3D Gaus-
sian Splatting (3DGS) [19], emerged. 3DGS introduces learnable Gaussians to di-
rectly represent 3D space explicitly. These Gaussians, initialized from Structure-
from-Motion (SfM) [35] and endowed with learnable shape and appearance pa-
rameters, can be directly splatted onto 2D planes for rapid and differentiable
rendering within imperceptible intervals using tile-based rasterization [21]. As
such, the time-consuming volume rendering used in NeRF can be completely re-
moved. The advantages of rapid differentiable rendering with high photo-realistic
fidelity have stimulated the fast and widespread adoption of 3DGS in the field.

However, 3DGS is not the ultimate solution. One major drawback is that
it requires a considerable number of 3D Gaussians to well represent a large-
scale scene (e.g., at the scale of millions of Gaussians for city-scale scenes) and
needs a large storage space (e.g., a few GigaBytes (GB)) to store the associated
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Gaussian attributes for each scene [42]|. This motivates us to investigate effective
compression techniques for 3DGS.

Due to their sparse and unorganized nature, compressing 3D Gaussians is
challenging and difficult [6}/12]. Therefore, most existing 3DGS compression ap-
proaches focus solely on parameter “values” but overlook their structural rela-
tions. For example, as illustrated in Fig. [[] middle, parameter pruning can be
used to mask out the Gaussians whose parameter values are below a certain
threshold [11},22]. Another straightforward technique is to apply vector quan-
tization to cluster parameters with similar “values”. Such an approach enables
the direct compression of parameters by only retaining more representative ones
while maintaining reconstruction fidelity [111/22,31}|32]. Nevertheless, solely con-
centrating on “values” fails to eliminate structural redundancies, which are piv-
otal for compact representations. To exploit such spatial relations of Gaussians,
Scaffold-GS |27] introduces anchors to cluster related nearby 3D Gaussians and
neural-predict their attributes from the anchors’ attributes, resulting in signif-
icant storage savings. Despite the improvement, Scaffold-GS still treats each
anchor independently, and there are still substantial anchors that are sparse,
unorganized, and hard to compress, due to their point-cloud nature.

To further push the boundary of 3DGS compression, we draw inspiration
from the NeRF series [28|, contemplating the idea of representing 3D space us-
ing well-organized feature grids [5,[30]. We pose the question: Is there inherent
relations between the attributes of unorganized anchors in Scaffold-GS and the
structured feature grids? Our answer is affirmative since we observe large mutual
information between anchor attributes and the hash grid features. Based on this
observation, we propose a Hash-grid Assisted Context (HAC) framework, where
our core idea is to jointly learn structured compact hash grid (binarized for each
hash parameter) and use it for context modeling of anchor attributes. Specif-
ically, with Scaffold-GS [27] as our base model, for each anchor, we query the
hash grid by the anchor location to obtain an interpolated hash feature, which
is then used to predict the value distributions of anchor attributes, facilitating
entropy coding such as Arithmetic Coding (AE) [41] for a highly compact rep-
resentation of the model. Note that we employ Scaffold-GS as our base model
as its anchor-centered design provides a good foundation to establish relations
with these interpolated hash features. Furthermore, we introduce an Adaptive
Quantization Module (AQM), which dynamically adjusts different quantization
step sizes for different anchor attributes for retaining of their original informa-
tion. Learnable masks are also employed to mask out invalid Gaussians and
anchors, further enhancing the compression ratio. Our main contributions can
be summarized as follows:

1. To our knowledge, we are the first to model contexts for 3DGS compression,
i.e., using a structured hash grid to exploit the inherent consistencies among
unorganized 3D Gaussians (or anchors in Scaffold-GS).

2. To facilitate efficient entropy encoding of anchor attributes, we propose to
use the interpolated hash feature to neural-predict the value distribution of
anchor attributes as well as neural-predicting quantization step refinement
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with AQM. We also employ learnable masks to prune out ineffective Gaus-
sians and anchors.

3. Extensive experiments on five datasets demonstrate the effectiveness of our
HAC framework and each technical component. We achieve a compression
ratio of 11x over our base model Scaffold-GS and 75x over the vanilla 3DGS
model when averaged over all datasets, while with comparable or even im-
proved fidelity.

2 Related Work

Neural Radiance Field and its compression. The emergence of Neural
Radiance Field (NeRF) [28| has significantly advanced novel view synthesis by
employing a single learnable implicit MLP to generate arbitrary views of 3D
scenes through a-composed accumulation of RGB values along a ray. However,
the dense querying of sampling points and the utilization of a large MLP hinder
real-time rendering. To address this problem, subsequent approaches such as
Instant-NGP [30], TensoRF [5], K-planes [13], and DVGO [39] adopt explicit
grid-based representations to facilitate faster training and rendering by reducing
the size of the MLP, which however comes at the cost of increased storage space.

