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Appendix

We here provide additional details on the method, mathematical proofs, imple-
mentation details and experimental results. In Sec. A we provide a mathematical
derivation of the latent transition probability on a random walk. Refer to Sec. B
for details on Walker’s training. Refer to Sec. C and Sec. D for an in-depth
explanation of the inference tracking algorithms of Walker and QD-Walker re-
spectively. Sec. E reports implementation details. In Sec. F, we motivate the use
of a sparse setting and stress the usefulness of self-supervised trackers leveraging
the temporal information to make full use of such label-efficient settings. Finally,
we report additional quantitative and qualitative (Sec. G) results.

A Latent Transition Probability Derivation

We prove Eq. (5) (Sec. 3.4), which represents the probability of transitioning on
a given latent node qj

t+k given that a walk on the appearance graph G (Sec. 3.2)
starts from qi

t+ and ends in ql
t.

Let G : Q+
t → Qt+k → Qt be a cyclic temporal graph connecting the nodes

Q+
t in the frame It to Qt+k in the frame It+k and back to Qt in It. G is a Markov

chain described by the forward and backward transitions At+k
t+ and At

t+k, whose
chained transition Āt

t+ describes the cycle correspondence as a multi-step walk
along the appearance graph G. Let Xt be the state of a walker at time t, and
pXt

(i) the probability of being at node i at time t.

Theorem 1. The probability of transitioning on a latent node qjt+k on the ref-
erence image It+k when starting from qit+ in It and ending on qlt in It along the
cycle walk G is:

pG
Xt+k|Xt,X

+
t

(j|l, i) = pG
Xt|Xt+k

(l|j)pGXt+k|X+
t (j|i)/C (14)

= At+k
t+

(i, j)At
t+k(j, l)/C (15)

where C =
∑

qm
t+k

∈Qt+k
pGXt|Xt+k

(l|m)pG
Xt+k|X

+
t

(m|i) is a normalizing constant.

Proof (Proof of Theorem 1).

pG
Xt+k|Xt,X

+
t

(j|l, i)
(1)
=

pG
Xt,Xt+k,X

+
t

(l, j, i)

pG
Xt,X

+
t

(l, i)

(2)
=

pG
Xt|Xt+k

(l|j)pG
Xt+k|X

+
t

(j|i)

pGXt|X+
t (l|i)pGX+

t (i)

(3)
=

pG
Xt|Xt+k

(l|j)pG
Xt+k|X

+
t

(j|i)∑
qm
t+k

∈Qt+k
pG
Xt|Xt+k

(l|m)pG
Xt+k|Xt

(m|l)pG
X+

t

(i)

(4)
= pG

Xt|Xt+k
(l|j)pG

Xt+k|X
+
t

(j|i) / C

(5)
= At+k

t+
(i, j)At

t+k(j, l) / C
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We here motivate the steps in the proof:
(1) by the definition of conditional probability.
(2) since a walk on the appearance graph G defined in Sec. 3.2 is a first-

order Markov chain, each transition only depends on the previous state, i.e.
pG
Xt,Xt+k,X

+
t

(l, j, i) = pGXt|Xt+k
(l|j)pG

Xt+k|X
+
t

(j|i).
(3) since a walk on the appearance graph G defined in Sec. 3.2 is a first-

order Markov chain, each transition only depends on the previous state, i.e.
pG
Xt|X+

t

(l|i) =
∑

qm
t+k

∈Qt+k
pGXt|Xt+k

(l|m)pGXt+k|Xt
(m|l). Moreover, we marginalize over

all possible transition states qm
t+k ∈ Qt+k.

(4) for a chosen starting node qi
t and ending node ql

t,
C =

∑
qm
t+k

∈Qt+k
pGXt|Xt+k

(l|m)pGXt+k|Xt
(m|l)pG

X+
t

(i) is a normalization constant.
(5) according to our definition of the transition probability matrices for a

random walk on an appearance graph G (Sec. 3.3).

