
Automatic Web Rendering Parameters Generation for Visual Presentation 1

Supplementary Material

A Additional Details

A.1 Details of Rendering Parameters

As described in Sec. 3.1, we utilize rendering parameters to standardize CSS due
to its code complexity. The examples in Fig. 8 demonstrate this complexity. As
shown on the left side of Fig. 8, CSS can be utilized in different forms10: Inline
Styles for direct HTML element styling via the “style” attribute; Internal
Style Sheets using “<style>” tags within HTML documents; and External
Style Sheets linking to CSS files externally. The middle of Fig. 8 showcases
various CSS selectors11, including simple tag, class, and ID selectors, as well as
complex attribute and descendant selectors. Furthermore, CSS follows certain
rules regarding inheritance and overrides12. An example on the right side of Fig. 8
shows how the .highlight class’s red color is overridden by the more specific
ID selector #main-content p, turning the color green.

HTML
Inline
Styles

HTML

Internal
Style

HTML

CSS
External
Style

Forms of CSS Selector Complexity

Element
Selector

CSS

CSS
Class
Selector

CSS
ID
Selector

CSS
Attribute
Selector

CSS
Descendant
Selector

HTML

CSS

Render in browser

Styles Inheritance and Overriding

An Example:

Fig. 8: Examples of CSS code complexity, showcasing various CSS forms (left), selector
complexity (middle), and style inheritance and overrides (right).

The complexity of CSS makes direct generation of CSS impractical. Even
parsing CSS code to obtain WebRPG task labels is challenging. Since browsers
compute the final applied CSS property values (i.e., rendering parameters) for
each element based on HTML and CSS to render web pages, we propose extract-
ing each element’s RPs directly from the browser, as described in Sec. 3.2. This
approach bypasses the need to parse CSS code, achieving the standardization of
CSS.
10 https://www.w3schools.com/css/css_howto.asp
11 https://www.w3schools.com/css/css_selectors.asp
12 https://developer.mozilla.org/en-US/docs/Web/CSS/Inheritance

https://www.w3schools.com/css/css_howto.asp
https://www.w3schools.com/css/css_selectors.asp
https://developer.mozilla.org/en-US/docs/Web/CSS/Inheritance

2 Z. Shao et al.

HTML
Inline
Styles

HTML

Internal
Style

HTML

CSS
External
Style

Forms of CSS

JSON CSSHTML

Rendered Web Page

Forms of CSS

Preprocessed HTML Rendering Parameters CSS Transformed from RPs

Fig. 9: A illustration case of rendering parameters organization, including preprocessed
HTML (left), JSON-stored rendering parameters (middle), and the CSS transformed
from those RPs (right).

Table 3: The complete vocabulary of rendering parameters including all categories,
their index ranges, and selected examples.

Category Index Range Examples

Integer Pixel 0-1920 1px, 1052px, 1920px
Color 1921-1966 RGBA(153, 204, 0, 1), RGBA (255, 255, 255, 1)
Font Style 1967-1969 italic, oblique
Font Weight 1970-1978 100, 500, 900
Line Height 1979 normal
Text Align 1980-1985 start, center, end
Text Decoration 1986-1987 none, underline
Text Transform 1988-1991 uppercase, capitalize
PAD 1992 PAD

In practice, we follow the pre-order traversal order of the DOM tree to assign
a unique ID to each element, achieved by modifying the class name, as shown on
the left side of Fig. 9. We organize the rendering parameters using JSON, where
the key is the element’s ID, as illustrated in the middle of Fig. 9. RPs can also
be transformed into CSS, utilizing class selectors only, as demonstrated on the
right side of Fig. 9.

Additionally, the complete vocabulary of all rendering parameters is detailed
in Tab. 3, and index ranges of each rendering parameter are presented in Tab. 4.

A.2 Details of Visual Complexity Metric

The Visual Complexity (VC) metric integrates three dimensions: color, size, and
alignment. For any given web page, the three dimensions are defined as follows:

Automatic Web Rendering Parameters Generation for Visual Presentation 3

Table 4: Index ranges for each rendering parameter in the vocabulary.

Rendering Parameter Index Range

left 0-1920
top 0-1920
width 0-1920
height 0-1920
font-style 1967-1969
font-weight 1970-1978
font-size 0-32
line-height 0-50, 1979
text-align 1980-1985
text-decoration 1986-1987
text-transform 1988-1991
color 1921-1966
background-color 1921-1966

Color: The color metric measures the richness of colors and is defined as:

V Ccolor =
1

2N
(Cc + Cbg − 2), (7)

where N is the number of elements, and Cc and Cbg are the counts of unique
color and background-color attributes respectively.