To mitigate the storage increase, compression techniques focusing on reduc-
ing the size of explicit representations have been developed, which can be cat-
egorized into either “value”-based or structural-relation-based approaches. The
former category includes pruning [10,[25], codebooks [25,[26], and methods like
quantization or entropy constraint employed in BiRF [37] and SHACIRA [15].
On the other hand, the latter category explores structural relations via wavelet
decomposition [34], rank-residual decomposition [40], or spatial prediction [38|
to eliminate spatial redundancy, thanks to the well-structured characteristics of
these feature grids. CNC |7] provides a solid proof of concept by sufficiently uti-
lizing such structural information, achieving remarkable RD performance gain.
3D Gaussian Splatting and its compression. 3DGS [19] has innovatively ad-
dressed the challenge of slow training and rendering in NeRF while maintaining
high-fidelity quality by representing 3D scenes with 3D Gaussians endowed with
learnable shape and appearance attributes. By adopting differentiable splatting
and tile-based rasterization [21], 3D Gaussians are optimized during training to
best fit their local 3D regions. Despite its advantages, the substantial Gaussians
and their associated attributes necessitate effective compression techniques.

Unlike NeRF-based feature grids, 3D Gaussians in 3DGS are sparse and
unorganized, presenting significant challenges for establishing structural rela-
tions. Consequently, compression approaches have primarily focused solely on the
“value” of model parameters, employing techniques such as pruning [11122], code-
books [11},/22}|31}32], and entropy constraints [14]. To our knowledge, Scaffold-
GS [27] and Morgenstern et al. [29] have explored the relations of Gaussians.
In [27], authors introduce anchor-centered features to achieve reduced parameter
numbers, while in [29] dimension collapsing is considered to compress Gaussians
in an ordered 2D space. However, their investigation of spatial redundancy re-
mains insufficient.
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In this paper, we emphasize leveraging such structural relations for com-
pression is crucial. For instance, approaches in image compression [8,/16(17] and
video compression [2324,36] have demonstrated the effectiveness of eliminating
structural redundancy by excavating spatial and temporal relations, thanks to
their well-organized data structure. Motivated by this, with Scaffold-GS as our
base model, we introduce a well-structured hash grid as context to model the
inherent consistencies of the sparse and unorganized anchors, achieving much
more compact 3DGS representation.

3 Methods

In Fig. 2| we conceptualize our HAC framework. In particular, HAC is based
on the baseline Scaffold-GS [27] (Fig. |2| top), which introduces anchors with
their attributes A (feature, scaling and offsets) to cluster and neural-predict 3D
Gaussian attributes (opacity, RGB, scale, and quaternion). At the core of our
HAC, we propose to jointly learn structured compact hash grid (binarized for
each parameter) that can be queried at any anchor location to obtain the inter-
polated hash feature f (Fig. |2 middle). Instead of directly substituting anchor
feature, f” is used as context to predict the value distributions of anchor at-
tributes, which is essential for the subsequent entropy coding, i.e., Arithmetic
Coding (AE). Our context model (Fig. bottom) is a simple MLP that takes f"
as input and outputs r for the adaptive quantization module (AQM) (quantize
anchor attribute values into a finite set) and the Gaussian parameters (p and
o) for modeling the value distributions of anchor attributes, from which we can
compute the probability of each quantized attribute value for AE. Note that we
draw two MLPs (MLP, and MLP,) in Fig. [2|for easy explanation but they actu-
ally share the same MLP layers with outputs at different dimensions. Besides, an
adaptive offset masking module (Fig. [2| top-left) is adopted to prune redundant
Gaussians and anchors. In the following, we first introduce the background and
then delve into the detailed technical components of our HAC.

3.1 Preliminaries

3D Gaussian Splatting (3DGS) [19] represents a 3D scene using numerous
Gaussians and renders viewpoints through a differentiable splatting and tile-
based rasterization. Each Gaussian is initialized from SfM and defined by a 3D
covariance matrix X € R3*? and location (mean) p € R3,

Gla) =0 (e - w5 @) 1)
where & € R3 is a random 3D point, and X is defined by a diagonal matrix
S € R3*3 representing scaling and rotation matrix R € R3*3 to guarantee its
positive semi-definite characteristics, such that ¥ = RSSTRT. To render an
image from a random viewpoint, 3D Gaussians are first splatted to 2D, and
render the pixel value C' € R? using a-composed blending,
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Fig. 2: Overview of our HAC framework. It is based on Scaffold-GS (top), which
introduces anchors with their attributes to neural-predict 3D Gaussian attributes.
Middle: Our HAC framework jointly learns structured compact hash grid (binarized
for each parameter) that can be queried at any anchor location to obtain the interpo-
lated hash feature f”. Instead of direct substitution, f" is used as context to predict
the value distributions of anchor attributes, which is essential for the subsequent en-
tropy coding. Bottom: Our proposed context models take " as input and outputs =
for the AQM (quantize anchor attribute values into a finite set) and the parameters
(v and o) to model the value distributions of anchor attributes.