B Training a Walker

We here provide additional details on Walker’s training, which we introduced
in Sec. 3.3, Sec. 3.4, Sec. 3.5. In particular, we discussed our multi-positive
contrastive random walk in Sec. 3.3, our cluster-wise forward assignment and
optimization in Sec. 3.4, and the total loss in Sec. 3.5. To make the understanding
of our training pipeline easier, we provide pseudo-code in Alg. 1.
Node Embedding. During one training iteration, we are given the detections
Dt on It and Dt+k on It+k, and the ground-truth detections D̂t on It and D̂t+k

on It+k. We first embed the detections to obtain their embeddings, i.e. qt and
qt+k respectively.
Node Selection. Depending on the setting - i.e. dense or sparse (see Sec. 4.1)
- we use different policies for selecting the positive and negative nodes in each
frame. Note that we defined in Sec. 3.2 the positive nodes as the ones with
high IoU with a set of reference bounding boxes D̄t. In the sparse setting, we
cannot assume the detection annotations to be available for both key and ref-
erence frame. Thus, we use the high-confidence detections Dhigh

t as set of refer-
ence bounding boxes D̄t = Dhigh

t . In the dense setting, detection annotations are
available for all frames. We can thus reliably identify good nodes over which per-
forming our contrastive random walk as the nodes overlapping with the ground
truth bounding boxes D̂t, i.e. D̄t = D̂t. Given the reference bounding boxes D̄t,
we sample positive and negative nodes with a rate of 1/3.
Cluster Assignment. We then compute the forward At+k

t+ , backward At
t+k,

and cycle Āt
t+ transition probabilities (Sec. 3.3). We obtain the set of unique

clusters Ct in the key frame It, and sort and filter them by their cluster cycle
probability, ensuring that it must be higher than a threshold βcycle. Finally,
we incrementally match key clusters to reference clusters Zi

t+k based on their
max-likelihood transition state, as introduced in Eq. (7).
Total Loss. The pseudo-assignments identified with the algorithm described
above are then optimized with the forward loss Lforward, applied jointly with the
cycle loss Lcycle.
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C Tracking with Walker

We introduced Walker’s tracking scheme in Sec. 3.6. To make the understanding
of our matching pipeline with fused motion and appearance easier, we provide
in Alg. 2 the matching pseudo-code for a whole video V.

Inspired by BYTE [56], Walker adopts a two-stage matching scheme. Let
T be the tracklets of the video up to time t − 1. Let Det be the object de-
tector. Let It be the incoming frame at time t. Dt = Det(It) is the set of
detections predicted by the object detector on It. We define the set of high-
confidence detections Dhigh

t = {dit ∈ Dt | conf(dit) ≥ βhigh} as those with con-
fidence greater than a threshold βhigh, and the set of low-confidence detec-
tions Dlow

t = {dit ∈ Dt | βlow ≤ conf(dit) < βhigh} as those with confidence be-
tween thresholds βlow and βhigh.

In the first association stage, Walker matches high-confidence detections
Dhigh

t to tracklets T based on our cost matrix W (defined in Eq. (13)) that
fuses motion and appearance costs. In the second association stage, low confi-
dence detections Dlow

t are assigned to the remaining tracklets Tremain based on
their IoU. Unmatched tracklets Tunmatched are deleted, and new tracklets are
initialized from the remaining high-confidence detections Dremain

t .
Track rebirth [49, 59] is not shown in the algorithm for simplicity. For addi-

tional details on the track management scheme, refer to BYTE [56].

D Tracking with QD-Walker

We briefly introduced QD-Walker’s appearance-only tracking scheme in Sec. 4.1.
The goal was to provide an appearance-only tracking baseline that could be used
to directly compare to QDTrack-S and other self-supervised Re-ID baselines to
establish which self-supervised appearance learning schemes translates to the
better tracker.

To make the understanding of our appearance-only matching pipeline easier,
we provide pseudo-code for one matching step (Alg. 3). Inspired by QDTrack [14,
35], Walker matches detections to tracklets based on their appearance. However,
as opposed to QDTrack’s bisoftmax, Walker uses the biwalk similarity metric
sbiwalk
i,j introduced in Eq. (11) between the embeddings of the i-th detection and

the j-th tracklet.
We borrow from QDTrack the track management scheme to keep track of in-