Size: The size metric measures the diversity of sizes among web page ele-
ments. In particular, it calculates the size diversity for all N ′ parent elements
and then computes the average. The formula is as follows:

V Csize =
1

N ′

N ′∑
i=1

(
DSi − 1

NCi

)
, (8)

with NCi and DSi being the count of child elements and their distinct sizes for
element i, respectively.

Alignment: The complexity of a web page inversely correlates with the
number of pairwise alignments [15]. To simplify, this metric applies only to leaf
nodes. The calculation formula is as follows:

V Calg = 1− 1

Nleaf (Nleaf − 1)

Nleaf∑
j=1

Nleaf∑
i ̸=j

ALGij , (9)

where Nleaf denotes the number of leaf node elements, and ALGij is a binary
indicator of alignment (1) or misalignment (0) between elements i and j.

The overall VC is the sum of three metrics: V C = V Ccolor +V Calg +V Csize.

A.3 Dataset Details

The distribution of Visual Complexity (Sec. A.2) values across all samples is
illustrated in Fig. 10. In our dataset, samples with a VC value of less than 0.1

4 Z. Shao et al.

0.0 0.2 0.4 0.6 0.8 1.0
VC Value

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f S
am

pl
es

0.1

Fig. 10: Histogram showcasing Visual Complexity (Sec. A.2) value distribution across
all samples. Red indicates samples are filtered out, while blue represents those retained
in the dataset.

40 60 80 100 120
Element Count

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f S
am

pl
es

Distribution of Element Count

5 10 15 20 25
Average Depth of Elements

0

1000

2000

3000

4000

5000

6000

Distribution of Average Depth of Elements

Fig. 11: Histograms showcasing element count and the average depth of elements dis-
tribution across all samples in the dataset.

are filtered out, resulting in a remaining subset where the VC distribution is
relatively concentrated and approximates a normal distribution, thereby helping
to mitigate the impact of extreme samples on training. Additionally, to further
investigate our dataset, we visualize two crucial statistical values, element count
and the average depth of elements, in Fig. 11. This visualization indicates that
the dataset lacks samples containing a large number of elements or considerable
element depths.

A.4 Implementation details of FID model

As described in Sec. 6.1, the FID model is a binary classifier, incorporating a
VAE described in Sec. 5.2, four transformer layers, and a classification header. A
special CLS vector is utilized as the classification feature, representing all RPs.
The rest of the input is the same as the model in Sec. 5.4. Three kinds of noise
are designed to pollute the real data, namely perturbing the original values with

Automatic Web Rendering Parameters Generation for Visual Presentation 5

Table 5: The prompt template for GPT-4 experiment in Sec. 6.3.

Prompt You are an exceptional web designer. Please create the corre-
sponding CSS code based on the HTML code I have provided,
so as to craft a well-designed visual presentation for the web
page. You can only use the following CSS properties: "left", "top",
"width", "height", "font-style", "font-weight", "font-size", "line-
height", "color", "text-align", "text-decoration", "text-transform",
"background-color". Please exercise caution in controlling the size
of the image, as using the original image dimensions directly may
result in excessive spatial occupation. Here are several demonstra-
tions:{Demonstrates}. Below is the HTML code and do not reply
with anything other than CSS code: {HTML_Code}

.

Slots Demonstrates The HTML-CSS pairs for three selected web page
segments.

HTML_Code HTML code of given web page.

a fixed variance, randomly substituting elements with synthetic ones, and ran-
domly swapping elements. The specific FID models for layout and style, namely
FIDlayout and FIDstyle, are trained by masking irrelevant inputs. Specifically,
FIDlayout processes only the layout, masking the style, and FIDstyle processes
only the style, masking the layout. The FID models for overall, layout, and style,
achieve classification accuracies of 88.8%, 95.5%, and 92.4%, respectively.

A.5 Implementation details of WebRPG Baselines

The backbone of WebRPG-AR consists of 6-layer transformers for both encoder
and decoder, and WebRPG-DM is a 12-layer U-ViT. The mask scheduling func-
tion γ(r) is a cosine function, the time steps T in diffusion follows [21] with a
value of 1000, and λKL is set to 1e-6. For optimization, AdamW [45] is used with
a learning rate of 1.2e-4, β1 of 0.9, and β2 of 0.99.