C= Zciaiﬂ(l —aj) (2)
j=1

el

where a € R! measures the opacity of each Gaussian after 2D projection, ¢ € R3
is view-dependent color modeled by Spherical Harmonic (SH) coefficients, and
I is the number of sorted Gaussians contributing to the rendering.
Scaffold-GS adheres to the framework of 3DGS and introduces a more
storage-friendly and fidelity-satisfying anchor-based approach. It utilizes anchors
to cluster Gaussians and deduce their attributes from the attributes of attached
anchors through MLPs, rather than directly storing them. Specifically, each an-
chor consists of a location * € R? and anchor attributes A = {f* € RP" |1 ¢
RS o € R3*K} where each component represents anchor feature, scaling and
offsets, respectively. During rendering, f¢ is inputted into MLPs to generate
attributes for Gaussians, whose locations are determined by adding x* and o,
where [ is utilized to regularize both locations and shapes of the Gaussians. While
Scaffold-GS has demonstrated effectiveness via this anchor-centered design, we
contend there is still significant redundancy among inherent consistencies of an-
chors that we can fully exploit for a more compact 3DGS representation.
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3.2 Bridging Anchors and Hash Grid

We begin the analysis by intuitively considering neighboring Gaussians share
similar parameters inferred from anchor attributes. This initial perception leads
us to assume anchor attributes are also consistent in space. Our main idea is to
leverage the well-structured hash grid to unveil the inherent spatial consistencies
of the unorganized anchors. Please also refer to experiments in Fig. [7] to observe
this consistency. To verify mutual information between the hash grid and an-
chors, we first explore substituting anchor features f® with hash features f* that
are acquired by interpolation using the anchor location ® on the hash grid H,
defined as f" := Interp(x®, H). Here, H = {0l e RP"|i=1,... . Tl =1,...,L}
represents the hash gird, where D" is the dimension of vector 6!, T" is the table
size of the grid for level [, and L is the number of levels. We conduct a prelimi-
nary experiment on the Synthetic-NeRF dataset |28] to assess its performance,
as shown in the right panel of Fig.[3] Direct substitution using hash features ap-
pears to yield inferior fidelity and introduces drawbacks such as unstable training
(due to its impact on anchor spawning processes) and decreased testing FPS (ow-
ing to the extra interpolation operation). These results may further degrade if 1
and o are also substituted for a more compact model. Nonetheless, we find the
fidelity degradation remains moderate, suggesting the existence of rich mutual
information between f and f¢. This prompts us to ask: Can we exploit such
mutual relation and use the compact hash features to model the context of anchor
attributes A? This leads to the context modeling as a conditional probability:

p(A» x, H) = p(A|wa7 H) X p(ma’ H) ~ p(A|fh) X p(H) (3)

where x® is omitted in the last term as we assume the independence of x® and
H (it can be anywhere), making p(H|z®) ~ p(H), and do not employ entropy
constraints to . According to information theory [9], a higher probability cor-
responds to lower uncertainty (entropy) and fewer bits consumption. Thus, the
large mutual information between A and f" ensures a large p(A|f"). Our goal is
to devise a solution to effectively leverage this relationship. Furthermore, p(#)
signifies that the size of the hash grid itself should also be compressed, which
can be done by adopting the existing solution for Instant-NGP compression [7].

We underscore the significance of this conditional probability based approach
since it ensures both rendering speed and fidelity upper-bound unaffected as
it only utilizes hash features to estimate the entropy of anchor attributes for
entropy coding but does not modify the original Scaffold-GS structure. In the
following subsections, we delve into the technical details of our context models.

3.3 HAC: Hash-Grid Assisted Context Framework

The principle objective of HAC is to minimize the entropy of anchor attributes
A with the assistance of hash feature f" (i.e., maximize p(A|f")), facilitating
bit reduction when encoding anchor attributes using entropy coding like AE [41].
As shown in Fig. [2| anchor locations x® are firstly inputted into the hash grid
for interpolation, the obtained f" are then employed as context for A.
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Fig. 3: Left chart: Statistical analysis of the value distributions of A on the scene
“chair” of the Synthetic-NeRF dataset |28|. All three components {f?, l,0} exhibit
statistical Gaussian distributions. Note that the values of I are scaled by a factor of
100 for better visualization. Right table: Experimental results of directly substituting
anchor feature f¢ with hash feature f" on this dataset.