active and currently active tracks and to handle the matching of objects. Active
tracks are tracks that have a matching detection in the previous frame, otherwise
they become inactive. Tracks that are inactive for K frames will be removed and
not be considered for matching. In particular, Walker first removes duplicate
detections with inter-class NMS with confidence threshold Det. Conf. Thr. and
IoU threshold Det. NMS IoU. Thr.. Detections are only considered for matching
to existing tracks if the detection confidence is above a threshold βobj. A match
is determined if the biwalk similarity sbiwalk

i,j is higher than a threshold βmatch.
For unmatched objects that have a detection confidence higher than a threshold
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βnew, we initialize a new track instead. We keep the unmatched objects as back-
drops for L frames and use them as matching candidates. Detections that are
matched to backdrops will thus not be matched to existing tracks. The tracklet
embeddings are updated with an exponential moving average with momentum
m. For additional details on the track management scheme, refer to the original
QDTrack paper [35].

E Implementation Details

We report the training and inference hyperparameters for Walker in Tab. 5,
identified by parameter-search on the validation set of each dataset. Since our
inference algorithm builds on top of BYTE and QDTrack, we take their hyper-
parameters directly unless differently specified. Notice that Walker shares the
same trained model and parameters with QD-Walker, only the inference scheme
differs. Results reported for other trackers are directly taken from their papers
or re-run following the hyperparameters introduced in the respective paper.
Training Hyperparameters The key frame is sampled from the set of frames
with bounding box annotations, i.e. in the sparse setting we assume that one
frame every k is labeled starting from the first frame in the video sequence.
We sample the reference frame from a neighborhood of the key frame, where the
neighborhood width is k̂. For data augmentation, we utilize mosaic augmentation
on key and reference frame, followed by consistent photometric augmentations
as in [56]. We then apply non-consistent multi-scale resizing augmentations on
key and reference frame, with a scale range (0.5, 1.5) around the basic image
size 1440 x 800.
Inference Hyperparameters We report the inference hyperparameters for
Walker following the naming convention established throughout the paper, and
re-iterated in Sec. B and Sec. C.

F Datasets and Annotations

The minimal annotation frame rate found across tracking datasets is 1 FPS [9].
Under this cut-off value, annotating tracking is often not possible due to the
limited living span of objects in a video. For this reason, the TAO dataset [9]
was originally annotated at 1 Hz. NuScenes [5] is annotated only at 2 Hz due
to the difficulty in calibration and syncronization of multiple sensors. However,
the large differences in appearance across the sparsely annotated frames in such
datasets makes it difficult to learn supervised trackers. For this reason, the TAO
dataset [9] was later refined to 6 FPS [2]. By not requiring instance labels,
a good self-supervised tracker would achieve good tracking performance even
when trained under a sparse annotation regimen, as it could make use of the
unlabeled frames.

For this reason, we choose to evaluate self-supervised trackers trained with
detection annotations at 0.1 FPS (Sec. 4.1), a value sensitively below the com-
mon annotation rate and often sparser than the average object living time in
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Table 5: Hyper-parameters used in each benchmark. We include both training
and inference parameters of Walker across all datasets.

Parameter MOT17 DanceTrack BDD100K

T
ra

in
in

g

λ1 1.0 1.0 0.5
λ2 2.0 2.0 1.0
k̂ 10 10 3
α1 0.7 0.7 0.7
α2 0.3 0.3 0.3
βobj 0.3 0.3 0.3
βcycle 0.8 0.8 0.8
τ 0.05 0.05 0.05

In
fe

re
n
ce

Det. Conf. Thr. 0.1 0.1 0.1
Det. NMS IoU Thr. 0.7 0.6 0.65
βnew 0.75 0.8 0.5
βhigh 0.3 0.6 0.35
βlow 0.1 0.1 0.1
βhigh
match 0.1 0.1 0.1

βbiwalk 0.2 0.2 0.2
βIoU 0.5 0.5 0.5
λbiwalk 2.0 2.0 2.0
βlow
match 0.5 0.5 0.5

βcycle 0.1 0.1 0.1
τ 0.07 0.07 0.07
K 30 20 10
m 0.5 0.8 0.8

a video. Note that on MOT17 we only validate the dense protocol due to the
very small size of its half-train set (only 7 videos totalling 2658 frames). Self-
supervised tracking methods leveraging temporal self-supervision can make full
use of the video stream, even in correspondence of the unlabeled frames, overcom-
ing the limitations of training supervised trackers on sparsely annotated data.
Moreover, by learning from such a low annotation frame rate, self-supervised
multiple object tracking algorithms such as Walker allow to significantly reduce
the annotation cost for video datasets. Finally, Walker can be in principle ex-
tended to fully unlabeled videos. Given a pre-trained object detector, Walker
can be used to train the embedding head on the unlabeled videos while keeping
the detector frozen or finetuning it with knowledge distillation techniques. We
leave this interesting application to future work.

