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1 Supplementary

1.1 Details of attention network

The details of attention-based fusion network in EHF are illustrated. In hier-
archical aggregation, the same attention network is utilized to aggregate the
multi-modality MRI. Here, the fusion on tf4, c4, n4, and w4 is taken for exam-
ple. Through the attention-based fusion (Fig. 1), the representations of different
modalities (tf4, c4, n4 and w4) are fused into f4. Firstly, the multi-modality
representations with the size of C × D × W × H are added as a whole (Af ).
Second, the fused representation is fed into local network to extract the local
attention in channel dimension. The Af is extracted by the convolution and nor-
malization layers with the size of C/r×D×W×H. Then the ReLU, convolution,
and normalization layers are applied to achieves the local channel-wise attention
(C ×D ×W ×H). Thirdly, the global attention is realized by a global-pooling
and two convolution & normalization layers with the size of C×1×1×1. Fourth,
the global and local attention are added and converted into sigmoid to achieve
the attention in multi-modality MRI. Finally, the attention is applied to Af

for the attention-corrected fusion (f4). The above fusion process is applied to
hierarchical multi-modality MRI representations.

1.2 The necessity of alignment

In proposed energy-regularized space alignment of E2PA, the alignment of differ-
ent modalities’ representations is based on the representations of different modal-
ities extracted by encoders belong to various spaces. To evaluate the necessity of
alignment before the measurement of consistency in information flow, the repre-
sentations of the aggregation and multi-modality MRI are calculated to find the
corresponding vector spaces by QR decomposition. As shown in Fig. 2 (brain
multi-modality MRI for the example), the purple dots and coordinate represent
the aggregation representation and corresponding space ([ifusion, jfusion]), and
the blue dots and coordinate represent the multi-modality MRI representation
and and corresponding space ([itf , jtf ]) (taking T2f MRI as an example here).
We take the purple (R4

fusion) and blue (R4
tf ) dots outlined in red as an example

for analysis. For the space of [ifusion, jfusion], the coordinate of R4
fusion is [3, 4]

and the coordinate of R4
tf is [0, 4]. For the space of [itf , jtf ], the coordinate of
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Fig. 1: The details of attention-based fusion network in EHF.

R4
fusion is [1.25, 1] and the coordinate of R4

tf is [1, 2]. Without alignment, the
distance between R4

fusion and R4
tf is calculated by:

Dis(R4
fusion, R

4
tf ) = ||Co(R4

tf |[itf , jtf ])−
Co(R4

fusion|[ifusion, jfusion])||2
(1)

where Co(x|y) is the coordinate of x on the space of y. Under the above value,
Dis(R4

fusion, R
4
tf ) is calculated (||[1, 2] − [3, 4]||2 =

√
8). However, the R4

tf and
R4

fusion should be aligned to the same space to calculate the distance. The
aligned distance calculation should be:

Dis(R4
fusion, R

4
tf ) = ||Co(R4

cine|[ifusion, jfusion])−
Co(R4

fusion|[ifusion, jfusion])||2.
(2)

This equation represents that the distance between R4
tf and R4

fusion is calcu-
lated in the space of [ifusion, jfusion]. The distance can be easily calculated
||[0, 4] − [3, 4]||2 = 3. From the different values of distance (

√
8vs.3), it can be

easily found that the alignment of fusion representation and multi-modality MRI
representations is necessary. In the energy-regularized vector space alignment of
E2PA, different modalities’ representations are aligned with the aggregation in
the energy calculation for the accurate measurement.

1.3 Experimental settings

To evaluate the performance of our E2PA, we compare with various state-of-the-
art methods in segmentation and classification. The segmentation methods in-
clude AWSNet, MyoPS-Net, NestedFormer, HyperDense, MAML, and MMSNet.
The classification methods include TransMed, MRNet, ELNet, and MRPyrNet.
In the model training, the data augmentation is adopted as the pre-processing,
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Fig. 2: The alignment process of ESA.

including rotation, mirror, resize, and Gaussian noise. Our E2PA is optimized
by Adam with the learning rate of 1× 10−4 for 300 epochs on segmentation and
classification tasks separately. The batchsize in segmentation task is 1, and 5 in
classification task. In our data splitting strategy, the three-fold cross-validation
is adopted to achieve the best model for direct testing. In the segmentation task,
the combination of dice loss and cross-entropy loss is adopted as the target loss
function. In the classification task, the cross-entropy loss is the target loss func-
tion. For the compared methods above, we follows the claimed in the papers to
optimize the model on each multi-modality MRI dataset for the best model.