Adaptive Quantization Module. To facilitate entropy coding, values of A
must be quantized to a finite set. Our empirical studies reveal that binarization,
as that in BiRF [37], is unsuitable for A as it fails to preserve sufficient informa-
tion. Thus, we opt for rounding them to maintain their comprehensive features.
To ensure backpropagation, we utilize the “adding noise” operation during train-
ing and “rounding” during testing, as described in [1].

Nevertheless, the conventional rounding is essentially a quantization with a
step size of “1”, which is inappropriate for the scaling I and the offset o, since they
are usually decimal values. To address this, we further introduce an Adaptive
Quantization Module (AQM), which adaptively determines quantization steps.
In particular, for the ith anchor ¢, we denote f; as any of its A;’s components:
fi € {f*l;,0;} € RP, where D € {D% 6,3K} is its respective dimension. The
quantization can be written as,

- 11
fi=fi+U <2, 2> X q;, for training @

= Round(f;/q:) X qi, for testing

where
q; = Qo % (1 + Tanh (r;))

r; = MLP, (fI").

We use a simple MLP-based context model MLP, to predict from hash feature
I a refinement r; € R, which is used to adjust the predefined quantization
step size (Qp. Note that @)y varies for f%, I, and o. Eq. essentially restricts
the quantization step size q; € R! to be chosen within (0,2Qp), enabling fi to
closely resemble the original characteristics of f;, maintaining a high fidelity.

Gaussian Distribution Modeling. To measure the bit consumption of f;
during training, its probability needs to be estimated in a differentiable manner.
As shown in Fig. [3] left, all three components of anchor attributes A exhibit
statistical tendencies of Gaussian distributions, where I displays a single-sided

pattern due to Sigmoid activatior]'] This observation establishes a lower bound

(5)

! We define I as the one after Sigmoid activation, which is slightly different from [27].
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for probability prediction when all f,»s in A are estimated using the respective
© and o of the statistical Gaussian Distribution of f¢, I and o. Nevertheless,
employing a single set of p and o for all attributes may lack accuracy. There-
fore, we assume anchor attributes A’s values independent, and construct their
respective Gaussian distributions, where their individual g and o are estimated
by a simple MLP-based context model MLP,. from f". Specifically, for the ith
anchor and its quantized anchor attribute vector fz, with the estimated p; € RP
and o; € R”, we can compute the probability of fZ as,

N fi+§q1'
(f) = / b ()

fi—%ai

R 6
- qui,ai (.fl + ;qz) ;Ll,oy <f7. z> ( )
pi, o = MLP. (f]').

where ¢ and @ represent the probability density function and the cumulative
distribution function, respectively. Consequently, we define an entropy loss as
the summation of bit consumption over all f;s:

Lentropy = Z Z Z ( logy p( fm)) (7)

fe{f.lo} i=1 j=1

N is the number of anchors and fl jis fi’s j-th dimension value. Minimizing the
entropy loss encourages a high probability estimation for p( f1)7 which in turn
encourages accurate p; and small o;, guiding the learning of the context model.
Adaptive Offset Masking. From Fig. [3|left, we can also see that o exhibits an
impulse at zero, suggesting the occurrence of substantial unnecessary Gaussians.
Thus, we employ the technique introduced by Lee et al. [22| to prune invalid o
by utilizing straight-through [3] estimated binary masks. Specifically, we apply
the same marking loss L,, in [22] to encourage masking as many Gaussians
as possible. This process effectively masks out invalid offsets and saves storage
space directly. Additionally, we implement anchor pruning: if all the attached o
are pruned on an anchor, then this anchor no longer contributes to rendering
and should be pruned entirely (including its @ and A).

Hash Grid Compression. As shown in Eq. , the size of the hash grid H also
significantly influences the final storage size. To this end, we binarize the hash
table to {—1, +1} using straight-through estimation (STE) [37] and calculate the
occurrence frequency hy [7] of the symbol “+1” to estimate its bit consumption:

Liash = My x (=logy(hg)) + M x (=logy(1 — hy)) (8)
where My and M_ are total numbers of “+1” and “—1” in the hash grid.

3.4 Training and Coding Process

During training, we incorporate both the rendering fidelity loss and the entropy
loss to ensure the model improves rendering quality while controlling total bitrate
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consumption in a differentiable manner. Our overall loss is

Loss = Lgcafiold + Ae N (Lentropy + Lhash) + A L. (9)

(D*+ 6+ 3K)
Here, Lgcafiola represents the rendering loss as defined in [27], which includes
two fidelity penalty loss terms and one regularization term for the scaling I. The
second part in Eq. @[) is the estimated controllable bit consumption, including
the estimated bits Lentropy for anchor attributes and Lyagn for the hash grid. The
last term L,, in Eq. @D is the masking loss adopted from [22] to regularize the
adaptive offset masking module. A\, and )\, are trade-off hyperparameters used
to balance the loss components. Note that we incorporate different techniques
or loss items at different iterations to stabilize the training process. Please refer
to the supplementary Sec.A for more details.