G Additional Results

G.1 Additional Self-supervised Re-ID baselines

We compare to additional self-supervised Re-ID baselines [3, 20, 47]. Since such
methods do not provide an official implementation, or they cannot be easily
extended to an appearance-only setting, we compare Walker against their pub-
lished results.

In Tab. 6, we compare on MOT17’s public Faster R-CNN detections against
Bastani et al . [3] and Ho et al . [20]. Walker greatly outperforms both approaches,
showing the superiority of our self-supervised appearance representations.
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Table 6: Comparison to baselines on public detections. We compare to existing
baselines which report results on the public detection set of MOT17. For a fair com-
parison, we use Faster R-CNN and train only on MOT17, without using Crowdhuman.

Method MOTA IDF1 MOTP

Bastani et al. [3] 56.8 58.3 -
Ho et al. [20] 48.1 - 76.7
Walker 68.0 64.5 78.4

Table 7: Comparison to CRW as Re-ID. We compare Walker on the MOT17
validation set against the CRW used as a Re-ID module in a JDE [48] tracker as
in [47]. Both methods combine appearance with motion.

Method HOTA IDF1

JDE-CRW [47] 61.7 73.0
Walker (Ours) 63.6 77.4

In Tab. 7, we compare against a straightforward extension of the CRW to
Re-ID by directly using the CRW module trained for point correspondence as
an object-level Re-ID module. Although their performance is satisfying (albeit
greatly supported by the two-stage pipeline and motion-based heuristics of the
JDE’s algorithm), the appearance representations learned by the original CRW
algorithm are not object-specific and do not enforce mutual exclusivity. By ad-
dressing both limitations, Walker achieves higher performance.

In Tab. 14, we report the performance compared on all and top-5 hardest se-
quences from DanceTrack val. We compare Walker to ByteTrack [56] and Byte-
Track + [22]. We choose ByteTrack as a representative motion-only tracker, and
naively extend it with a pre-trained [22] as Re-ID head. Since [22] was trained on
the DAVIS dataset, ByteTrack + [22] drastically fails to cope with DanceTrack’s
similar object appearances, worsening ByteTrack’s association (Tab. 14).

G.2 Ablation on Method Details

We here ablate on the method components that leverage the quasi-dense na-
ture of our temporal object appearance graph. In particular, we ablate on (i)
the effectiveness of the proposed method components, (ii) the effect of different
appearance-based match metrics, (iii) the use of a single-positive vs. a multi-
positive contrastive cycle consistency objective, and (iv) the importance of en-
forcing mutually-exclusive assignments.
Method Components. We ablate on the effectiveness of each proposed com-
ponent (Tab. 8) on top of the naive quasi-dense contrastive random walk baseline
(QD-CRW). We incrementally add our multi-positive contrastive objective (+
multi-positive), enforce mutually-exclusive connectivity (+ mutually-exclusive),
replace the bisoftmax similarity with our biwalk match metric in QDTrack’s
appearance-only inference (+ biwalk), and add motion constraints to reject un-
likely appearance-based associations (+ motion). While all rows in Tab. 8 learn
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from our proposed TOAG, our contributions clearly promote an optimal graph
topology for MOT (5.1 vs. 38.6 AssA).

Table 8: Ablation on our individual method
components on top of the naive quasi-dense
CRW (QD-CRW) on DanceTrack val.

Method HOTA AssA DetA

QD-CRW 19.2 5.1 74.1
+ multi-positive 46.3 30.2 71.8
+ mutually-exclusive 47.3 31.3 71.7
+ biwalk (= QD-Walker) 49.0 32.8 73.6
+ motion (= Walker) 53.0 38.6 73.1

Table 9: Ablation on match met-
rics for appearance-only tracking
(QD-Walker) on DanceTrack val.