The prompt template for the LLMs experiment in Sec. 6.3 is detailed in
Tab. 5. Due to the extensive length of textual representation for each element’s
RPs, as shown on the right side of Fig. 9, we opt to have LLMs directly generate
the CSS code. The specific steps for conducting the LLMs experiment are:

1. Use the prompt to generate CSS code via LLMs.
2. Use a browser to render the web page with the given HTML and the CSS

code generated by LLMs.
3. Extract the RPs for all elements, employing the method in Sec. 4.1.
4. Evaluate these RPs using the metrics in Sec. 6.1.

6 Z. Shao et al.

Real Web Page WebRPG-AR WebRPG-DM GPT-4

a

b

c

d

e

Fig. 12: Additional visualization of baseline-generated results. The screenshots focus
on areas with elements.

B Additional Results

B.1 Additional Cases of Baseline-Generated Results

We present additional results from WebRPG baselines in Fig. 12. These results
exhibit the performance of all baselines comparable to that outlined in Sec. 6.3.
Additionally, Fig. 13 displays the web page variants generated by WebRPG-AR
based on the same HTML, each produced through individual inferences. The
differences in layout and style among these variants indicate that WebRPG-AR
can generate diverse web pages while maintaining semantic coherence.

Table 6: FID on rendered web page screenshots.

WebRPG-AR GPT4 WebRPG-DM Real Web Page

FIDScreenshot 3.2102 15.515 33.040 1.1156

Automatic Web Rendering Parameters Generation for Visual Presentation 7

Diverse Generated Web Page VariantsReal Web Pages

Fig. 13: The web page variants generated by WebRPG-AR based on the same HTML.

HTML Generated by
GPT-4

Screenshot of
WebRPG-AR Generated Results

HTML Generated by
GPT-4

Screenshot of
WebRPG-AR Generated Results

Fig. 14: The HTML code generated by GPT-4 and the corresponding web page visual
results generated by WebRPG-AR. Screenshots use green placeholders due to
GPT-4 generates fictitious source addresses.

B.2 The FID on Screenshots of Rendered Web Pages

The FID on screenshots of rendered web pages is shown in Tab. 6.

B.3 Further Cases of Integrating LLM with WebRPG Model

Fig. 14 showcases more cases of WebRPG-AR creating visual presentations of
web pages based on HTML code generated by GPT-4. The prompt template for
automatically generating HTML is in Tab. 7. The prompt encompasses human-
authored descriptions of web design ideas, with an example shown in Tab. 8.

B.4 Human Evaluation

We conduct a human evaluation using pairwise comparisons. We randomly se-
lect 100 test samples and generate visual presentations using WebRPG-AR,

8 Z. Shao et al.

0 20 40 60 80 100

WebAPG-AR

WebRPG-DM

GPT4

62.7% 29.4% 7.9%

6.6%7.0% 86.4%

47.9% 29.2% 22.9%

Win
Tie
Lose

Fig. 15: Human pairwise comparison evaluation results.

Table 7: The prompt template for automatically generating HTML.

Prompt You are a web developer. Please generate the HTML code for a web
page with a caption of {Deign_Idea}.

Slot Deign_Idea Human-authored descriptions of web design ideas, with
an example shown in Tab. 8.

WebRPG-DM, and GPT-4. Five human annotators evaluate each pair to deter-
mine the superior presentation or if there is a tie. The results, shown in Fig. 15,
align with the objective evaluations in Tab. 1.

Table 8: An example of web design ideas described by humans.

This web page showcases the “Rumble Band for 38mm Apple
Watch,” offered at $19.99. It’s identified as the X-Doria Rumble
Band and is noted for its compatibility with the 38mm Apple Watch
Series 1, 2, 3, and Nike Edition. Highlighted on the page are cus-
tomer assurances including a lifetime warranty, complimentary ship-
ping on all orders, and a 30-day hassle-free return policy. A conspic-
uous “Add to Cart” button is prominently displayed. The product’s
image is designed to highlight its appearance and design features.