For the encoding/decoding process, the binary hash grid H is first encoded/
decoded using AE with hf. Then, hash feature f" is obtained through inter-
polation based on H and x®. Once f" is acquired, the context models MLP,
and MLP. are then employed to estimate quantization refinement term r and
parameters of the Gaussian Distribution (i.e., g and o) to derive the probability

p(f) for entropy encoding/decoding with AE.

4 Experiments

In this section, we first present our HAC framework’s implementation details and
then conduct evaluation experiments to compare with existing 3DGS compres-
sion approaches. Additionally, we include ablation studies to demonstrate the
effectiveness of each technical component of our method. Finally, we visualize
the bit allocation map for better understanding.

4.1 Implementation Details

We implement our HAC based on the Scaffold-GS repository [27] using the
PyTorch framework [33] and train the model on a single NVIDIA RTX 4090
GPU. We increase the dimension of the Scaffold-GS anchor feature f¢ (i.e., D%)
to 50, and disable its feature bank as we found it may lead to unstable training.
For the hash grid H, we utilize a mixed 3D-2D structured binary hash grid, with
12 levels of 3D embeddings ranging from 16 to 512 resolutions, and 4 levels of
2D embeddings ranging from 128 to 1024 resolutions. The maximum hash table
sizes are 23 and 2! for the 3D and 2D grids, respectively, both with a feature
dimension of D" = 4. We set \,, to 5e — 4, and change A, from 5e — 4 to 4e — 3
for variable bitrates. We set Qg as 1, 0.001 and 0.2 for f¢, I and o, respectively.
We combine MLP, and MLP, to a single 3-layer MLP with ReLU activation.

4.2 Experiment Evaluation

Baselines. We compare our HAC with existing 3DGS compression approaches.
Notably, [11,[22,|31}32] mainly adopt codebook-based or parameter pruning
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Table 1: Quantitative results. 3DGS [19]| and Scaffold-GS [27] are two baselines. Ap-
proaches in the middle chunk are designed for 3DGS compression. For our approach,
we give two results of different size and fidelity tradeoffs by adjusting A.. A smaller
Ae results in a larger size but improved fidelity, and vice versa. The best and 2nd best
results are highlighted in red and yellow cells. The size is measured in MB.

Datasets Synthetic-NeRF |28| Mip-NeRF360 |2] Tank&Temples |20]

methods psnrt ssim? lpips] sizel |psnrf ssim? Ipips] sizel |psnr? ssim? lpips| sizel
3DGS [19] 33.80 0.970 0.031 68.46(27.49 0.813 0.222 744.7(23.69 0.844 0.178 431.0
Scaffold-GS |27] 33.41 0.966 0.035 19.36|27.50 0.806 0.252 253.9|23.96 0.853 0.177 86.50
Lee et al. |22] 33.33 0.968 0.034 5.54 [27.08 0.798 0.247 48.80(23.32 0.831 0.201 39.43
Compressed3D |32](32.94 0.967 0.033 3.68 [26.98 0.801 0.238 28.80|23.32 0.832 0.194 17.28
EAGLES |[14] 32.54 0.965 0.039 5.74 |27.15 0.808 0.238 68.89(23.41 0.840 0.200 34.00

LightGaussian [11] |32.73 0.965 0.037 7.84 [27.00 0.799 0.249 44.54|22.83 0.822 0.242 22.43
Morgen. et al. |29] |31.05 0.955 0.047 2.20 [26.01 0.772 0.259 23.90|22.78 0.817 0.211 13.05
Navaneet et al. |31]]|33.09 0.967 0.036 4.42 |27.16 0.808 0.228 50.30|23.47 0.840 0.188 27.97

Ours-lowrate 33.24 0.967 0.037 1.18 |27.53 0.807 0.238 15.26/24.04 0.846 0.187 8.10
Ours-highrate 33.71 0.968 0.034 1.86 |27.77 0.811 0.230 21.87|24.40 0.853 0.177 11.24
Datasets DeepBlending [18] BungeeNeRF |42]
methods psnrt ssim? lpips] sizel |psnrf ssim? lpips| sizel
3DGS [19] 29.42 0.899 0.247 663.9(24.87 0.841 0.205 1616
Scaffold-GS |27] 30.21 0.906 0.254 66.00|26.62 0.865 0.241 183.0
Lee et al. |22 29.79 0.901 0.258 43.21(23.36 0.788 0.251 82.60
Compressed3D [32]29.38 0.898 0.253 25.30(24.13 0.802 0.245 55.79
EAGLES |14] 29.91 0.910 0.250 62.00(25.24 0.843 0.221 117.1