Metric HOTA AssA DetA

Cosine 47.3 31.3 71.7
Bisoftmax [14] 46.8 30.6 71.7
Biwalk 49.0 32.8 73.6

Appearance-based Match Metrics. We ablate on the effect of different
appearance-based similarity metrics in appearance-only MOT with QD-Walker
(Tab. 9). Our proposed biwalk improves the overall tracking performance.
Multi-positive Cyclic Contrastive Objective. In Tab. 10, we ablate on
different formulations of our cycle consistency formulation introduced in Sec. 3.3.
We report the results for cycle walks optimized wrt. a single target (a), and
multiple targets (b). We find that our proposed multi-positive formulation is
remarkably more effective than the naive single positive baseline. We argue that
the single-positive baseline treats as negatives for the contrastive loss also all the
other nodes expect for the self node that represent detections which are highly
overlapping with the target node, and likely to represent the same instance.
Consequently, a significant amount of noise is injected in the training, making
it more difficult for the embedding head to discriminate instances. We solve this
problem with our multi-positive formulation, which enables multiple positive
target for each contrastive random walk.

Table 10: Ablation on the selection policy for the cycle walk targets. We
ablate on the DanceTrack validation set on different options of the target nodes to
optimize for a cycle walk Gi starting from a node qi

t+ in It and ending on qi
t+ itself. The

forward loss is not applied here. Optimizing cycle transitions only with respect to the
destination node qi

t+ itself (a) considers as negatives also the highly overlapping nodes
which are likely to represent the same instance, creating a conflicting self-supervisory
signal. This problem is solved by considering as positives all the nodes Y +

i highly
overlapping with qi

t+ .

Selection Policy Cycle Prob. HOTA AssA DetA MOTA IDF1

a) Single-positive pG
Xt|X

+
t

(i|i) 39.6 22.8 69.4 79.1 37.4

b) Multi-positive pG
Xt|X

+
t

(Y +
i |i) 48.7 31.1 77.1 88.9 48.0

Mutually-exclusive Forward Assignments. In Tab. 11, we ablate on differ-
ent policies to identify and optimize the forward assignments according to the for-
mulation introduced in Sec. 3.4. We report the results with cluster-wise mutually-
exclusive assignments (c) and assignments that are not mutually-exclusive (a,
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Table 11: Ablation on the selection policy for the match pseudo-labels. We
ablate on the DanceTrack validation set on different formulations of the max-likelihood
transition state for a cycle walk Gi starting from a node qi

t+ in It and ending on qi
t+

itself in It after transitioning on It+k. Single-positive consists in identifying the max-
likelihood transition state on the cycle walk starting from a node qi

t+ and ending on
the node qi

t+ itself; Multi-positive averages over the multi-positive target nodes Y +
i

for a cycle transition starting in qi
t+ ; Cluster-wise Multi-positive further averages over

the nodes in the starting cluster Cit = Y +
i , and enforces cluster-wise mutually-exclusive

assignments with the algorithm described in Sec. 3.4.

Selection PolicyLatent Transition Prob. HOTAAssADetAMOTAIDF1

Single-positive pG
Xt+k|Xt,X

+
t

(j|i, i) 46.2 29.1 76.8 87.0 45.9

Multi-positive pG
Xt+k|Xt,X

+
t

(j|Y +
i

, i) 46.5 30.0 76.8 86.9 46.2

Cluster-wise
Multi-positive pG

Xt+k|Xt,X
+
t

(j|Y +
i

, Y +
i

) 49.8 32.2 77.3 89.4 49.3

Table 12: Ablation on the loss components. We ablate on the DanceTrack vali-
dation set on the importance of each proposed loss components.

Lcycle Lforward HOTA AssA DetA MOTA IDF1

✓ - 48.7 31.1 77.1 88.9 48.0
✓ ✓ 49.8 32.2 77.3 89.4 49.3

b). In particular, (a) uses a single-node to single-node cycle walk formulation
to independently identify the max-likelihood latent transition state in the ref-
erence frame that matches each node in the key frame. (b) further refines it by
averaging the latent transition probabilities over the set of possible targets for
the cycle walks departing from a node in the key frame. However, both (a) and
(b) consider that each starting node can get independent assignments that are
not mutually-exclusive, meaning that nodes in It from different instances may be
assigned to nodes in It+k from a same instance, causing conflicts in the optimiza-
tion. This problem is elegantly addressed by our mutually-exclusive cluster-wise
assignment and optimization strategy introduced in Sec. 3.4, which (i) prevents
nodes from a same cluster in the key frame to be assigned to nodes in different
clusters in the reference frame, and (ii) prevents nodes from different clusters in
the key frame to be assigned to a same cluster in the reference frame.