C An Example Explanation of SC Score

Fig. 16 provides an example to explain the SC Score further. The elements rep-
resenting price (marked with a green box, hereafter termed as price elements)
on the real web page W and on generated web page 1 Ŵ1 have differing styles in
terms of font color and size. However, these differences do not affect the percep-
tion of price elements, as their style remains consistent within each individual
web page. In contrast, the generated web page 2 Ŵ2 changes just one price el-
ement, which leads to confusion when perceiving the price elements. Although
Ŵ2 seems more visually similar to W because of only one differing element, from
a semantic perspective, Ŵ1 is more coherent. Therefore, the SC Score evaluates
whether elements that share a style on the real web page maintain that consis-

Automatic Web Rendering Parameters Generation for Visual Presentation 9

Generated Web Page 1 !𝑾𝟏 Generated Web Page 2 !	𝑾𝟐Real Web Page	𝑾

Style Consistency Style Consistency Style Inconsistency

Fig. 16: An example for visualizing style consistency. Notably, Ŵ1 and Ŵ2 are artifi-
cially created for demonstration purposes.

Real Web Page	𝑾 Generated Web Page 1 #𝑾𝟏 Generated Web Page 2 #	𝑾𝟐

SC Subset 1

SC Subset 2

SC Subset 3

Fig. 17: A visualization of the style consistency subset based on a real web page. The
style consistency subset is defined in Sec. 6.1.

tency on the generated page, beyond just visual similarity. Additionally, Fig. 17
provides a visualization of the style consistency subset for a real web page.

D Further Discussion on the Performance of LLM in
WebRPG Task

As described in Sec. 6.2, we employ GPT-4 as a representative for LLMs. Due to
the complexity of CSS code practices and the noise in actual web pages, directly
fine-tuning LLMs is not feasible. Consequently, we do not conduct fine-tuning ex-
periments. Moreover, to further explore the performance of GPT-4 in WebRPG
tasks, we conduct two qualitative experiments. Tab. 9 details the prompt tem-
plates. The first experiment inputs HTML and the captions from the original web
page screenshots. The second experiment comprises HTML, these captions, and
the screenshots themselves. It’s noteworthy that the additional data comprised
visual information from the original web pages, serving essentially as a form of
ground truth. The second experiment and the generation of web page screen-
shot captions both leverage the multimodal capabilities of GPT-4V13. Fig. 18
presents visualizations of selected cases, showing that additional data does not
enhance GPT-4’s performance. Given that these two qualitative experiments in-
volve ground truth inputs, we do not include them in the main text or conduct
quantitative experiments.

13 https://openai.com/research/gpt-4v-system-card

https://openai.com/research/gpt-4v-system-card

10 Z. Shao et al.

Real Data GPT-4 based on
HTML (Sec. 6.3)

GPT-4 based on
HTML and Caption

GPT-4V based on
HTML, Caption and Screenshot

a

b

c

d

e

Fig. 18: Further qualitative evaluation of GPT-4’s performance in WebRPG task.
Notably, the “GPT-4 based on HTML” group is the experiment in Sec. 6.3.

Automatic Web Rendering Parameters Generation for Visual Presentation 11

Table 9: The prompts for Sec. D. “H.”, “C.”, and “S.” denote “HTML”, “caption” and
“screenshot”, respectively.

Information H.+C. You are an exceptional web designer. Please cre-
ate the corresponding CSS code based on the
HTML code I have provided, so as to craft a
well-designed visual presentation for the web page.
Furthermore, for better comprehension of
the original web page design, here is a
detailed caption: {Caption}. You can only
use the following CSS properties: "left", "top",
"width", "height", "font-style", "font-weight", "font-
size", "line-height", "color", "text-align", "text-
decoration", "text-transform", "background-color".
Please exercise caution in controlling the size of the
image, as using the original image dimensions directly
may result in excessive spatial occupation. Here are
several demonstrations:{Demonstrates}. Below is the
HTML code and do not reply with anything other
than CSS code: {HTML_Code}.

H.+C.+S. You are an exceptional web designer. Please create
the corresponding CSS code based on the HTML
code and screenshot I have provided, so as to
craft a well-designed visual presentation for the
web page. Furthermore, for better comprehen-
sion of the original web page design, here
is a detailed caption: {Caption}. You can
only use the following CSS properties: "left", "top",
"width", "height", "font-style", "font-weight", "font-
size", "line-height", "color", "text-align", "text-
decoration", "text-transform", "background-color".
Please exercise caution in controlling the size of the
image, as using the original image dimensions directly
may result in excessive spatial occupation. Here are
several demonstrations:{Demonstrates}. Below is the
HTML code and do not reply with anything other
than CSS code: {HTML_Code}.

Slots Caption Captions from the original web page screenshots.
HTML_Code HTML code of given web page.
Demonstrates The HTML-CSS pairs for three selected web page seg-

ments.

	WebRPG: Automatic Web Rendering Parameters Generation for Visual Presentation