LightGaussian [11] [27.01 0.872 0.308 33.94|24.52 0.825 0.255 87.28
Morgen. et al. |29] |28.92 0.891 0.276 8.40 | — — — —
Navaneet et al. |31]]29.75 0.903 0.247 42.77|24.63 0.823 0.239 104.3
Ours-lowrate 29.98 0.902 0.269 4.35 (26.48 0.845 0.250 18.49
Ours-highrate 30.34 0.906 0.258 6.35 |27.08 0.872 0.209 29.72

strategies, while Scaffold-GS [27] explores Gaussian relations for compact repre-
sentation. Additionally, EAGLES [14] and Morgenstern et al. [29] employ non-
contextual entropy constraints and dimension collapse techniques, respectively.
Datasets. We follow Scaffold-GS to perform evaluations on multiple datasets,
including the small-scale Synthetic-NeRF [28] and the four large-scale real-
scene datasets: BungeeNeRF [42]|, DeepBlending [18|, Mip-NeRF360 [2]|, and
Tanks& Temples [20]. Note that we evaluate the entire 9 scenes from Mip-NeRF360
dataset [2]. Covering diverse scenarios, these datasets allow us to comprehen-
sively demonstrate the effectiveness of our approach.

Metrics. To comprehensively evaluate compression Rate-Distortion (RD) per-
formance, we calculate relative rate (size) change of our approach over others
under a similar fidelity. Note that BD-rate [4] is incalculable as other methods
can typically only output a single rate, while four are needed for its calculation.
Results. Quantitative results are shown in Tab.[[|and Fig.[4] the qualitative out-
puts are presented in Fig.[5] Please refer to the supplementary Sec.C for detailed
metrics of each scene. Our HAC has demonstrated significant size reduction of
over 75x compared to the vanilla 3DGS [19] with even improved fidelity. The
size reduction also exceeds 11x over the base model Scaffold-GS [27]. Notably,
our highest fidelity surpasses Scaffold-GS, primarily due to two factors: 1) the
entropy loss effectively regularizes the model to prevent overfitting, and 2) we
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Fig. 4: RD curves for quantitative comparisons. We vary A, to achieve variable bitrates.
Note that logio scale is used for x-axis for better visualization.

21.20dB 24.94dB
2168MB ) 208.5MB

Al i

Ground Truh

flowers Scaffold-GS

Fig. 5: Qualitative comparisons of “pompidou” from BungeeNeRF and “flowers”
from Mip-NeRF360 . PSNR and size results are given at lower-left.

increase the dimension of the anchor feature (i.e., D®) to 50, resulting in a larger
model volume. Although other compression approaches (mid chunk) can reduce
the model size by primarily using pruning and codebooks, they still exhibit sig-
nificant spatial redundancy. Specifically, Morgenstern achieves a comparably
small size, but significantly sacrifices fidelity due to the dimension collapsing.

Bitstream. Our bitstream consists of five components: anchor attributes A
(comprising f%, I and o), binary hash grid H, offset masks, anchor locations
x% and MLPs. Among them, A4 is encoded using entropy codec AE with
estimated probabilities from HAC. It accounts for the dominant portion of the
storage. The hash grid H and the masks are binary data and are encoded by
AE using the respective occurrence frequency. The last two components are
stored directly in 16 and 32 bits, respectively. When analyzing the bit allocation
of each component, they are 14.90MB (8.76MB, 2.52MB, 3.62MB), 0.15MB,
0.52MB, 2.77MB, and 0.16MB for these five components on the most challenging
BungeeNeRF dataset with A\, = 4e — 3. With scenes become simpler, the
storage share of A decreases as the value distribution become easier to predict.

4.3 Ablation Study

In this subsection, we conduct ablation studies to demonstrate effectiveness of
each technical component. We conduct experiments on both the most challeng-
ing large-scale BungeeNeRF dataset and the small-scale Synthetic-NeRF
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BungeeNeRF Synthetic-NeRF
27.5 34.0
—@— Full HAC (Ours)
3 27.0 A/‘
2 33.5 v/ =—f— W/O mutual info
7~ 265 '
= 33.0 { W/O AQM
= 26.0 &
- —— W/O mask
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size (MB)

Fig. 6: Ablations of different components in HAC. We vary A. for variable rates.