G.3 Ablation on the Impact of the Hyperparameters

Current tracking-by-detection (TbD) methods, including Walker, are hyperparameter-
heavy. However, Walker’s 14 inference hyperparameters are comparable to state-
of-the-art tracking-by-detection methods combining motion and appearance, e.g .
BoT-SORT and StrongSORT have 13 according to their official code. As men-
tioned in Sec. E, our inference algorithm builds on QDTrack and BYTE. When
not explicitly mentioned, we keep all hyperparameters as in their original works.
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Table 13: Ablation on Walker’s sensitive inference parameters on DanceTrack val.

βhigh βhigh
match λbiwalk HOTA DetA AssA MOTA IDF1

0.5 0.1 1.0 52.6 73.1 38.1 86.9 56.4
0.5 0.1 2.0 53.2 73.1 38.9 87.0 57.2
0.5 0.2 2.0 52.6 73.5 37.9 86.6 55.0
0.6 0.1 2.0 53.4 73.6 39.0 87.2 56.3

Table 14: Comparison to ByteTrack + [22] on DanceTrack dense val. Per-
formance compared on all and top-5 hardest sequences. FLOPs are computed using an
input size of 3x640x640 to the YOLOX-X detector, of 3x256x128 to [20]’s ResNet-18
Re-ID branch and of 320x7x7 (RoI size in YOLOX-X) to our 4conv-1fc emb. head.

All Hard (top-5)

Method HOTA AssA DetA HOTA AssA DetA Det.
FLOPS (G)

Re-ID
FLOPS (G)

ByteTrack [56] 48.9 33.1 72.4 35.6 18.8 68.0 281.9 -
ByteTrack + [22] 24.6 15.1 72.1 17.4 7.3 68.3 281.9 1.19 ×10−3

Walker 53.0 38.6 73.1 41.6 25.4 69.5 281.9 0.14 ×10−3

For the remaining hyperparameters, we conducted a grid search. We here re-
port an analysis of the impact of Walker’s most-sensitive inference parameters
in Tab. 13.

G.4 Ablation on Loss Components

In Tab. 12, we ablate on the importance of the cycle and forward losses towards
our total loss introduced in Sec. 3.5. We find that applying the forward loss
on top of the cycle loss results in a considerable improvement in performance,
highlighting the importance of identifying and optimizing max-likelihood latent
transition states in a mutually-exclusive fashion according to our proposal in
Sec. 3.4. In particular, the performance improvements originates from (i) the
quality of the forward assignments refined by averaging over all the walks starting
from all the nodes in a given cluster and ending on the multi-positive targets
for the corresponding starting node, and (ii) the cluster-wise mutual-exclusivity
property enforced as described in Sec. 3.4.

G.5 Ablation on Model Complexity

In Tab. 14, we ablate on the FLOPS requirements of different methods on Dance-
Track val. We compare Walker to ByteTrack [56] and ByteTrack + [22]. FLOPs
are computed using an input size of 3x640x640 to the YOLOX-X detector,
of 3x256x128 to [20]’s ResNet-18 Re-ID branch and of 320x7x7 (RoI size in
YOLOX-X) to our 4conv-1fc emb. head. ByteTrack + [22] requires a separate
R-18 Re-ID head which is ∼9× more computationally expensive (Re-ID FLOPS,
Tab. 14) than our tiny embedding head, which operates on small-size RoIs and
is computationally negligible wrt. the detector.
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G.6 Qualitative Results

We report a qualitative comparison on DanceTrack of the existing self-supervised
tracking methods, i.e. QDTrack-S [14], QD-Walker (ours), and Walker (ours).