The BraTS dataset contains four modalities: native (T1n) and b) post-
contrast T1-weighted (T1c), c) T2-weighted (T2w), and d) T2 Fluid Attenuated
Inversion Recovery (T2f) volumes, and were acquired with different clinical pro-
tocols and various scanners from multiple data contributing institutions. The
sub-regions considered for evaluation are the "enhancing tumor" (ET), the "tu-
mor core" (TC), and the "whole tumor" (WT).

The MyoPS dataset contains balanced steady-state free precession (cine)
sequence, late gadolinium enhancement (LGE) sequence, T2-weighted sequence
(T2). The segmentation target contains the left ventricle (LV), right ventricle
(RV), myocardium (MYO), scar, and edema.

The MRNet dataset conducts examinations by GE scanners (GE Discovery,
GE Healthcare, Waukesha, WI) with standard knee MRI coil and a routine non-
contrast knee MRI protocol that included the following sequences: coronal T1
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weighted, coronal T2 with fat saturation, sagittal proton density (PD) weighted,
sagittal T2 with fat saturation, and axial PD weighted with fat saturation.

1.4 More visual result in different diseases

We visualize more results on BraTS and MyoPS (Fig. 3). From the visual results
in Fig. 3 and article, our E2PA obtains the best performance. This indicates the
superiority of E2PA for various diseases’ multi-modality aggregation. For the
scar and edema region in cardiac MRI, other methods can not aggregate the
information from LGE and T2 effectively. Our E2PA aggregates the information
of scar and edema by the explicit quantification from multi-modality MRI. The
best performance also indicates that the superiority of aggregation strategy.

1.5 The visual inter-dependencies.

We evaluate the inter-dependencies in different diseases. In the article, we eval-
uate the inter-dependencies on MyoPS. Here, we visualize the feature maps of
BraTS to evaluate the inter-dependencies on multi-modality MRI (T1c, T1n,
T2n, T2w). As shown in Fig. 4, different modalities provides different informa-
tion according to the inter-dependencies during aggregation. It can be found that
the tumor core (TC), enhancing tumor (ET) and whole tumor (WT) are related
to different modalities. The information of TC comes from T1c, T2f , T2w. Th
T1c and T2f provide the information of ET. The left regions are supported by
T1n and T2w. This also proves that our E2PA uncovers the inter-dependencies
among different modalities.

1.6 Clarification of the superiority over baselines.

To further clarify the superiority over baselines, we also compare E2PA with the
simple weighting and other strategies in compare methods on the BraTS dataset
(Tab. 1). It can be found that our E2PA is superior to the existing image fusion
methods.

Table 1: The comparison with the existing image fusion baselines on multi-modality
MRI fusion.

Method TC ET WT AVG
Pixel fusion [6] 77.0 74.9 81.2 77.7

Feature fusion [1] 79.3 74.5 81.1 78.3
Decision fusion [3] 78.9 77.6 83.8 80.1

Ours 91.0 87.3 93.5 90.6
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Fig. 3: More visual results on BraTS and MyoPS indicate the superiority of our E2PA.
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Fig. 4: The visual inter-dependencies of multi-modality MRI in BraTS.

1.7 Comparison with other energy model.

Trough the survey [5], there is currently no energy-based model that can be di-
rectly applied to multi-modal MRI fusion. To realize the evaluation, we modified
the existing energy-based models [2,4] to replace the energy functions (Li−d and
Lr) in our E2PA (Tab. 2). It indicates that E2PA is superior to other energy
based models on multi-modality MRI fusion.

Table 2: The comparison with other energy based models replacing the energy func-
tions (Li−d and Lr) in our E2PA.

Method TC ET WT AVG
E1 [2] 82.8 84.4 86.0 84.4
E2 [4] 87.7 86.1 88.1 87.3
Ours 91.0 87.3 93.5 90.6
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