1.0

bit consumption (normalized)

drums Total anchor bits within voxels

1

Averaged anchor bits within voxels

Fig. 7: Visualization of bit allocation maps for the scenes “materials” and “drums” on
Synthetic-NeRF dataset . The 3D space is voxelized, with each voxel represented
by a ball and the radius of a ball indicating the number of anchors in the voxel. For the
2nd column, the color of a ball indicates the total bit consumption of all anchors in the
voxel, while for the 4th column, the color represents the averaged bit consumption per
anchor within a voxel. The 3rd column gives zoom-in views. It shows more anchors are
allocated to important regions while the bit consumption for each anchor is smooth.

dataset to support convincing and solid results. We assess the effectiveness
of individual technical components by disabling either of the following: 1) mutual
information from the hash grid, 2) the adaptive quantization module, 3) adap-
tive offset masking. The results are presented in Fig. [f] Firstly, we set the hash
grid to all zeros to eliminate mutual information. This leads to a degradation of
conditional probability from p(A|f") to p(A), which indicates that probabilit

of f can only be estimated by the statistic u and o from the left part of Fig.
Consequently, the bit consumption drastically increases as the probability can no
longer be accurately estimated. Regarding the latter two components, they con-
tribute from different perspectives. Disabling AQM (we remove r while retaining
Qo to ensure a necessary decimal quantization step) results in a significant drop
in fidelity, especially in more complex scenes or at higher rates, as f fails to
retain sufficient information for rendering after quantization. Differently, offset
masking can achieve remarkable rate savings in simpler scenes or lower rate seg-
ments due to more significant positional redundancy in Gaussians. Overall, all
three components provide a worthwhile tradeoff for improved RD performance.
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4.4 Visualization of Bit Allocation

While HAC measures the parameters’ bit consumption, we are interested in the
bit allocation across different local areas in the space. In Fig.[7} we utilize scenes
in Synthetic-NeRF dataset [28] for visualization, and represent bit allocation
conditions by voxelized colored balls. As observed from the 2nd column of vi-
sualized sub-figures, the model tends to allocate more total bits to areas with
complex appearances or sharp edges. For instance, specular objects in “mate-
rials” and instrument stands in “drums” exhibit higher total bit consumption
due to the complex textures. The analysis of the 4th column from an aver-
aging viewpoint reveals varied trends in bit consumption per anchor. In high
bit-consumption voxels, creating more anchors for precise modeling averages the
bit per anchor, smoothing or reducing bit consumption for each. This aligns with
our assumption that anchors demonstrate inherent consistency in the 3D space
where nearby anchors exhibit similar values of attributes, making it easier for
the hash grid to accurately estimate their value probabilities.

4.5 Training and Execution Time

Training time. Use of additional models in HAC results in increased training
time, approximately 0.9 longer than Scaffold-GS. For the challenging BungeeN-
eRF dataset [42], the training times are 38.2 m for 3DGS [19], 15.1 m for Scaffold-
GS |27] and 27.6 m for HAC. For the small-scale Synthetic-NeRF dataset |28],
training times are 3.4 m, 4.4 m and 9.0 m, respectively. This increase of training
time in our model over Scaffold-GS is our main limitation, but it is still fast.
Coding time. The encoding/decoding process takes approximately 0.87 seconds
and 26.7 seconds on Synthetic-NeRF and BungeeNeRF dataset under A\, = 4e—3,
respectively. The dominant time consumption occurs during Codec execution of
AE on the CPU (over 90%), as we only use a single thread.

Inference time. The inference process benefits from the design of context mod-
eling, allowing for the removal of the hash grid once A is decoded. Consequently,
no additional operations are required during rendering, resulting in a similar FPS
with Scaffold-GS. The rendering FPS are 75, 232 and 283 for 3DGS, Scaffold-GS
and HAC on BungeeNeRF, and 401, 326 and 341 on Synthetic-NeRF. The im-
proved FPS of our model compared to Scaffold-GS is likely due to the pruning
of invalid Gaussians/anchors, which in turn facilitates faster rendering.

5 Conclusion

We pioneered an investigation into the relationship between unorganized and
sparse Gaussians (or anchors) and well-structured hash grids, leveraging their
mutual information for compact 3DGS representations. Our Hash-grid Assisted
Context (HAC) framework has achieved SoTA compression performance with
remarkable leading over concurrent works. Extensive experiments have demon-
strated the effectiveness of our HAC and its technical components. Overall, our
work has successfully mitigated the major challenging of 3DGS models, i.e.,
large storage, enabling its adoption in large-scale scenes and diverse devices.



HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression 15

Acknowledgement

The paper is supported in part by The National Natural Science Foundation of
China (No. 62325109, U21B2013).

MH is supported by funding from The Australian Research Council Discovery
Program DP230101176.