Figs. 6, 8 and 10 show the tracking results for each method, where the same
color is used through time to represent the same ID. Figs. 7, 9 and 10 show the
ID switches (blue) and correctly tracked bounding boxes (green). The qualita-
tive results remark the superiority of Walker over QDTrack-S. By sharing the
inference algorithm with QDTrack-S, QD-Walker demonstrates the superiority
of our self-supervised appearance-learning algorithm, showing significantly less
ID switches under complex occlusions. This is made possible by our temporal
self-supervision in videos, which makes our learned appearance descriptors more
robust to the sudden appearance and pose changes in highly dynamic videos as
the ones in DanceTrack. Moreover, the improved tracking algorithm of the full
Walker further boosts our tracking performance performance. By taking into ac-
count the motion information, Walker notably reduces the number of ID switches
in uniform appearance settings such as DanceTrack by constraining matches to
only happen near likely future positions of an object. Notably, Fig. 11 shows
a case of rapid object motion and sudden pose changes. For ease of visualiza-
tion, we crop all frames around an area of interest, i.e. where the dancers are
thrown in the air. The dynamic evolutions that the dancers are performing make
tracking extremely difficult for a self-supervised tracker trained on static images
such as QDTrack-S. This can be noticed by the high amount of ID switches
(blue boxes). Instead, our trackers trained on the temporal video stream learn
appearance representations robust to the temporal pose changes of the dancers,
as it can be seen by the significantly better results and reduced ID switches. It
is worth noticing that our motion-constrained tracker (Walker) prevents the ID
switch at time t = t̂ that still occurs in the unconstrained QD-Walker. Finally,
in Fig. 9 we identify a case where both QD-Walker and Walker cannot remedy
an ID switch. Due to the sudden change in appearance and pose of the dancer,
our trackers initiate a new tracklet for an already existing object in t = t̂− k.
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Algorithm 1 Training pipeline of Walker for identifying and optimizing pseudo-
assignments.
Input: detections Dt at time t and detections Dt+k at time t+k, ground-truth detec-

tions D̂t at time t and ground-truth detections D̂t+k at time t+k, setting setting
(dense or sparse)

1: # embed detections
2: Qt = embed(Dt)
3: Qt+k = embed(Dt+k)
4: # select reference nodes for walk based on setting
5: if setting == dense
6: D̄t = D̂t

7: D̄t+k = D̂t+k

8: else if setting == sparse
9: # filter detections by confidence

10: D̄t = filterByConf(Dt, βobj)
11: D̄t+k = filterByConf(Dt+k, βobj)
12: end if
13: # negative-positive balance for walk nodes
14: Qt = (Q+

t , Q−
t ) = negPosBalance((Qt, Dt), gt=D̄t, neg_pos_rate=3)

15: Qt+k = (Q+
t+k, Q−

t+k) = negPosBalance((Qt+k, Dt+k), gt=D̄t+k,
neg_pos_rate=3)

16: # compute cycle probabilities
17: At+k

t+
= computeTransition(Q+

t ,Qt+k)
18: At

t+k = computeTransition(Qt+k,Qt)
19: Āt

t+ = concatTransitions(At+k
t , At

t+k)
20: # get valid clusters
21: Ct = getClusters(Q+

t )
22: Ct = set(Chigh

t ) # keep only unique clusters
23: Ct = sorted(Ct, key=Āt

t+)
24: Cvalidt = filterByConf(Ct, Āt

t+ , βcycle)
25: # find pseudo-assignments
26: Zassigned

t+k = [ ] # set of assigned clusters
27: for Cit in Cvalidt

28: # find match not in Zassigned
t+k

29: Zi
t+k = findMatch(At+k

t+
, Cit , Zassigned

t+k )
30: Zassigned

t+k .append(Zi
t+k)

31: end for
32: # compute losses
33: Lcycle = cycleLoss(Āt

t+ , Chigh
t )

34: Lforward =forwardLoss(At+k
t+

,Cvalidt ,Zassigned
t+k )

35: Ltotal = Lcycle + Lforward
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Algorithm 2 Inference pipeline of Walker for associating objects across a video
sequence.
Input: A video sequence V; object detector Det
Output: Tracks T of the video
1: Initialization: T ← ∅
2: for frame It ∈ V
3: # predict detection boxes & scores
4: Dt ← Det(It)
5: Dhigh

t ← ∅
6: Dlow

t ← ∅
7: for dit ∈ Dt

8: if conf(dit) ≥ βhigh

9: Dhigh
t ← Dhigh

t ∪ {dit}
10: else if βlow ≤ conf(dit) < βhigh

11: Dlow
t ← Dlow

t ∪ {d}
12: end if
13: end for
14: # predict new locations of tracks
15: for t ∈ T
16: t← KalmanFilter(t)
17: end for
18: # first association
19: Associate T and Dhigh

t using W++ (Eq. (13)) and match threshold βhigh
match

20: Dremain
t ← remaining object boxes from Dhigh

t

21: Tremain ← remaining tracks from T
22: # second association
23: Associate Tremain and Dlow

t using IoU distance and match threshold βlow
match

24: Tunmatched ← remaining tracks from Tremain

25: # delete unmatched tracks T ← T \ Tunmatched

26: # initialize new tracks
27: for djt ∈ Dremain

t

28: T ← T ∪ {djt}
29: end for
30: end for
return T
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Algorithm 3 Inference pipeline of QD-Walker for associating objects across a
video sequence.
Input: frame index t, detections bi, scores si, detection embeddings ni for i = 1 . . . N ,

and track embeddings mj for j = 1 . . .M
1: # compute matching scores
2: DuplicateRemoval(bi)
3: for i = 1 . . . N, j = 1 . . .M
4: f(i, j) = biwalk(ni,mj)
5: end for
6: # track management
7: for i = 1 . . . N
8: c = max(f(i)) # match confidence
9: jmatch = argmax(f(i)) # matched track ID

10: # object match found
11: if c > βmatch and si > βobj

and isNotBackdrop(jmatch)
12: # update track
13: updateTrack(jmatch,bi,ni, t)
14: else if si > βnew

15: # create new track
16: createTrack(bi,ni, t)
17: else
18: # add new backdrop
19: addBackdrop(bi,ni, t)
20: end if
21: end for
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Fig. 6: Tracking results on the sequence 0058 of the DanceTrack validation set. We
analyze 5 frames centered around the frame #128 at time t̂ and spaced by k=4/30
seconds. We compare the self-supervised trackers QDTrack-S [14], QD-Walker (ours),
and Walker (ours). On each row, boxes of the same color correspond to the same
tracking ID.
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Fig. 7: ID switches on the sequence 0058 of the DanceTrack validation set. We analyze
5 frames centered around the frame #128 at time t̂ and spaced by k=4/30 seconds. We
compare the self-supervised trackers QDTrack-S [14], QD-Walker (ours), and Walker
(ours). On each row, boxes colored in green are correctly tracked, while blue ones
represent ID switches.
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Fig. 8: Tracking results on the sequence 0077 of the DanceTrack validation set. We
analyze 5 frames centered around the frame #222 at time t̂ and spaced by k=5/30
seconds. We compare the self-supervised trackers QDTrack-S [14], QD-Walker (ours),
and Walker (ours). On each row, boxes of the same color correspond to the same
tracking ID.
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Fig. 9: ID switches on the sequence 0077 of the DanceTrack validation set. We analyze
5 frames centered around the frame #222 at time t̂ and spaced by k=5/30 seconds. We
compare the self-supervised trackers QDTrack-S [14], QD-Walker (ours), and Walker
(ours). On each row, boxes colored in green are correctly tracked, while blue ones
represent ID switches.
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Fig. 10: Tracking results on the sequence 0081 of the DanceTrack validation set. We
analyze 5 frames centered around the frame #40 at time t̂ and spaced by k=3/30
seconds. We compare the self-supervised trackers QDTrack-S [14], QD-Walker (ours),
and Walker (ours). On each row, boxes of the same color correspond to the same
tracking ID. For ease of visualization, we crop all frames around an area of interest.
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Fig. 11: ID switches on the sequence 0081 of the DanceTrack validation set. We analyze
5 frames centered around the frame #40 at time t̂ and spaced by k=3/30 seconds. We
compare the self-supervised trackers QDTrack-S [14], QD-Walker (ours), and Walker
(ours). On each row, boxes colored in green are correctly tracked, while blue ones
represent ID switches. For ease of visualization, we crop around an area of interest.
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