References

1. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image
compression with a scale hyperprior. In: International Conference on Learning
Representations (2018)

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-
nerf 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470—
5479 (2022)

3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

4. Bjontegaard, G.: Calculation of average psnr differences between rd-curves. ITU
SG16 Doc. VCEG-M33 (2001)

5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
European Conference on Computer Vision. pp. 333-350. Springer (2022)

6. Chen, G., Wang, W.: A survey on 3d gaussian splatting. arXiv preprint
arXiv:2401.03890 (2024)

7. Chen, Y., Wu, Q., Harandi, M., Cai, J.: How far can we compress instant-ngp-
based nerf? In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2024)

8. Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. pp. 7939—
7948 (2020)

9. Cover, T.M.: Elements of information theory. John Wiley & Sons (1999)

10. Deng, C.L., Tartaglione, E.: Compressing explicit voxel grid representations: fast
nerfs become also small. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision. pp. 1236-1245 (2023)

11. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: Lightgaussian: Un-
bounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245 (2023)

12. Fei, B., Xu, J., Zhang, R., Zhou, Q., Yang, W., He, Y.: 3d gaussian as a new vision
era: A survey. arXiv preprint arXiv:2402.07181 (2024)

13. Fridovich-Keil, S., Meanti, G., Warburg, F.R., Recht, B., Kanazawa, A.: K-planes:
Explicit radiance fields in space, time, and appearance. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12479-
12488 (2023)

14. Girish, S., Gupta, K., Shrivastava, A.: Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. arXiv preprint arXiv:2312.04564 (2023)

15. Girish, S., Shrivastava, A., Gupta, K.: Shacira: Scalable hash-grid compression for
implicit neural representations. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 17513-17524 (2023)



16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Y. Chen et al.

He, D., Yang, Z., Peng, W., Ma, R., Qin, H., Wang, Y.: Elic: Efficient learned im-
age compression with unevenly grouped space-channel contextual adaptive coding.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 5718-5727 (2022)

He, D., Zheng, Y., Sun, B., Wang, Y., Qin, H.: Checkerboard context model for
efficient learned image compression. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 14771-14780 (2021)

Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG) 37(6), 1-15 (2018)

Kerbl, B., Kopanas, G., Leimkiihler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)
Knapitsch, A., Park, J., Zhou, Q.Y ., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1-13
(2017)

Lassner, C., Zollhofer, M.: Pulsar: Efficient sphere-based neural rendering. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 1440-1449 (2021)

Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3d gaussian representation
for radiance field. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2024)

Li, J., Li, B., Lu, Y.: Deep contextual video compression. Advances in Neural
Information Processing Systems 34, 18114-18125 (2021)

Li, J., Li, B., Lu, Y.: Hybrid spatial-temporal entropy modelling for neural video
compression. In: Proceedings of the 30th ACM International Conference on Mul-
timedia. pp. 1503-1511 (2022)

Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields
to 1 mb. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 4222-4231 (2023)

Li, L., Wang, Z., Shen, Z., Shen, L., Tan, P.: Compact real-time radiance fields
with neural codebook. In: ICME (2023)

Lu, T., Yu, M., Xu, L., Xiangli, Y., Wang, L., Lin, D., Dai, B.: Scaffold-gs: Struc-
tured 3d gaussians for view-adaptive rendering. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2024)

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99-106 (2021)

Morgenstern, W., Barthel, F.; Hilsmann, A., Eisert, P.: Compact 3d scene represen-
tation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299 (2023)
Miiller, T, Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1-
15 (2022)

Navaneet, K., Meibodi, K.P., Koohpayegani, S.A., Pirsiavash, H.: Compact3d:
Compressing gaussian splat radiance field models with vector quantization. arXiv
preprint arXiv:2311.18159 (2023)

Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3d gaussian splat-
ting for accelerated novel view synthesis. arXiv preprint arXiv:2401.02436 (2023)
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N.; Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)



34.

35.

36.

37.

38.

39.

40.

41.

42.

HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression 17

Rho, D., Lee, B., Nam, S., Lee, J.C., Ko, J.H., Park, E.: Masked wavelet repre-
sentation for compact neural radiance fields. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 20680-20690 (2023)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016)

Sheng, X., Li, J., Li, B., Li, L., Liu, D., Lu, Y.: Temporal context mining for learned
video compression. IEEE Transactions on Multimedia (2022)

Shin, S., Park, J.: Binary radiance fields. Advances in neural information processing
systems (2023)

Song, Z., Duan, W., Zhang, Y., Wang, S., Ma, S., Gao, W.: Spc-nerf: Spatial pre-
dictive compression for voxel based radiance field. arXiv preprint arXiv:2402.16366
(2024)

Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 5459-5469 (2022)
Tang, J., Chen, X., Wang, J., Zeng, G.: Compressible-composable nerf via rank-
residual decomposition. Advances in Neural Information Processing Systems 35,
14798-14809 (2022)

Witten, I.LH., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Communications of the ACM 30(6), 520-540 (1987)

Xiangli, Y., Xu, L., Pan, X., Zhao, N., Rao, A., Theobalt, C., Dai, B., Lin, D.:
Bungeenerf: Progressive neural radiance field for extreme multi-scale scene render-
ing. In: European conference on computer vision. pp. 106-122. Springer (2022)



	HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression

